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1. Introduction

In this work we discuss qualitative properties of solutions for Hamiltonian partial differ-
ential equations in the finite volume case. That is, when the space-variable x belongs to a
finite domain and appropriate boundary conditions are specified on the domain’s boundary
(or x belongs to the whole space, but the equation contains a potential term, where the
potential growths to infinity as |x| — oo, cf. below Example 5.5 in Section 5.2). Most of
these properties have analogies in the classical finite-dimensional Hamiltonian mechanics.
In the infinite-volume case properties of the equations become rather different due to the
phenomenon of radiation, and we do not touch them here.
Our bibliography is by no means complete.

NOTATION. By T” we denote the torus T" = R*/27Z" and write T! = S'; by R% —the
open positive octant in R"; by Zo—the set of non-zero integers. By Bs(x; X) we denote
an open é-ball in a space X, centred at x € X. Abusing notation, we denote by x both
the space-variable and an element of an abstract Banach space X. For an invertible linear
operator J we set J = —J~!. The Lipschitz norm of a map f from a metric space M to a

Banach space is defined as sup,,, ¢y || f (m)1| 4 sUp,,, m, W

2. Symplectic Hilbert scales and Hamiltonian equations
2.1. Hilbert scales and their morphisms

Let X be a real Hilbert space with a scalar product (-, -) = (-, -)x and a Hilbert basis
{ok | k € Z}, where Z is a countable subset of some Z". Let us take a positive sequence
{6k | k € Z} which goes to infinity with k. For any s we define X, as a Hilbert space with
the Hilbert basis {¢x6, " | k € Z}. By || - ||s and (-, +); we denote the norm and the scalar
product in X (in particular, Xo = X and (-, «)o = (-, -)). The totality {X} is called a
Hilbert scale, the basis {@y}—the basis of the scale and the scalar product (-, -) —the
basic scalar product of the scale.

A Hilbert scale may be continuous or discrete, depending on whether s € R or s € Z.
The objects we define below and the theorems we discuss are valid in both cases.

A Hilbert scale { X} possesses the following properties:

(1) Xj is compactly embedded in X, if s > r and is dense there;

(2) the spaces Xy and X_; are conjugated with respect to the scalar product (-, -). That

is, for any u € X N Xo we have

lulls = sup{(u, u') [ u' € X—s N Xo, 'l —5 = 1};

(3) the norms || - ||s satisfy the interpolation inequality; linear operators in the spaces
X satisfy the interpolation theorem.
Concerning these and other properties of the scales see [77] and [59].
For a scale {X} we denote by X _o, and X, the linear spaces X _oo = | X5 and Xoo =
) Xs.

Scales of Sobolev functions are the most important for this work:



