
MATH 312H

REAL NUMBERS

A field F is a set with two binary operations usually called addition and
multiplication which satisfy the most basic properties of these two operations
for numbers. Namely,

(1) ∀ a, b ∈ F , a + b = b + a (commutativity of addition),
(2) ∀ a, b, c ∈ F , a + (b + c) = (a + b) + c (associativity of addition),
(3) ∃ 0 ∈ F such that ∀ a ∈ F , 0 + a = a (existence of zero),
(4) ∀ a ∈ F ∃ −a ∈ F such that a+(−a) = 0 (existence of the additive

inverse),
(5) ∀ a, b ∈ F , a · b = b · a (commutativity of multiplication)
(6) a · (b · c) = (a · b) · c (associativity of multiplication),
(7) ∃ 1 ∈ F such that ∀ a ∈ F× = F − {0}, 1 · a = a (existence of

identity),
(8) ∀ a ∈ F× ∃ a−1 ∈ F× such that a · a−1 = 1 (existence of the

multiplicative inverse),
(9) ∀ a, b, c ∈ F , a · (b + c) = a · b + a · c (distributivity),

(10) 0 6= 1.

An algebraic structure with only one binary operation satisfying the proper-
ties (1) − (4) is called an abelian (or commutative) group. Correspondingly,
F with addition is called the additive group of the field F , and F × with
multiplication is called the multiplicative group of the field F . An important
property of a field is that it does not contain zero–divisors:

1. Prove that if a, b ∈ F are such that a · b = 0 then either a = 0 or
b = 0.

2. Give examples of fields.

There three ways to define real numbers beginning with Q:

• an explicit construction via infinite decimal fractions;
• using the norm on Q: |x| – the absolute value; using different

norms on Q one obtains other interesting fields containing Q (p–
adic numbers);

• using the notion of order on Q: x < y (“Dedekind’s cuts”); it gives
essentially the unique field of real numbers R.
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Construction of real numbers by completion of rationals

We start with natural numbers (positive integers) and introduce negative
numbers and 0 to make a group of integers Z by addition. Then we define
Q as the set of fractions in order to obtain a field. Thus, we have a notion of
positive rational number: p

q
> 0 if p and q are both positive or both negative.

We also have a notion of order on Q: x < y iff y − x > 0.
For x ∈ Q we define the absolute value

|x| =















x if x > 0

0 if x = 0

−x if x < 0.

3. Prove that | · | is a norm on Q, i.e.

(1) |x| = 0 if and only if x = 0
(2) |xy| = |x| |y|, ∀x, y ∈ Q

(3) |x + y| ≤ |x| + |y|, ∀x, y ∈ Q (triangle inequality).

Notice that the norm | · | takes non-negative rational values.
4. Prove that for all x, y ∈ Q |x ± y| ≥ ||x| − |y||.

Let d(x, y) = |x − y|.

5. Prove that d is a distance function on Q, i.e.

(1) d(x, y) ≥ 0, and d(x, u) = 0 if and only if x = y
(2) d(x, y) = d(y, x)
(3) |d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Now (Q, | · |) is a metric space. A sequence {an} in Q is said to be

• bounded if there is a constant C > 0 (of course, C ∈ Q) such that

|an| ≤ C ∀n;

• a null sequence if

lim
n→∞

|an| = 0,

i.e., for any ε > 0 (ε ∈ Q) there is a natural number N such that
for all n > N |an| < ε;

• a Cauchy sequence if

lim
n,m→∞

|an − am| = 0,

i.e., for any ε > 0 there is an N such that for all n,m > N we have
|an − am| < ε;
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• convergent to a ∈ F (we write a = limn→∞ an) if

lim
n→∞

|an − a| = 0,

i.e., for any ε > 0 there is an N such that for all n > N |an−a| < ε.

6. Prove that

(1) any null sequence converges to 0,
(2) any converging sequence is a Cauchy sequence.

In particular, every null sequence is a Cauchy sequence.

7. Prove that in Q

(1) Every Cauchy sequence is bounded.
(2) Let {an} be a Cauchy sequence and {n1, n2, . . . } be an increasing

sequence of positive integers. If the subsequence an1
, an2

, . . . is a
null sequence, then {an} itself is a null sequence.

(3) If {an} and {bn} are null sequences, so is {an ± bn}, and if {an} is
a null sequence and {bn} is a bounded sequence, then {anbn} is a
null sequence.

8. Prove that |x| < 1 if and only if limn→∞ xn = 0.

However, Q is not complete with respect to | · |, i.e. not every
Cauchy sequence in Q has a limit in Q.

9. Give an example of a Cauchy sequence of rational numbers which
has no limit in Q.

Cauchy sequences can be added, subtracted and multiplied.

