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1. Introduction

In this chapter we discuss Hamiltonian partial differential wave equations which are de-
fined on unbounded spatial domains, a class of so-called extended Hamiltonian systems.
The examples we consider are the nonlinear Schrödinger and Klein–Gordon equations de-
fined on R3. These may be viewed as infinite-dimensional Hamiltonian systems, which
have coherent solutions, e.g., spatially uniform equilibria, spatially nonuniform solitary
standing waves. . . . Questions of interest include the dynamics in a neighborhood of these
states (stability to small perturbations), stability under small Hamiltonian perturbations of
the dynamical system, the behavior of solutions on short, intermediate and infinite time
scales and the manner in which these coherent states participate in the structure of solu-
tions on these time scales.
The contrast in dynamics between Hamiltonian systems of extended type and those of

compact type is striking. Compact Hamiltonian systems arising, for example, from finite-
dimensional Hamiltonian systems or Hamiltonian partial differential equations (PDEs)
governing an evolutionary process defined on a bounded spatial domain, are systems gov-
erned by finite or infinite systems of ordinary differential equations (ODEs) with a discrete
set of frequencies. Many fundamental phenomena and questions here involve the persis-
tence or breakdown of regular (e.g., time periodic or quasiperiodic) solutions and their dy-
namical stability relative to small perturbations. A stable state of the system is one around
which neighboring trajectories oscillate. KAM theory implies states persist in the presence
of small Hamiltonian perturbations (structural stability) provided certain arithmetic non-
resonance conditions on the set of frequencies of the unperturbed state hold [1,27,11,3].
In contrast, extended Hamiltonian systems arising from Hamiltonian PDEs are systems

involving continuous as well as discrete spectra of frequencies. Stable states are expected
to be asymptotically stable; states initially nearby the unperturbed state remain close and
even converge to it in an appropriate metric. Since the flow is in an infinite-dimensional
space, this does not contradict the Hamiltonian character of the phase flow, which in finite-
dimensional spaces preserves volume. Convergence to an asymptotic state occurs through a
mechanism of radiating energy to infinity. It is also possible that some states of the system
are long-lived metastable states. These are states which persist on long time scales, but
decay as t → ∞. This structural instability due to Hamiltonian perturbations occurs due to
nonlinearity induce resonances of states associated with discrete and continuous spectra,
precisely that which is precluded in the setting of KAM theory.

2. Overview

We consider partial differential equations for which the linear part (the small amplitude
limit) has spatially localized and time-periodic “bound state” solutions, which are dynam-
ically stable. Such solutions of the linear dynamical system are associated with the dis-
crete spectrum of linear self-adjoint operator generating the flow. Also associated with this
operator, due to the unboundedness of the spatial domain, is continuous spectrum with
corresponding spatially extended (nondecaying) radiation states. These bound and radia-
tion states are central to the linear dynamics. Arbitrary finite energy initial conditions can,


