
METRIC SPACES

Based on the Appendix to B. Hasselblatt and A. Katok, A First Course in Dynamics,
Cambridge University press, 2003.

a. Definitions.

DEFINITION 0.1. If X is a set then d : X × X → R is said to be a metric or distance
function if

(1) d(x, y) = d(y, x) (symmetry),
(2) d(x, y) = 0 ⇔ x = y (positivity),
(3) d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

If d is a metric then (X, d) is said to be a metric space.

REMARK 0.2. Putting z = x in (3) and using (1) and (2) shows that d(x, y) ≥ 0.

REMARK 0.3. A subset of a metric space is itself a metric space by using the metric
of the space (this is then called the induced metric).

The following notions generalize familiar concepts from euclidean space.

DEFINITION 0.4. The set B(x, r):={y ∈ X d(x, y) < r} is called the (open) r-ball
around x.

A set O ⊂ X is said to be open if for every x ∈ O there exists r > 0 such that
B(x, r) ⊂ O. (This immediately implies that any union of open sets is open.) The interior
of a set S is the union IntS of all open sets contained in it. Equivalently, it is the set of
x ∈ S such that B(x, r) ⊂ S for some r > 0. If x ∈ X and O is an open set containing
x then O is said to be a neighborhood of x. A point x ∈ X is called a boundary point
of S ⊂ X if for every neighborhood U of x we have U ∩ S 6= ∅ and U \ S 6= ∅. The
boundary of S is the set ∂A of its boundary points.

For A ⊂ X the set A := {x ∈ X B(x, r) ∩ A 6= ∅ for all r > 0} is called the
closure of A. A is said to be closed if A = A. A set A ⊂ X is said to be dense if A = X
and ε-dense if X ⊂

⋃

{B(x, ε) x ∈ A}. A set is said to be nowhere dense if its closure
has empty interior (that is, contains no nonempty open set). This is true for finite sets but
fails for Q and intervals. A sequence (xn)n∈N in X is said to converge to x ∈ X if for all
ε > 0 there exists an N ∈ N such that for every n ≥ N we have d(xn, x) < ε.

It is easy to see that a set is closed if and only if its complement is open. (Therefore any
intersection of closed sets is closed.) Another way to define a closed set is via accumulation
points:

DEFINITION 0.5. An accumulation point of a set A is a point x for which every ball
B(x, ε) intersects Ar{x}. The set of accumulation points of A is called the derived set of
A and denoted by A′. A set is closed if A′ ⊂ A and the closure A of a set A is A = A∪A′.
A set A is said to be perfect if A′ = A, that is, there are no points missing (all accumulation
points are there) nor any extraneous (isolated) ones.

Note that x ∈ A′ if and only if there is a sequence of points in A that does not include
x but converges to x.
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EXAMPLE 0.6. Perfect sets are closed. R is perfect, as are [0, 1], closed balls in Rn,
S1 and the middle-third Cantor set (see Section 0.1g) . But Z or finite subsets of Rn are
not (they have no accumulation points) and nor are the rationals Q (they have irrational
accumulation points).

Finite sets are nowhere dense but this fails for Q and intervals. The ternary Cantor set
is nowhere dense, because it is closed and has empty interior (contains no interval).

Here is an interesting pertinent fact:

PROPOSITION 0.7. All sets that are both perfect and nowhere dense are homeomor-
phic to the ternary Cantor set.

DEFINITION 0.8. A metric space X is said to be connected if it contains no two
disjoint nonempty open sets. A totally disconnected space is a space X where for every
two points x1, x2 ∈ X there exist disjoint open sets O1, O2 ⊂ X containing x1, x2,
respectively, whose union is X .

R or any interval of R, as well as Rn and open balls in Rn, or the circle in R2 are
connected. Examples of totally disconnected spaces are provided by finite subsets of R

with at least 2 elements as well as the rationals, and, in fact, any countable subset of R.
The ternary Cantor set is an uncountable totally disconnected set.

b. Completeness. One important property sets apart the real number system from
that of rational numbers. This property is called completeness, and it reflects that fact
that the real line “has no holes”, like the rationals do. There are several equivalent ways
of expressing this property precisely, and different versions may be useful in different
circumstances.

(1) If a nondecreasing sequence of real numbers is bounded above then it is conver-
gent.

(2) If a subset of R has an upper bound then it has a smallest upper bound.
(3) A Cauchy sequence of real numbers converges.

A Cauchy sequence is a sequence (an)n∈N such that for any ε > 0 there exists an n ∈ N

such that |an − am| < ε for any n, m ≥ N .
The first two versions of completeness refer to the ordering of the real numbers (by

using the notions of upper bound and nondecreasing). The last one does not, and it is used
to define completeness of metric spaces.

DEFINITION 0.9. A sequence (xi)i∈N is said to be a Cauchy sequence if for all ε > 0
there exists an N ∈ N such that d(xi, xj) < ε whenever i, j ≥ N. A metric space X is
said to be complete if every Cauchy sequence converges.

EXAMPLE 0.10. For example, R is complete (see also Section 0.1b), whereas an
open interval is not, when one uses the usual metric d(x, y) = |x − y| (the endpoints
are “missing”). If, however, we define a metric on the open interval (−π/2, π/2) by
d∗(x, y) = | tan x − tan y|, then this unusual metric space is indeed complete. The end-
points are no longer perceived as “missing” because sequences that look like they converge
to an endpoint are not Cauchy sequences with respect to this metric since it stretches dis-
tances near the endpoints.
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REMARK 0.11. This is an example of the pullback of a metric. If (Y, d) is a metric
space and h : X → Y an injective map then d∗(x, y) := d(h(x), h(y)) defines a metric on
X . Here we took X = (−π/2, π/2), Y = R, and h = tan.

LEMMA 0.12. A closed subset Y of a complete metric space X is itself a complete
metric space.

PROOF. A Cauchy sequence in Y is a Cauchy sequence in X and hence converges to
some x ∈ X . Then x ∈ Y because Y is closed. �

An important example is the space if continuous functions (Definition 1.16).

THEOREM 0.13. The space

C([0, 1], Rn) := {f : [0, 1] → Rn f is continuous}

is a complete metric space with the metric induced by the norm ‖f‖ :=maxx∈[0,1] ‖f(x)‖.

PROOF. Suppose (fn)n∈N is a Cauchy sequence in C([0, 1], Rn). Then it is easy to
see that (fn(x))n∈N is a Cauchy sequence in Rn for all x ∈ [0, 1]. Therefore f(x) :=
limn→∞ fn(x) is well-defined by completeness of Rn. To prove fn → f uniformly fix
any ε > 0 and find N ∈ N such that ‖fk − fl‖ < ε/2 whenever k, l ≥ N . Now fix k ≥ N .
For any x ∈ [0, 1] there is an Nx such that l ≥ Nx ⇒ ‖fl(x) − f(x)‖ < ε/2. Taking
l ≥ N gives ‖fk(x) − f(x)‖ ≤ ‖fk(x) − fl(x)‖ + ‖fl(x) − f(x)‖ < ε. This proves the
claim because k was chosen independently of x. �

Likewise one proves completeness of the space of bounded sequences.

THEOREM 0.14. The space l∞ of bounded sequences (xn)n∈N0
with the sup-norm

‖(xn)n∈N0
‖∞ := supn∈N0

|xn| is complete.

PROOF. The proof is the same, except that the domain is N rather than [0, 1]. (Bound-
edness is assumed to make the norm well-defined, for continuous functions on [0, 1] it is
automatic.) �

Given any metric space X which fails to be complete there is a standard procedure to
extend it to a complete metric space. This process is used, for example, to obtain the real
numbers from the rationals. This process, as well as the complete space obtained by it, is
referred to as completion of X .

THEOREM 0.15 (Completion). Suppose X is a metric space. Consider the set of
Cauchy sequences of X and define an equivalence relation∼ by a ∼ b:⇔limn→∞ d(an, bn) =
0. Denote by X the set of equivalence classes with the metric d([a], [b]):=limn→∞ d(an, bn).
Then X is a complete metric space.

