MATH 312H

REAL NUMBERS

A field F is a set with two binary operations usually called *addition* and *multiplication* which satisfy the most basic properties of these two operations for numbers. Namely,

- (1) $\forall a, b \in F, a + b = b + a$ (commutativity of addition),
- (2) $\forall a, b, c \in F, a + (b + c) = (a + b) + c$ (associativity of addition),
- (3) $\exists 0 \in F$ such that $\forall a \in F, 0 + a = a$ (existence of zero),
- (4) $\forall a \in F \exists -a \in F$ such that a + (-a) = 0 (existence of the additive inverse),
- (5) $\forall a, b \in F, a \cdot b = b \cdot a$ (commutativity of multiplication)
- (6) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associativity of multiplication),
- (7) $\exists 1 \in F$ such that $\forall a \in F^{\times} = F \{0\}, 1 \cdot a = a$ (existence of identity),
- (8) $\forall a \in F^{\times} \exists a^{-1} \in F^{\times}$ such that $a \cdot a^{-1} = 1$ (existence of the multiplicative inverse),
- (9) $\forall a, b, c \in F, a \cdot (b + c) = a \cdot b + a \cdot c$ (distributivity),
- (10) $0 \neq 1$.

An algebraic structure with only one binary operation satisfying the properties (1) - (4) is called an *abelian (or commutative) group.* Correspondingly, F with addition is called the *additive group* of the field F, and F^{\times} with multiplication is called the *multiplicative group* of the field F. An important property of a field is that it does not contain *zero-divisors*:

1. Prove that if $a, b \in F$ are such that $a \cdot b = 0$ then either a = 0 or b = 0.

2. Give examples of fields.

There three ways to define real numbers beginning with \mathbb{Q} :

- an explicit construction via infinite decimal fractions;
- using the *norm* on \mathbb{Q} : |x| the absolute value; using different norms on \mathbb{Q} one obtains other interesting fields containing \mathbb{Q} (*p*–adic numbers);
- using the notion of *order* on \mathbb{Q} : x < y ("Dedekind's cuts"); it gives essentially the unique field of real numbers \mathbb{R} .

Construction of real numbers by completion of rationals

We start with natural numbers (positive integers) and introduce negative numbers and 0 to make a group of integers \mathbb{Z} by addition. Then we define \mathbb{Q} as the set of fractions in order to obtain a field. Thus, we have a notion of *positive* rational number: $\frac{p}{q} > 0$ if p and q are both positive or both negative. We also have a notion of *order* on \mathbb{Q} : x < y iff y - x > 0.

For $x \in \mathbb{Q}$ we define the *absolute value*

$$|x| = \begin{cases} x & \text{if } x > 0\\ 0 & \text{if } x = 0\\ -x & \text{if } x < 0 \end{cases}$$

3. Prove that $|\cdot|$ is a norm on \mathbb{Q} , i.e.

- (1) |x| = 0 if and only if x = 0
- (2) $|xy| = |x| |y|, \quad \forall x, y \in \mathbb{Q}$
- (3) $|x+y| \le |x|+|y|, \quad \forall x, y \in \mathbb{Q}$ (triangle inequality).

Notice that the norm $|\cdot|$ takes non-negative rational values. 4. Prove that for all $x, y \in \mathbb{Q}$ $|x \pm y| \ge ||x| - |y||$.

Let d(x, y) = |x - y|.

5. Prove that d is a *distance function* on \mathbb{Q} , i.e.

- (1) $d(x,y) \ge 0$, and d(x,u) = 0 if and only if x = y
- $(2) \ d(x,y) = d(y,x)$
- (3) $|d(x,z)| \le d(x,y) + d(y,z)$ (triangle inequality).

Now $(\mathbb{Q}, |\cdot|)$ is a *metric space*. A sequence $\{a_n\}$ in \mathbb{Q} is said to be

• bounded if there is a constant C > 0 (of course, $C \in \mathbb{Q}$) such that

 $|a_n| \le C \ \forall n;$

• a *null* sequence if

$$\lim_{n \to \infty} |a_n| = 0,$$

i.e., for any $\varepsilon > 0$ ($\varepsilon \in \mathbb{Q}$) there is a natural number N such that for all $n > N |a_n| < \varepsilon$;

• a *Cauchy* sequence if

$$\lim_{n,m\to\infty} |a_n - a_m| = 0,$$

i.e., for any $\varepsilon > 0$ there is an N such that for all n, m > N we have $|a_n - a_m| < \varepsilon$;

• convergent to $a \in F$ (we write $a = \lim_{n \to \infty} a_n$) if

$$\lim_{n \to \infty} |a_n - a| = 0$$

i.e., for any $\varepsilon > 0$ there is an N such that for all $n > N |a_n - a| < \varepsilon$.

