MATH 312H:
 FUNDAMENTAL STRUCTURES OF CONTINUOUS MATHEMATICS

SPRING 2004

A.Katok

PROBLEM LIST \# 4:

Written solution to the problems on this list are due in the dates indicated.
18.*) Consider Euclidean metric on the plane \mathbb{R}^{2} : For $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$

$$
d\left(p_{1}, p_{2}\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} .
$$

Prove that equality $d\left(p_{1}, p_{2}\right)=d\left(p_{1}, P-3\right)+d\left(p_{2}, p_{3}\right)$ takes place if and only if $p_{3}=t p_{1}+(1-t) p_{2}$ for some $t, 0 \leq t \leq 1$.

Due on Wednesday, March 31.
19.*) Prove that \mathbb{R}^{2} is a complete metric space with respect to the Euclidean metric Due on Wednesday, March 31.
20.*) Prove that every isometry of the real line \mathbb{R} with the standard absolute value metric $d(x, y)=|x-y|$ is either a translation $x \rightarrow x+t$ or a reflection $x \rightarrow-x+t$ for some $t \in \mathbb{R}$.

Due on Friday, April 2.