PROOF. We need to show that this is well-defined and a metric. To see that it is well-
defined take a, a′ ∈ [a] and b, b′ ∈ [b] and note that

lim
n→∞

d(an, bn) ≤ lim
n→∞

d(an, a′
n) + lim

n→∞
d(a′

n, b′n) + lim
n→∞

d(b′n, bn) = lim
n→∞

d(a′
n, b′n)

≤ lim
n→∞

d(a′
n, an) + lim

n→∞
d(an, bn) + lim

n→∞
d(bn, b′n) = lim

n→∞
d(an, bn),

so limn→∞ d(an, bn) = limn→∞ d(an, bn) as required.
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Symmetry and positivity are obvious. To verify the triangle inequality take [a], [b], [c] ∈
X with representatives (an)n∈N, (bn)n∈N, and (cn)n∈N. Then

d(a, b) + d(b, c) = lim
n→∞

d(an, bn) + lim
n→∞

d(bn, cn) = lim
n→∞

d(an, bn) + d(bn, cn)

≥ lim
n→∞

d(an, cn) = d(a, c).

We outline the proof of completeness. Given a Cauchy sequence in X choose repre-
sentatives (an,m)m∈N for the terms. The representatives are Cauchy sequences, so

∀δ > 0 ∃Mn,δ ∈ N ∀k, l ≥ Mn,δ d(an,k, an,l) < δ.

They represent a Cauchy sequence, so

∀ε > 0 ∃Nε ∀k, l ≥ Nεd(ak,·, al,·) = lim
m→∞

d(ak,m, al,m) ≤ N.

The required limit is then represented by the limiting sequence (an)n∈N defined by taking

kn ≥ N1/n, mn ≥ Mkn,1/N , an := akn,mn
.

It is straightforward to check that d(an, an+l) < 3/n for all n, l ∈ N, hence this is a
Cauchy sequence. Now one checks that it represents the limit.

�

c. Continuity.

DEFINITION 0.16. Let (X, d), (Y, d′) be metric spaces. A map f : X → Y is said
to be an isometry if d′(f(x), f(y)) = d(x, y) for all x, y ∈ X . It is said to be continuous
at x ∈ X if for every ε > 0 there exists a δ > 0 such that f(B(x, δ)) ⊂ B(f(x), ε), or
equivalently, if d(x, y) < δ implies d′(f(x), f(y)) < ε. f is said to be continuous if f
is continuous at x for every x ∈ X . An equivalent characterization is that the preimage
of each open set is open. f is said to be uniformly continuous if the choice of δ does
not depend on x, that is, for all ε > 0 there is a δ > 0 such that for all x, y ∈ X with
d(x, y) < δ we have d′(f(x), f(y)) < ε. f is said to be an open map if it maps open sets
to open sets.

A continuous bijection (one-to-one and onto map) with continuous inverse is said to
be a homeomorphism. A map f : X → Y is said to be Lipschitz continuous (or Lipschitz)
with Lipschitz constant C, or C-Lipschitz, if d′(f(x), f(y)) ≤ Cd(x, y). A map is said to
be a contraction (or, more specifically, a λ-contraction) if it is Lipschitz continuous with
Lipschitz constant λ < 1.

Continuity does not imply that the image of an open set is open. For example, the map
x2 sends (−1, 1) or R to sets that are not open.

There are various ways in which two metrics can be similar, or equivalent. The easiest
way to describe these is to view the process of changing metrics as taking the identity map
on X as a map between two different metric spaces.

DEFINITION 0.17. We say that two metrics are isometric if the identity establishes
an isometry between them. Two metrics are said to be uniformly equivalent (sometimes
just equivalent) if the identity and its inverse are Lipschitz maps between the two metric
spaces. Finally, two metrics are said to be homeomorphic (sometimes also equivalent) if
the identity is a homeomorphism between them.
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d. Compactness. An important class of metric spaces is that of compact ones:

DEFINITION 0.18. A metric space (X, d) is said to be compact if any open cover of X
has a finite subcover, that is, whenever {Oi i ∈ I} is a collection of open sets of X indexed
by I such that X ⊂

⋃

i∈I Oi then there is a finite subcollection {Oi1 , Oi2 , . . . , Oin
} such

that X ⊂
⋃n

l=1 Oil
.

PROPOSITION 0.19. Compact sets are closed and bounded.

PROOF. Suppose X is a metric space and C ⊂ X is compact. If x /∈ C then the sets
On := {y ∈ X d(x, y) > 1/n} form an open cover of X r {x}, hence of C. There is a
finite subcover O of {On}n∈N. Let n0 := max{n ∈ N On ∈ O}. Then d(x, y) > 1/n0

for all y ∈ C, so x /∈ C. This proves C ⊂ C.
C is bounded because the open cover {B(x, r) r > 0} has a finite subcover. �

The Heine–Borel Theorem tells us that in euclidean space a set is compact if and only
if it is closed and bounded. In some important metric spaces closed bounded sets may fail
to be compact, however, and this definition of compactness describes the property that is
useful in a general metric space. Indeed, this definition uses the metric only to the extent
that it involves open sets.

If a metric is given compactness is equivalent to being both complete and totally
bounded:

DEFINITION 0.20. A metric space is said to be totally bounded if for any r > 0 there
is a finite set C such that the r-balls with center in C cover the space.

PROPOSITION 0.21. Compact sets are totally bounded.

PROOF. If C is compact and r > 0 then {B(x, r) x ∈ C} has a finite subcover. �

Some facts that make compactness useful are

PROPOSITION 0.22. If (X, d) and (Y, d′) are metric spaces, X is compact, and
f : X → Y is a continuous map then f is uniformly continuous and f(X) ⊂ Y is compact,
hence closed and bounded. If Y = R this shows that f attains its minimum and maximum.

Among the most used facts about compact spaces is this last observation that a con-
tinuous real-valued function on a compact set attains its minimum and maximum.

PROOF. For every ε > 0 there is a δ = δ(x, ε) > 0 such that d′(f(x), f(y)) < ε/2
whenever d(x, y) < δ. The balls B(x, δ(x, ε)/2) cover X , so by compactness of X there
is a finite subcover by balls B(xi, δ(xi, ε)/2). Let δ0 = (1/2) min{δ(xi, ε)}.

If x, y ∈ X with d(x, y) < δ0 then d(x, xi) < δ0 < δ(xi, ε) for some xi and by the
triangle inequality d(y, xi) ≤ d(x, xi) + d(x, y) < δ0 + δ0 ≤ δ(xi, ε). These two facts
imply d′(f(x), f(y)) ≤ d′(f(x), f(xi)) + d′(f(y), f(xi)) < ε/2 + ε/2 = ε.

To see that f(X) ⊂ Y is compact consider any open cover f(X) ⊂
⋃

i∈I Oi of f(X).
Then the sets f−1(Oi) = {x f(x) ∈ Oi} cover X and hence there is a finite subcover
X ⊂

⋃n
l=1 f−1(Oil

). But then f(X) ⊂
⋃n

l=1 Oil
. �

A further useful property of compact sets is the following:

PROPOSITION 0.23. Suppose {Ci i ∈ I} is a collection of compact sets in a metric
space X such that

⋂n
l=1 Ci 6= ∅ for any finite subcollection {Cil

1 ≤ l ≤ n}. Then
⋂

i∈I Ci 6= ∅.
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PROOF. We prove the contrapositive: Suppose {Ci i ∈ I} is a collection of compact
sets with

⋂

i∈I Ci = ∅. Let Oi = C1 r Ci for i ∈ I . Then
⋂

i∈I Ci = ∅ implies that
⋃

i∈I Oi = C1, that is, the Oi form an open cover of the compact set C1. Thus there is a
finite subcover

⋃n
l=1 Oil

= C1. This means that
⋂n

l=1 Cil
= ∅. �

Some other easy but useful observations about compact sets are the following:

PROPOSITION 0.24. (1) A closed subset of a compact set is compact.
(2) The intersection of compact sets is compact.
(3) A continuous bijection between compact spaces is a homeomorphism.
(4) A sequence in a compact set has a convergent subsequence.

PROOF. (1) Suppose C ∈ X is a closed subset of a compact space and
⋃

i∈I Oi is an
open cover of C. If O = X r C then X = O ∪ C ⊂ O ∪

⋃

i∈I Oi is an open cover of X

and hence has a finite subcover O ∪
⋃n

l=1 Oil
. Since O ∩ C = ∅ we get a finite subcover

⋃n
l=1 Oil

of C.
(2) The intersection of compact sets is an intersection of closed subsets and hence a

closed subset of any of these compact sets. Therefore is is compact by (1).
(3) We need to show that the image of an open set is open. Using bijectivity note that

the complement of the image of an open set O is the image of the complement Oc of O.
Oc is a closed subset of a compact space, hence compact, and thus its image is compact,
hence closed. Its complement, the image of O, is then open, as required.

(4) Given a sequence (an)n∈N let An := {ai i ≥ n} for n ∈ N. Then the closures
An satisfy the hypotheses of Proposition 1.23 and there exists an a0 ∈

⋂

n∈N
An. This

means that for every k ∈ N there exists an nk > nk−1 such that ank
∈ B(a0, 1/k), i.e.,

ank
→ a0. �

An interesting example of a metric space is given by the Hausdorff metric:

DEFINITION 0.25. If (X, d) is a compact metric space and K(X) denotes the collec-
tion of closed subsets of X then the Hausdorff metric dH on K(X) is defined by

dH(A, B) := sup
a∈A

d(a, B) + sup
b∈B

d(b, A),

where d(x, Y ) := infy∈Y d(x, y) for Y ⊂ X .

Notice that dH is symmetric by construction and is zero if and only if the two sets
coincide (here we use that these sets are closed, hence compact, so the “sup” are actu-
ally “max”). Checking the triangle inequality requires a little extra work. To show that
dH(A, B) ≤ dH (A, C)+dH (C, B) note that d(a, b) ≤ d(a, c)+d(c, b) for a ∈ A, b ∈ B,
c ∈ C, so taking the infimum over b we get d(a, B) ≤ d(a, c) + d(c, B) for a ∈ A, c ∈ C.
Therefore d(a, B) ≤ d(a, C) + supc∈C d(c, B) and supa∈A d(a, B) ≤ supa∈A d(a, C) +
supc∈C d(c, B). Likewise one gets supb∈B d(b, A) ≤ supb∈B d(b, C) + supc∈C d(c, A).
Adding the last two inequalities gives the triangle inequality.

DEFINITION 0.26. A metric space (X, d) is said to be locally compact if for every x
and every neighborhood O of x there is a compact set K in O which contains x. It is said
to be separable if it contains a countable dense subset (such as the rationals in R).
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e. Norms define metrics in Rn. There is a particular class of metrics in the euclidean
space Rn that are invariant under translations.

DEFINITION 0.27. A function N on Rn (or any linear space) is said to be a norm if
(1) N(λx) = |λ|N(x) for λ ∈ R (homogeneity) ,
(2) N(x) ≥ 0 and N(x) = 0 ⇔ x = 0 (positivity),
(3) N(x + y) ≤ N(x) + N(y) (convexity).

Any norm determines a metric by setting the distance function d(x, y) = N(x − y).
For the metric thus defined positivity follows from the positivity of the norm, symmetry
follows from homogeneity for λ = −1, and triangle inequality from convexity. For such a
metric the translations Tv : x → x+v are isometries by definition. Furthermore, the central
symmetry x → −x is an isometry, and any homothety x → λx multiplies all distances by
|λ| (we call the last property homogeneity of the metric).

EXAMPLE 0.28. The maximum distance on Rn is given by

(0.1) d(x, y) = max
1≤i≤n

|xi − yi|.

Of course, the standard Euclidean metric is of that kind (it is also invariant under
rotations, which we do not require), as is the maximum metric (1.1).

PROPOSITION 0.29. All metrics in Rn determined by norms are uniformly equivalent.

PROOF. First, since the property of uniform equivalence is transitive it is sufficient
to show that any metric determined by a norm is uniformly equivalent to the standard
Euclidean metric.

Second, since translations are isometries it is suffient to consider distances from the
origin, that is, we can work with the norms directly.

Third, by homogeneity it is sufficient to consider norms of vectors whose Euclidean
norm is equal to one, that is, the points on the unit sphere.

But then the other norm is a convex, hence continuous, function with respect to Eu-
clidean distance, so by compactness of the sphere it is bounded from above. It also achieves
its minimum on the unit sphere which is nonnegative. The minimum cannot be zero be-
cause this would imply existence of a nonzero vector with zero norm. Thus the ratio of the
standard and other norm is bounded between two positive constants. �

f. Product spaces. The construction of the torus as a product of circles illustrates the
usefulness of considering products of metric spaces in general. To define the product of
two metric spaces (X, dX) and (Y, dY ) we need to define a metric on the cartesian product
X × Y , such as

dX×Y ((x1, y1), (x2, y2)) :=
√

(dX(x1, x2))2 + (dY (y1, y2))2.

