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1. Introduction

The Kontsevich–Zorich cocycle, introduced in [25], is a cocycle over the Teichmüller flow
on the moduli space of holomorphic (quadratic) differentials. The study of the dynamics
of this cocycle, in particular of its Lyapunov structure, has important applications to the
ergodic theory of interval exchange transformations (i.e.t.’s) and related systems such as
measured foliations, flows on translation surfaces and rational polygonal billiards (see the
article by H. Masur [5] in this handbook). The Kontsevich–Zorich cocycle is a continuous-
time version of a cocycle introduced by G. Rauzy [35] as a “continued fractions algorithm”
for i.e.t.’s and later studied byW. Veech, in his work on the unique ergodicity of the generic
i.e.t. [38], and A. Zorich [45,46] among others.

1.1. Deviation of ergodic averages and other applications

Zorich (see [44,46,47]) made the key discovery that typical trajectories of generic (ori-
entable) measured foliations on surfaces of higher genus (or equivalently of generic i.e.t.’s
with at least 4 intervals) deviate from the mean according to a power law with exponents
determined by the Lyapunov exponents of the cocycle.
In [45] he began a systematic study of the Lyapunov spectrum of the cocycle and con-

jectured, on the basis of careful numerical experiments, that all of its Lyapunov exponents
are non-zero and simple. He also observed that, as a consequence of the close connection
between the cocycle and the Teichmüller geodesic flow, the simplicity of the top exponent,
sometimes called the spectral gap property, is equivalent to the (non-uniform) hyperbolic-
ity of the Teichmüller flow, which had been proved earlier by W. Veech [40].
The applications of the Kontsevich–Zorich cocycle to the dynamics of i.e.t.’s and related

systems are not limited to the deviation of ergodic averages. The spectral gap property of
the cocycle also plays an important role in recent results of Marmi, Moussa and Yoccoz
[27,28] on the cohomological equation for generic i.e.t.’s, which improve on previous work
of the author [19].
In a different direction, A. Avila and the author [7] have recently shown that the posi-

tivity of the second exponent (for surfaces of higher genus) implies that almost every i.e.t.
which is not a rotation is weakly mixing and that the generic directional flow on the generic
translation surface of higher genus is weakly mixing as well. This result answers in the
affirmative a longstanding conjecture on the dynamics of i.e.t.’s. Special cases of the con-
jecture were earlier settled by A. Katok and A. Stepin [24] (for i.e.t.’s on 3 intervals) and
W. Veech [39] (for i.e.t.’s on any number of intervals, but with special combinatorics).

1.2. Renormalization for parabolic systems

The role of the Kontsevich–Zorich cocycle can be explained by the somewhat vague obser-
vation that it provides a renormalization dynamics for i.e.t.’s (and related systems). Such
systems provide fundamental examples of parabolic dynamics, which by definition is char-
acterized by sub-exponential (polynomial) divergence of nearby orbits.