10. Prove that if {an} and {bn} are Cauchy sequences, then so are

{an + bn}, {an − bn}, and {anbn}.

Therefore the set of all Cauchy sequences in (Q, | · |), denoted by {Q},
becomes a commutative ring. Its identity element under addition is the
sequence

0̄ = {0, 0, 0, . . . },

and its identity element under multiplication is the sequence

1̄ = {1, 1, 1, . . . }.

It is clear that {Q} is not a field since it contains zero divisors:

{1, 0, 0, . . . }{0, 1, 0, 0, . . . } = 0̄.

For every a ∈ Q the Cauchy sequence

ā = {a, a, a . . . }
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lies in {Q}. Hence {Q} contains a subring isomorphic to Q. Of particular
importance is the set P of all null sequences. By Exercise 7(2) P is a subset
of {Q}. In fact, P is an ideal in {Q} (i.e., a subring such that for all p ∈ P
and all a ∈ Q we have ap ∈ P ). Indeed, if {an} and {bn} are in P , so is
{an ± bn}, and if {an} is in P and {bn} is a bounded sequence (in particular
if it is Cauchy), then {anbn} is in P (Exercise 7(3)).

Let Q = {Q}/P . Its elements are equivalence classes of Cauchy se-
quences in (Q, | · |), two Cauchy sequences being equivalent if their difference
is a null sequence. Notice that constant sequences

ā = {a, a, a, . . . },

where a ∈ Q belong to different equivalent classes in Q for different a. We
shall denote the equivalence class of a Cauchy sequence {an} by (an), so
(an) is an element of Q. We will think of Q as a subset of Q, identifying
a ∈ Q with (ā) ∈ Q. In this notaions, P = (0̄).

11. Prove that if {an} ∼ {a′
n
} and {bn} ∼ {b′

n
} are two pairs of

equivalent Cauchy sequences, then {an ± bn} ∼ {a′
n
± b′

n
} and {an · bn} ∼

{a′
n
· b′

n
}.

12. Let A be an equivalence class in Q different from the class of
null sequences P , and let {an} be any Cauchy sequence in A. Describe the
equivalence class A−1 such that AA−1 = (1).

Thus we showed that Q is a field.
Now we want to define a norm on Q which would extend the norm | · |

on Q. Recall that for x ∈ Q

|x| =















x if x > 0

0 if x = 0

−x if x < 0.

Therefore we need to define positive and negative classes of Cauchy sequences
in Q. We say that A > 0 if it has a representative Cauchy sequence {an}
with all an > 0. Similarly, A < 0 means that it has a representative {an}
with all an < 0. Notice that if A > 0, then −A < 0, and vice versa.

Now for any A ∈ Q we define

|A| =















A if A > 0

0 if A = P = (0)

−A if A < 0.

Obviously, if A = a, a ∈ Q, then |A| = |a|.

13. Show that | · | is the norm on Q, i.e. that it saftsfies the properties
of Execrcise 3.
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Thus we extended the norm from Q to Q, and we can talk about
bounded, null and Cauchy sequences in (Q, | · |).

14. Prove that Q is a dense subset of Q, i.e. for any A ∈ Q there
exists a sequence of rational numbers {am} such that A = limm→∞(am) in
(Q, | · |).

Now we can prove that (Q, | · |) is complete.

15. Use Exercise 14 to show that every Cauchy sequence in (Q, | · |)
converges to an element of (Q, | · |).

Thus we have constructed a normed field which is a completion of Q

with respect to the absolute value norm | · |. It is called the field of real
numbers and denoted by R.

Notice that the extended norm takes a larger set of values on R than it
did on Q: {0} ∪R+, the set of nonnegative real numbers. We have an order
on R: x > y iff x − y > 0, i.e. x − y ∈ R+.

16. Prove that the norm | · | on R satisfies the Archimedian property:
given X, y ∈ R, x 6= (0̄), there exists a positive integer n such that |nx| > |y|.

17. For which α | · |α is a norm on Q?

We say that two norms on Q are equivalent if any Cauchy sequence in
one norm is a Cauchy sequence in the other, and vise versa.

18. Prove that if ‖ · ‖1 and ‖ · ‖2 are equivalent (we write ‖ · ‖1 ∼ ‖ · ‖2),
then ‖x‖1 < 1 iff ‖x‖2 < 1, ‖x‖1 > 1 iff ‖x‖2 > 1, and ‖x‖1 = 1 iff ‖x‖2 = 1.

19. Use Exercise 18 to show that | · |α, for such α that it is a norm on
Q (cf Exrecise 17), is equivalent to | · |.
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