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Introduction

Since the time of Newton it became customary to describe the law of motion of a me-
chanical system by a solution X(t) of an ordinary differential equation with a given initial
condition X(0) = x. The dynamical systems ideology developed only in the 20th century
suggested to look at the evolution of the whole phase space of initial conditions (and not
only of a specific x) under the action of an appropriate group (or semigroup) of transforma-
tions F t , called a flow in view of the natural analogy with hydrodynamics, so that a solution
X(t) with an initial condition x can be written as F tx. Among early explicit manifesta-
tions of this approach was the celebrated Poincaré recurrence theorem whose statement
concerns only almost all initial conditions and it has nothing to say about a specific one.
A similar but much later development occurred with stochastic dynamics. Stochastic

differential equations (SDEs) were introduced by Itô at the beginning of the 1940s giving
an explicit construction of diffusion processes which were studied in the 1930s by Kol-
mogorov via partial differential equations and measures in their path spaces. For about
40 years it was customary to consider (random) solutions X(t,ω) at time t > 0 of an
SDE with a fixed initial condition X(0,ω) = x and the distribution of corresponding ran-
dom paths was usually of prime interest. Around 1980 several mathematicians discovered
that solutions of SDEs can also be represented in a similar to the deterministic case form
X(t,ω) = F t

ωx where the family F t
ω is called a stochastic flow (see [107]) and for each

t > 0 and almost all ω it consists of diffeomorphisms.
With the development of dynamical systems in the 20th century it became increasingly

clear that discretizing time and considering iterations of a single transformation is quite
beneficial both as a tool to study the original flow generated by an ordinary differential
equation, for instance, via the Poincaré first-return map, and as a rich source of new mod-
els which cannot appear in the continuous time (especially, ordinary differential equations)
framework but provide an important insight into the dynamics which is free from continu-
ous time technicalities. The next step is an observation that the evolution of physical sys-
tems is time dependent by its nature, and so they could be better described by compositions
of different maps rather than by repeated applications of exactly the same transformation.
It is natural to study such problems for typical, in some sense, sequences of maps picked at
random in some stationary fashion. This leads to random transformations, i.e., to discrete
time random dynamical systems (RDS).
Random transformations were discussed already in 1945 by Ulam and von Neumann

[159] and few years later by Kakutani [74] in the framework of random ergodic theorems
and their study continued in the 1970s in the framework of relative ergodic theory (see
[157] and [109]) but all this attracted only a marginal interest. The appearance of sto-
chastic flows as solutions of SDEs gave a substantial push to the subject and towards the
end of the 1980s it became clear that powerful dynamical systems tools united with the
probabilistic machinery can produce a scope of results which comprises now the theory of
RDS. Emergence of additional structures in SDEs motivated probabilists to have a close
look at the theory of smooth dynamical systems. This brought to this subject such notions
as Lyapunov exponents, invariant manifolds, bifurcations, etc., which had to be adapted
to the random diffeomorphisms setup. Moreover, an introduction of invariant measures of
random transformations enables us to speak about such notions as the (relative) entropy,
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the variational principle, equilibrium states, and the thermodynamic formalism which were
developed in the deterministic case in the second half of the 20th century. The probabilistic
state of mind requires here to assume as little as possible about the stochasticity which
drives random transformations unlike the approach in the classical ergodic theory where
all measure (probability) spaces are usually assumed to be separable.
During last 20 years a lot of work was done on various aspects of RDS and some of

it is presented in 5 books [82,118,47,7,49] written on this subject. The theory of RDS
found its applications in statistical physics (see [152]), economics (see [155]), meteorol-
ogy (see [56]) and in other fields. In this survey we describe several important parts of
ergodic theory of RDS but we do not try to fulfil an impossible task to cover everything
that was done in this subject. This survey consists of 5 sections among which 4 sections
exhibit the theory of RDS and Section 5 deals with random perturbations of dynamical
systems. Section 1 deals with the general ergodic theory and the topological dynamics of
random transformations. The general setup of random transformations together with no-
tations we use in this survey are introduced in Section 1.1 which contains basic results
about the measure-theoretic (metric) entropy and generators for random transformations.
Section 2 deals with constructions of random stable and unstable manifolds for RDS while
Section 3 exhibits results about relations between Lyapunov exponents and the (relative)
entropy such as Ruelle’s inequality and Pesin’s formula for RDS. In short, Sections 2 and 3
describe results which comprise what can be called as Pesin’s theory for random diffeo-
morphisms and endomorphisms whose original deterministic version is exhibited in the
article by Barreira and Pesin [1] in this volume. Section 4 exhibits the scope of results re-
lated to or relying upon the thermodynamic formalism ideology and constructions adapted
to random transformations.
Section 5 about random perturbations of dynamical systems stands quite apart from other

sections. The reason for its inclusion to this survey is two-fold. First, some popular models
of random perturbations, where we apply at random small perturbations of a given map,
lead to random transformations. Secondly, the study of both RDS and random perturbations
are motivated to some extent by an attempt to understand various stability properties of
dynamical systems. The first paper [135] which rises the problem of stability of dynamical
systems under random perturbations appeared already in 1933 but until the 1960s this
question had not attracted substantial attention. At that time random perturbations only of
dynamical systems with simple dynamics were studied (see [80] and [164]) and only in the
1970s the most interesting case of systems with complicated (chaotic) dynamics had been
dealt with (see [81]). Various probabilistic results on diffusion perturbations of systems
with simple dynamics can be found in [64]. On the other hand, random perturbations of
chaotic dynamical systems are described in [83] (see also [27]). Since then new methods
and results have appeared and we will describe also some recent results concerning random
perturbations of certain types of nonuniformly hyperbolic systems. We will see also how
random perturbations can serve as a tool in computations of chaotic dynamical systems on
a computer which, in fact, goes back to Ulam [158].
Among main topics related to RDS which are not covered by this survey are: stochastic

bifurcations theory which is not yet complete but some parts of it can be found in [7],
topological classification of random cocycles which is described in [47], and infinite-
dimensional RDS which play an important role in various models described by partial