6. Prove that

- (1) any null sequence converges to 0,
- (2) any converging sequence is a Cauchy sequence.

In particular, every null sequence is a Cauchy sequence.

- **7.** Prove that in \mathbb{Q}
- (1) Every Cauchy sequence is bounded.
- (2) Let $\{a_n\}$ be a Cauchy sequence and $\{n_1, n_2, ...\}$ be an increasing sequence of positive integers. If the subsequence $a_{n_1}, a_{n_2}, ...$ is a null sequence, then $\{a_n\}$ itself is a null sequence.
- (3) If $\{a_n\}$ and $\{b_n\}$ are null sequences, so is $\{a_n \pm b_n\}$, and if $\{a_n\}$ is a null sequence and $\{b_n\}$ is a bounded sequence, then $\{a_nb_n\}$ is a null sequence.

8. Prove that |x| < 1 if and only if $\lim_{n \to \infty} x^n = 0$.

However, \mathbb{Q} is not complete with respect to $|\cdot|$, i.e. not every Cauchy sequence in \mathbb{Q} has a limit in \mathbb{Q} .

9. Give an example of a Cauchy sequence of rational numbers which has no limit in \mathbb{Q} .

Cauchy sequences can be added, subtracted and multiplied.

10. Prove that if $\{a_n\}$ and $\{b_n\}$ are Cauchy sequences, then so are

 $\{a_n + b_n\}, \{a_n - b_n\}, \text{ and } \{a_n b_n\}.$

Therefore the set of all Cauchy sequences in $(\mathbb{Q}, |\cdot|)$, denoted by $\{\mathbb{Q}\}$, becomes a commutative ring. Its identity element under addition is the sequence

$$\bar{0} = \{0, 0, 0, \dots\},\$$

and its identity element under multiplication is the sequence

$$\bar{1} = \{1, 1, 1, \dots\}.$$

It is clear that $\{\mathbb{Q}\}$ is not a field since it contains zero divisors:

$$\{1, 0, 0, \dots\} \{0, 1, 0, 0, \dots\} = \overline{0}.$$

For every $a \in Q$ the Cauchy sequence

$$\bar{a} = \{a, a, a \dots \}$$

lies in $\{\mathbb{Q}\}$. Hence $\{\mathbb{Q}\}$ contains a subring isomorphic to \mathbb{Q} . Of particular importance is the set P of all null sequences. By Exercise 7(2) P is a subset of $\{\mathbb{Q}\}$. In fact, P is an *ideal* in $\{\mathbb{Q}\}$ (i.e., a subring such that for all $p \in P$ and all $a \in \mathbb{Q}$ we have $ap \in P$). Indeed, if $\{a_n\}$ and $\{b_n\}$ are in P, so is $\{a_n \pm b_n\}$, and if $\{a_n\}$ is in P and $\{b_n\}$ is a bounded sequence (in particular if it is Cauchy), then $\{a_nb_n\}$ is in P (Exercise 7(3)).

Let $\overline{\mathbb{Q}} = {\mathbb{Q}}/P$. Its elements are equivalence classes of Cauchy sequences in $(\mathbb{Q}, |\cdot|)$, two Cauchy sequences being *equivalent* if their difference is a null sequence. Notice that constant sequences

$$\bar{a} = \{a, a, a, \dots\},\$$

where $a \in \mathbb{Q}$ belong to different equivalent classes in $\overline{\mathbb{Q}}$ for different a. We shall denote the equivalence class of a Cauchy sequence $\{a_n\}$ by (a_n) , so (a_n) is an element of $\overline{\mathbb{Q}}$. We will think of \mathbb{Q} as a subset of $\overline{\mathbb{Q}}$, identifying $a \in \mathbb{Q}$ with $(\bar{a}) \in \overline{\mathbb{Q}}$. In this notaions, $P = (\bar{0})$.