That this defines a metric is checked in the same way as checking that the euclidean norm
on R2 defines a metric.

There are other choices of equivalent metrics on the product. Two evident ones are

d′X×Y ((x1, y1), (x2, y2)) := dX(x1, x2) + dY (y1, y2)

and
d′′X×Y ((x1, y1), (x2, y2)) := max(dX (x1, x2), dY (y1, y2)).
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Showing that these metrics are pairwise uniformly equivalent is done in the same way as
showing that the euclidean norm, the norm ‖(x, y)‖1 := |x|+ |y|, and the maximum norm
‖(x, y)‖∞ := max(|x|, |y|) define pairwise equivalent metrics (Proposition 1.29). Indeed,
this follows from it.

For products of finitely many spaces (Xi, dXi
) (i = 1, . . . , n) one can define several

uniformly equivalent metrics on the product as follows: Fix a norm ‖ · ‖ on Rn and for
any two points (x1, x2, . . . , xn) and (x′

1, x
′
2, . . . , x

′
n) define their distance to be the norm

of the vector in Rn whose entries are dXi
(xi, x

′
i). That the resulting metrics are uniformly

equivalent follows from uniform equivalence of any two norms on Rn (Proposition 1.29).
We also encounter products of infinitely many metric spaces (or, usually, a product of

infinitely many copies of the same metric space). In an infinite cartesian product of a set X
every element is specified by its components, that is, if the copies of the set X are indexed
by a label i that ranges over an index set I , then an individual element of the product set is
specified by assigning to each value of i an element of X , the ith coordinate. This leads to
the formal definition of the infinite product

∏

i∈I X =: XI as the set of all functions from
I to X .

Unlike in the case of finite products we have to choose our product metric carefully.
Not only do we have to keep in mind questions of convergence, but different choices are
much more likely to give metrics that are not equivalent, even up to homeomorphism. To
define a product metric assume I is countable. In case I = N and if the metric on X is
bounded, that is, d(x, y) ≤ 1, say, for all x, y ∈ X , we can define several homeomorphic
metrics by setting

(0.2) dλ(x, y) :=
∞
∑

i=1

d(xi, yi)

λ|i|
.

This converges for any λ > 1 by comparison with the corresponding geometric series.
If I = Z we make the same definition with summation over Z (this is the reason for

writing |i| in (1.2).
A useful and deep fact is that with any of these product metrics the space X I is com-

pact whenever X is compact.
As a particular case we can perform this construction with X = [0, 1], the unit interval.

The product thus obtained is called the Hilbert cube. This is a new way to think of the
collection of all sequences whose entries are in the unit interval.

g. Sequence spaces. Generalizing from the standard middle-third Cantor set we now
define a more general class of metric spaces of which there are many important examples.

DEFINITION 0.30. A Cantor set is a metric space homeomorphic to the middle-third
Cantor set.

A natural and important example is the space ΩR
2 of sequences ω = (ωi)

∞
i=0 whose

entries are either 0 or 1. This set is the product {0, 1}N0 of countably many copies of
the set {0, 1} of two elements, so it is natural to endow it with a product metric. Up to
multiplication by a constant there is only one metric on {0, 1}, which we define by setting
d(0, 1) = 1. Referring to (1.2) we can endow ΩR

2 with the product metric

d(ω, ω′) :=

∞
∑

i=0

d(ωi, ω
′
i)

3i+1
.
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PROPOSITION 0.31. The space ΩR
2 = {0, 1}N0 equipped with the product metric

d(ω, ω′) :=
∑∞

i=0 d(ωi, ω
′
i)3

−(i+1) is a Cantor set.

To prove this we need a homeomorphism between the ternary Cantor set C and ΩR
2 :

LEMMA 0.32. The one-to-one correspondence between the ternary Cantor set C and
ΩR

2 defined by mapping each point x = 0.α1α2α3 · · · =
∑∞

i=1

αi

3i
∈ C (αi 6= 1) to the

sequence f(x) := {αi/2}∞i=0 is a homeomorphism.

PROOF. If x = 0.α0α1α2 · · · =
∑∞

i=0

αi

3i+1
(αi 6= 1) and y = 0.β0β1β2 · · · =

∑∞
i=0

βi

3i+1
(βi 6= 1) in C then

d(x, y) = |x − y| = |

∞
∑

i=0

αi

3i+1
−

∞
∑

i=0

βi

3i+1
|

= |

∞
∑

i=0

αi − βi

3i+1
| ≤

∞
∑

i=0

|αi − βi|

3i+1
= 2d(f(x), f(y)).

