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0. Introduction

Partial differential equations and systems describe evolution of time-dependent functions
and vector fields u(x, t) where x is a spatial variable and t is time. We consider u(x, t) with
a fixed t as an element of a function space E and obtain a vector-function u(t). Therefore,
a partial differential equation or system can be written in the form

∂t u = F(
u(t)

)
, (1)

where the operator F(u) includes partial derivatives of u with respect to spatial variables
x = (x1, . . . , xn). This equation looks like an ordinary differential equation and one may
try to use methods from the theory of finite-dimensional dynamical systems to study the
dynamics generated by (1). Dynamics can be studied locally and globally. The local the-
ory of equilibria, periodic solutions and their perturbations is very rich and includes their
stability, bifurcations, theory of local invariant manifolds through them (see [99,203,230,
291,344,360]). Here we mostly consider global aspects of dynamics.
The dynamics generated by (1) with initial data in a function space E can be described

by the solution semigroup

St :u(0) !→ u(t)

that acts in the space E. When F(u(·)) does not depend on t explicitly, the solution oper-
ators St satisfy the semigroup identity

St+τ = StSτ , t ! 0, τ ! 0, S0 = 1. (2)

The long-time behavior of solutions of such equations can be adequately described in
terms of global attractors of the equations. In many problems the influence of initial data
has vanished after a long time has elapsed, therefore permanent regimes are of impor-
tance. The simplest permanent regimes are described by time-independent functions that
are solutions of the equation F(u) = 0. Such regimes are important but very special and
it is widely believed that time-dependent permanent regimes are of importance, in partic-
ular they describe turbulence in hydrodynamics (see [102,341]). Time-dependent regimes
may include time-periodic, time quasiperiodic and chaotic regimes; their common feature
is that they are defined for all times, positive and negative. A mathematically rigorous
description of such regimes and related questions of asymptotic behavior and stability is
given by the theory of attractors. The theory of global attractors of PDE is developed in
works of many mathematicians, see the list of references and in particular the books [55,
98,209,270,338,353,363,371] and references therein. Here we give a brief sketch of basic
ideas, approaches and directions of research in this field. We also try to complement recent
reviews [331] and [336] on related subjects from this series.
The central concept of the theory we discuss here is a global attractor. Since the termi-

nology used in the theory of global attractors of PDE was changing with time we give a
brief review of the history of related concepts. A discussion of the concept of an attractor
in the theory of finite-dimensional dynamical systems is given by Milnor [308]. Usually an
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attractor of a semigroup (a semiflow in different terminology) is understood as an invariant
set that attracts its neighborhood, it equals the omega-limit set of a neighborhood of the
attractor (see [308] for different variants of this definition). Here we call such an attractor
a local attractor. A dynamical system may have several local attractors, for example sev-
eral stable equilibria or stable periodic solutions with different domains of attraction. In
the dynamical systems generated by PDE local attractors are often considered, see [102,
230,291,341,378]. Sometimes a smaller attractor is considered, namely a set which attracts
most of the points of the neighborhood, such an object is called a minimal attractor by
Milnor [308], where the reader can find exact definitions. Before 1982 in the research on
global dynamics of PDE, in particular in the works of Ladyzhenskaya [261,262], Foias and
Temam [181], Henry [230], the attracting sets were presented as omega-limit sets of a large
ball and characterized as maximal invariant bounded sets. An absorbing ball in connection
with a description of the long-time dynamics of the two-dimensional Navier–Stokes sys-
tem was found by Foias and Prodi [175]. The invariant set that is the omega-limit set of
an absorbing ball was constructed by Ladyzhenskaya [261,262] for the two-dimensional
Navier–Stokes system. One of results of [37,40] is that the invariant set constructed by
Ladyzhenskaya is the global attractor in the modern terminology, namely it attracts all
bounded sets in the norm-induced topology of the energy space. The seminal work of La-
dyzhenskaya [262] is the first work where a global attractor of a PDE was constructed
and its important properties described; in particular, the invertibility of dynamics on the
attractor was proven. Ladyzhenskaya [262] also proved that a trajectory on the attractor
is uniquely determined by its finite-dimensional projection, this theorem is the first in the
important direction of research of finite-dimensionality of attractors of PDE; the research
was continued by Mallet-Paret [286], Foias and Temam [181], Mañe [289], Foias, Temam,
Manley and Treve [172], Babin and Vishik [39,42] and in many subsequent papers; for
more details and references see Section 2.1.
Dynamical systems generated by PDE have their specifics. The description of dynamics

usually is given in terms of inequalities that are formulated in terms of function norms, this
makes them uniform in corresponding normed spaces; the inequalities describe uniformly
behavior of solutions with initial data from a bounded set in such a space. A natural de-
scription of dynamics should take into account these features. The following definition of
a maximal attractor in terms of attraction of all bounded sets was given and was used as
a basis for a systematic approach to the study of global dynamics of parabolic, damped
hyperbolic equations and the Navier–Stokes system in a series of papers of Babin and
Vishik published in 1982–1983 [37,38,40,39,42] and in many subsequent papers. In these
works the existence of maximal attractors was proven for general multidimensional par-
abolic systems, two-dimensional Navier–Stokes system and damped wave equations; the
basic properties of the attractors were described; in particular, upper and lower estimates
of the Hausdorff dimension of attractors were obtained and a regular structure of attractors
for parabolic and hyperbolic equations with a global Lyapunov function was described. We
quote in the introduction the definition from [39,42], the earlier definitions in [37,38,40]
did not include the closedness (or compactness) as a requirement.

DEFINITION. A maximal attractor of a semigroup {St } in a Banach space E is a bounded
closed set A with the following two properties:



Global attractors in PDE 987

(i) A is invariant, that is StA = A for all t ! 0;
(ii) A attracts all bounded sets in E, that is δE(StB,A) → 0 as t → ∞ for every

bounded set B .

This definition explicitly describes the domain of attraction, that is the whole Banach
space E and, more important, explicitly specifies the attraction of Stu0 to A. Namely, the
attraction is assumed to be uniform with respect to a bounded u0 ∈ B . Compared with the
concept of a maximal invariant set that was used before in the dynamical theory of PDE
this definition explicitly includes the topology of the attraction. This distinction is impor-
tant in the infinite-dimensional case when the same space may be endowed with two non-
equivalent topologies, for example the norm-induced and the weak topology of a Hilbert
space. The maximal invariant set can be the same, but the attraction is understood in dif-
ferent ways and this difference is a major point of research, especially when the dynamics
generated by equations in unbounded domains and damped hyperbolic problems is con-
sidered; very often the same set with the attraction in the weak topology is called a weak
attractor. Before 1982–1983 in the literature on dynamical properties of PDE the attractors
were considered (as omega-limit sets) but the attraction as such was not discussed.
In addition to properties of dynamics in PDE mentioned above there is the following

motivation for this definition. Firstly, the maximal attractor is determined uniquely by the
semigroup {St }, that is by the operatorF in (1) and by the spaceE. Secondly, the definition
does not include a specific construction of the attractor.
After 1983 the above definition of a maximal attractor or its minor variations became

a standard definition in the theory of global attractors of PDE (see [55,363,209,101,270,
98,353,336] and references therein) but the name global attractor is now used more often.
Sometimes this object is called a universal attractor (see [363]). We originally used the
term maximal attractor to point out that the domain of attraction is maximal (namely the
whole space) and that it is a maximal invariant set. Note that under natural assumptions
the maximal attractor is a maximal invariant bounded set and a minimal closed set that at-
tracts all bounded sets; the latter property is not in a perfect match with the name maximal
attractor, but wise people say that nothing is perfect. The term minimal closed B-global
attractor used by Ladyzhenskaya [270] for the same object is very precise but seems to be
too long. One has to take into account that originally in the theory of infinite-dimensional
dynamical systems the definition of a global attractor given in [212] did not include the
attraction of bounded sets, and the global attractor was defined as a set that attracted Stu0
for all u0 ∈ E; this terminology was used until 1984, see [214, p. 46]. Note that a set which
was called a global attractor in the old terminology is usually smaller than the maximal
attractor (or the global attractor in the modern terminology). By 1981 the general theory of
maximal invariant sets of infinite-dimensional semigroups was developed by Billotti and
La Salle [66], Hale, La Salle and Slemrod [212], Massatt [292,293]. Important concepts of
asymptotically smooth semigroups were introduced by Hale, La Salle and Slemrod [212]
and existence of maximal invariant sets of asymptotically smooth semigroups was proved;
non-trivial sufficient conditions for the asymptotic smoothness were found; relations be-
tween different concepts of attraction were studied; see [206,208,209,336] for details and
references. This theory in particular includes theorems on existence of maximal bounded
invariant sets that attract all bounded sets, see [214]. One has to note though that before
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1984 the attraction of bounded sets in the literature on abstract semigroups in infinite-
dimensional spaces was considered among other properties such as attraction of points,
attraction of compact sets and their neighborhoods and was not a subject of special interest
(see, for example, [207, Chapter 4], [214]). The main application of the general theory was
the dynamics of retarded functional differential equations, we could not find in the litera-
ture on Partial Differential Equations published before 1982 a paper where a theorem on
attraction of every bounded set to an attractor of an equation with partial derivatives was
formulated or proved.
In this review we try to pay attention to the aspects of the dynamics of PDE which

distinguish this subject from the theory of finite-dimensional dynamical systems and from
the abstract theory of infinite-dimensional dynamical systems.
The theory of infinite-dimensional systems generated by PDE includes technical com-

plications that are absent in the finite-dimensional theory:
• Semigroup operators St often are defined only for t ! 0 and cannot be extended for