11. Prove that if $\{a_n\} \sim \{a'_n\}$ and $\{b_n\} \sim \{b'_n\}$ are two pairs of equivalent Cauchy sequences, then $\{a_n \pm b_n\} \sim \{a'_n \pm b'_n\}$ and $\{a_n \cdot b_n\} \sim \{a'_n \cdot b'_n\}$.

12. Let A be an equivalence class in $\overline{\mathbb{Q}}$ different from the class of null sequences P, and let $\{a_n\}$ be any Cauchy sequence in A. Describe the equivalence class A^{-1} such that $AA^{-1} = (1)$.

Thus we showed that $\overline{\mathbb{Q}}$ is a field.

Now we want to define a norm on $\overline{\mathbb{Q}}$ which would extend the norm $|\cdot|$ on \mathbb{Q} . Recall that for $x \in \mathbb{Q}$

$$|x| = \begin{cases} x & \text{if } x > 0\\ 0 & \text{if } x = 0\\ -x & \text{if } x < 0. \end{cases}$$

Therefore we need to define *positive* and *negative* classes of Cauchy sequences in $\overline{\mathbb{Q}}$. We say that A > 0 if it has a representative Cauchy sequence $\{a_n\}$ with all $a_n > 0$. Similarly, A < 0 means that it has a representative $\{a_n\}$ with all $a_n < 0$. Notice that if A > 0, then -A < 0, and vice versa.

Now for any $A \in \overline{\mathbb{Q}}$ we define

$$|A| = \begin{cases} A & \text{if } A > 0\\ 0 & \text{if } A = P = (0)\\ -A & \text{if } A < 0. \end{cases}$$

Obviously, if $A = \overline{a}, a \in \mathbb{Q}$, then |A| = |a|.

13. Show that $|\cdot|$ is the norm on $\overline{\mathbb{Q}}$, i.e. that it saftsfies the properties of Exercise 3.

Thus we extended the norm from \mathbb{Q} to $\overline{\mathbb{Q}}$, and we can talk about bounded, null and Cauchy sequences in $(\overline{\mathbb{Q}}, |\cdot|)$.

14. Prove that \mathbb{Q} is a dense subset of $\overline{\mathbb{Q}}$, i.e. for any $A \in \overline{\mathbb{Q}}$ there exists a sequence of rational numbers $\{a_m\}$ such that $A = \lim_{m \to \infty} (a_m)$ in $(\overline{\mathbb{Q}}, |\cdot|)$.

Now we can prove that $(\overline{\mathbb{Q}}, |\cdot|)$ is complete.

15. Use Exercise 14 to show that every Cauchy sequence in $(\overline{\mathbb{Q}}, |\cdot|)$ converges to an element of $(\overline{\mathbb{Q}}, |\cdot|)$.

Thus we have constructed a normed field which is a completion of \mathbb{Q} with respect to the absolute value norm $|\cdot|$. It is called the field of real numbers and denoted by \mathbb{R} .

Notice that the extended norm takes a larger set of values on \mathbb{R} than it did on \mathbb{Q} : $\{0\} \cup \mathbb{R}^+$, the set of nonnegative real numbers. We have an *order* on \mathbb{R} : x > y iff x - y > 0, i.e. $x - y \in \mathbb{R}^+$.

16. Prove that the norm $|\cdot|$ on \mathbb{R} satisfies the Archimedian property: given $X, y \in \mathbb{R}, x \neq (\overline{0})$, there exists a positive integer n such that |nx| > |y|.

17. For which $\alpha \mid \cdot \mid^{\alpha}$ is a norm on \mathbb{Q} ?

We say that two norms on \mathbb{Q} are *equivalent* if any Cauchy sequence in one norm is a Cauchy sequence in the other, and vise versa.

18. Prove that if $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent (we write $\|\cdot\|_1 \sim \|\cdot\|_2$), then $\|x\|_1 < 1$ iff $\|x\|_2 < 1$, $\|x\|_1 > 1$ iff $\|x\|_2 > 1$, and $\|x\|_1 = 1$ iff $\|x\|_2 = 1$.

19. Use Exercise 18 to show that $|\cdot|^{\alpha}$, for such α that it is a norm on \mathbb{Q} (cf Exercise 17), is equivalent to $|\cdot|$.