Now let α = f(x), β = f(y). Then d(f−1(α), f−1(β)) = d(x, y) ≤ 2d(α, β), so f−1 is
Lipschitz continuous with Lipschitz constant 2.

If ω, ω′ ∈ ΩR
2 are two sequences with d(ω, ω′) ≥ 3−n then ωi 6= ω′

i for some i ≤ n
because otherwise

d(ω, ω′) ≤

∞
∑

i=n+1

3−i−1 =
3−n−2

1 − 1
3

= 3−n−1/2 < 3−n.

Consequently f−1(ω) and f−1(ω′) differ in the ith digit for some i ≤ n. This implies
d(f−1(ω), f−1(ω)) ≥ 3−(n+1) because the two points are in different pieces of Cn+1.
Taking x = f−1(ω), x′ = f−1(ω′) we get d(x, x′) < 3−(n+1) ⇒ d(f(x), f(y)) < 3−n.
This shows that f is Lipschitz continuous as well. �

We have shown in particular that ΩR
2 is compact and totally disconnected. Let us note

in addition that every sequence in ΩR
2 can be approximated arbitrarily well by different

sequences in ΩR
2 by changing only very remote entries. Thus every point of ΩR

2 is an
accumulation point and ΩR

2 is a perfect set.

PROPOSITION 0.33. Cantor sets are compact, totally disconnected, and perfect.

It is not hard to see that the space Ω2 = {0, 1}Z with a product metric is in turn
homeomorphic to ΩR

2 , and therefore also is a Cantor set. To that end let

α : Z → N0, n 7→

{

2n if n ≥ 0

1 − 2n if n < 0

and f : ΩR
2 → Ω2, ω 7→ ω ◦ a = (. . . ω3ω1ω0ω2ω4 . . . ). Endowing Ω2 and ΩR

2 with any
two of the product metrics (1.2) makes f a homeomorphism because two sequences α, α′

are close if and only if they agree on a large stretch of initial entries. Then the resulting
sequences ω = f(α) and ω = f(α′) agree on a long stretch of entries around the 0th entry
and hence are also close. Thus f is a continuous bijection between compact spaces and
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therefore a homeomorphism by Proposition 1.24. (It is as easy to see directly that f−1 is
continuous also.)

h. General properties of Cantor sets. It is useful to note a general fact about Cantor
sets:

PROPOSITION 0.34. Every perfect totally disconnected compact metric space is a
Cantor set.

We have seen that sequence spaces are perfect and compact; it is easy to see in general
that they are totally disconnected: If α 6= β are sequences then αi 6= βi for some index
i. The set of sequences ω with ωi = αi is open, and likewise the set of sequences with
ωi = βi. But these sets are disjoint and their union is the entire space.

COROLLARY 0.35. Every nonempty, perfect, bounded, nowhere dense set on the line
is a Cantor set.

PROOF. A perfect bounded set on the line is compact by the Heine–Borel Theorem
(A closed bounded subset of Rn is compact). Being perfect, it also contains more than one
point. If it is not totally disconnected then it has a connected component with more than
one point and hence contains a nontrivial interval, contrary to being nowhere dense. �

i. Dyadic integers. Define the following metric d2 on the group Z of all integers:
d(n, n) = 0 and d2(m, n) = ‖m − n‖2 for n 6= M , where

‖n‖2 = 2−k if n = 2kl with an odd number l.

The completion of Z with respect to that metric is called the group of dyadic integers and
is usually denoted by Z2. It is a compact topological group. 1

Exercises

EXERCISE 0.1. Prove that open intervals are open sets and closed intervals are closed
sets.

EXERCISE 0.2. What is the interior of an interval [a, b]? (Give a full proof.)

EXERCISE 0.3. Prove that the construction in Remark 1.11 defines a metric.

EXERCISE 0.4. Show that any homogeneous metric in Rn that is invariant under trans-
lations is determined by a unique norm.

1For additional properties of metric spaces see Section 2 of the ”Overview of basic topics ...” in
GEOMETRY-TOPOLOGY OVERVIEW NOTES on the webpage.


