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Fartially hyperbolic dynamical systems 3
1. Introduction
1.1. Motivation

1.1.1. Smooth ergodic systems The flows and maps that arise from equations of motion
in classical mechanics preserve volume on the phase space, and their study led to the de-
velopment of ergodic theory.

In statistical physics, the Boltzmann—Maxwell ergodic hypothesis, designed to help de-
scribe equilibrium and nonequilibrium systems of many particles, prompted a search for
ergodic mechanical systems. In geometry, the quest for ergodicity led to the study of geo-
desic flows on negatively curved manifolds, where Eberhard Hopf provided the first and
still only argument to establish ergodicity in the case of nonconstantly negatively curved
surfaces [57]. Anosov and Sinai, in their aptly entitled work “Some smooth Ergodic Sys-
tems” [10] proved ergodicity of geodesic flows on negatively curved manifolds of any
dimension.

With the development of the modern theory of dynamical systems and the availabil-
ity of the Birkhoff ergodic theorem the impetus to find ergodic dynamical systems and
to establish their prevalence grew stronger. Birkhoff conjectured that volume-preserving
homeomorphisms of a compact manifold are generically ergodic.

1.1.2. Hyperbolicity The latter 1960s saw a confluence of the investigation of ergodic
properties with the Smale program of studying structural stability, or, more broadly, the
understanding of the orbit structure of generic diffeomorphisms. The aim of classifying
(possibly generic) dynamical systems has not been realized, and there are differing views
of whether it will be. Current efforts in this direction are related to the Palis conjecture
(see [4]). A promising step towards understanding generic smooth systems would clearly
be an understanding of structurally stable ones, and one of the high points in the theory
of smooth dynamical systems is that this has been achieved: Structural stability has been
found to characterize hyperbolic dynamical systems [2].

Structural stability implies that all topological properties of the orbit structure are ro-
bust. Of these, topological transitivity has a particularly natural measurable analog, namely,
ergodicity. On one hand, then, robust topological transitivity of hyperbolic dynamical sys-
tems motivated the search for broader classes of dynamical systems that are robustly tran-
sitive [29]. On the other hand, this, and the fact that volume-preserving hyperbolic dynam-
ical systems are ergodic (with respect to volume) may have led Pugh and Shub to pose a
question at the end of [56] that amounts to asking whether ergodic toral automorphisms
are stably ergodic, i.e., whether all their volume-preserving C! perturbations are ergodic.
They later conjectured that stable ergodicity is open and dense among volume-preserving
partially hyperbolic C? diffeomorphisms of a compact manifold.

1.1.3. Partial hyperbolicity 1In this chapter we aim to give an account of significant re-
sults about partially hyperbolic systems. The pervasive guiding principle in this theory is
that hyperbolicity in the system provides the mechanism that produces complicated dynam-
ics in both the topological and statistical sense, and that, with respect to ergodic properties,



