MATH 312H:
 FUNDAMENTAL STRUCTURES OF CONTINUOUS MATHEMATICS

SPRING 2004

A.Katok
 PROBLEM LIST \#1 :

Problems on this list are designed for various purposes: Those marked with *) are homework problems; written solutions are due on the date indicated. Unmarked problems usually will be discussed in class; you should give those problems some thought beforehand. Some of those later may be designated as homework. Problems marked ${ }^{* *}$) are more advanced and optional; both solutions and questions in class or by email about those problems are welcome.
$\left.1^{*}\right)$. Write an explicit formula for a bijection between the set \mathbb{N} of natural numbers and the set \mathbb{Z} of integer numbers
$\left.2^{*}\right)$. Find and justify as many as you can relations involving the algebra of sets operations: the union \cup, the intersection \cap, the difference \backslash, the symmetric difference Δ and the complement C.
3. Find a bijection between the open interval $(0,1)$ and the closed interval $[0,1]$.
4. Find a bijection between the set \mathbb{R} of all real numbers and and the closed interval $[0,1]$.
$\left.5^{*}\right)$. Consider any configuration of disjoint open discs on the plane. Prove that the number of discs in such a configuration is finite or countable
6. Consider any configuration of disjoint figure eights on the plane. Prove that the number of elements in such a configuration is finite or countable.
$\left.7^{* *}\right)$. Consider any configuration of disjoint letters "T" on the plane. Prove that the number of elements in such a configuration is finite or countable.

[^0]
[^0]: *)Due on Monday January 26.