−∞ < t < ∞.
• Infinite-dimensional function spaces are not locally compact.
• Dynamics in infinite-dimensional spaces for given initial data as a rule does not allow
an explicit description, therefore only a collective description is available, usually in
terms of inequalities.

• Solutions with bounded energy can blow-up in a finite time.
• Uniqueness of solutions may be difficult to establish (3D Navier–Stokes system).
• The dependence on initial data may be non-smooth even when non-linear operators
are polynomial thanks to infinite-dimensional effects (strongly non-linear monotonic
parabolic equations).

More importantly, the dynamics generated by PDE has completely new features:
• Dimension of the global attractor can be considered as a large parameter, this allows
to study the asymptotic behavior of the dimension.

• The spatial variables allow one to classify functions from invariant sets according to
their geometric properties:

(i) number of zeros;
(ii) homotopy type;
(iii) symmetry properties.

• Interaction of spatial and temporal behavior (dependence of the dimension of the at-
tractor and the fragmentation complexity of the attractor on the volume of the spatial
domain).

Therefore, the central problems studied in the theory of global attractors of PDE include:
• Reduction in some sense of infinite-dimensional systems to finite-dimensional.
• Characterization of the attraction in different topologies, exponential attraction, track-
ing property.

• Interconnection of spatial properties of solutions and their dynamical properties.
• Expression of characteristics of attractors in terms of physical parameters of the prob-
lems.

• Relation of the properties of dynamics (for example, the existence of a global attrac-
tor) with the number of spatial variables and the growth of non-linearities.
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One has to take into account that there are obvious similarities between the infinite-
dimensional and finite-dimensional cases. For example, the construction of a global attrac-
tor as an omega-limit set works in both cases. The theory of local invariant manifolds and
foliations is similar to the finite-dimensional theory. Though the semigroups generated by
parabolic operators are not invertible (cannot be extended to negative times) the technical
difficulties that arise in many cases can be solved and do not lead to significant differences.
We pay here more attention to the aspects of the theory which are specific to the infinite-

dimensional case. There are completely new phenomena, for example, the dimension of the
global attractors tends to infinity when the viscosity tends to zero; such behavior and its
asymptotics makes sense only in an infinite-dimensional situation. Another phenomenon
that has no simple analogues in the finite-dimensional case is the presence of a spatial vari-
able in addition to the time variable. Relations between spatial and time variables manifest
themselves most clearly in the case of an unbounded or a very large domain, for exam-
ple the growth of the dimension of attractor and its fragmentation complexity when the
domain increases, or the trivialization of dynamics on the attractor of the Navier–Stokes
system in unbounded channels near spatial infinity. Many aspects of the theory of attractors
are important for applications, in particular to geophysics and meteorology (see [279,280,
278]). In particular, the dimension of attractor estimates the number of degrees of free-
dom of the dynamical system which describes long time behavior of a physical system.
A global attractor also contains all the information on the instability of the dynamical sys-
tem (see [55]).
The purpose of this chapter is to give a sketch of the core of the classical theory of

attractors with a minimum of technicalities and to point to major directions in which the
theory develops. We do not intend to give the most general results, but rather we want
to show the ideas in the simplest possible way. We prefer to present results with simple
formulations rather than the most general results and give references to the literature for
possible generalizations. We do not give here detailed proofs; if the formulations of results
are very technical, we refer to original papers for details. Since this review reflects scientific
interests of the author, inevitably not all directions in the theory of global attractors of PDE
are represented with the same degree of detail. The author apologizes that many interesting
papers are not discussed in this review.

1. Global attractors of semigroups

Here we discuss basic concepts related to dynamics in infinite-dimensional spaces.

1.1. Basic definitions and existence of attractors

Absorption and attraction. Let E be a complete metric space with distance ρ(x1, x2) and
a semigroup of (non-linear) operators {St , t ! 0} act in E:

St :E → E, t ! 0.


