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Combinatorial and Diophantine applications of ergodic theory 747
1. Introduction

The main focus of this survey is the mutually perpetuating interplay between ergodic the-
ory, combinatorics and Diophantine analysis.

Ergodic theory has its roots in statistical and celestial mechanics. In studying the long
time behavior of dynamical systems, ergodic theory deals first of all with such phenomena
as recurrence and uniform distribution of orbits.

Ramsey theory, a branch of combinatorics, is concerned with the phenomenon of preser-
vation of highly organized structures under finite partitions.

Diophantine analysis concerns itself with integer and rational solutions of systems of
polynomial equations.

To get a feeling about possible connections between these three quite distinct areas of
mathematics, let us consider some examples.

1.1. Fermat’s theorem over finite fields

Our first example is related to Fermat’s last theorem. Given n € N, where N, here and
throughout this survey, represents the set of positive integers, and a prime p, consider
the equation x" 4+ y" = 7" (mod p). This equation (as well as its more general version
ax" +by" 4+ cz"" =0 (mod p)) was extensively studied in the 19th and early 20th centuries.
(See [50, Chapter 26] for information on the early work and [118, Chapter XII] for more
recent developments and extensions.) We are going to prove, with the help of ergodic and
combinatorial considerations, the following theorem.

THEOREM 1.1. For fixed n € N and a large enough prime p, the polynomial f(z,y) =
7" — y" represents the finite field 7., = 7./ pZ. In other words, for any ¢ € Z, there exist
z,y € Ly, = Zp \ {0}, such that ¢ = 7" — y".

Putting ¢ = x" immediately gives the following result, which was proved by Schur in
1916. (See also [49].)

COROLLARY 1.2 [126]. For fixed n € N and large enough prime p, the equation
x" + y" = 7" (mod p) has nontrivial solutions.

In the course of the proof of Theorem 1.1 we shall utilize the following classical fact due
to F. Ramsey [117]. For a nice discussion which puts Ramsey’s theorem into the perspective
of Ramsey theory, see [72]. In what follows, |A| denotes the cardinality of a set A.

THEOREM 1.3. For any n,r € N there exists a constant ¢ = c¢(n, r) such that if a set A
satisfies |A| > ¢ and the set [A)* of two-element subsets of A is partitioned into r cells
(or, as we will often say, is r-colored): [A]? = Ule C;, then there exists a subset B C A
satisfying |B| > n and such that for some i, 1 <i <r, [B]2 C C;. (In this case we say that
[B1? is monochromatic.)



