MATH 312H

REAL NUMBERS

A field F is a set with two binary operations usually called addition and
multiplication which satisfy the most basic properties of these two operations
for numbers. Namely,

(1) Va,b € F,a+b=b+ a (commutativity of addition),

(2) Ya,b,ce F,a+ (b+c) = (a+ b) + ¢ (associativity of addition),

(3) 30 € Fsuch that Va € F, 0+ a = a (existence of zero),

(4) Va€ F 3—a € F such that a+(—a) = 0 (existence of the additive
inverse),

(5) Va,be F,a-b=>b-a (commutativity of multiplication)

(6) a-(b-c)=(a-b)-c (associativity of multiplication),

(7) 31 € F such that Va € F* = F — {0}, 1-a = a (existence of
identity),

(8) Va € F* Fa=! € F* such that a-a™! = 1 (existence of the
multiplicative inverse),

(9) Ya,b,ce F,a-(b+c)=a-b+a-c (distributivity),

(10) 0 # 1.

An algebraic structure with only one binary operation satisfying the proper-
ties (1) — (4) is called an abelian (or commutative) group. Correspondingly,
F with addition is called the additive group of the field F', and F'* with
multiplication is called the multiplicative group of the field F'. An important
property of a field is that it does not contain zero—divisors:

1. Prove that if a,b € F are such that a - b = 0 then either a = 0 or
b=0.

2. Give examples of fields.

There three ways to define real numbers beginning with Q:

e an explicit construction via infinite decimal fractions;

e using the norm on Q: |x| — the absolute value; using different
norms on Q one obtains other interesting fields containing Q (p—
adic numbers);

e using the notion of order on Q: = < y (“Dedekind’s cuts”); it gives
essentially the unique field of real numbers R.
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Construction of real numbers by completion of rationals

We start with natural numbers (positive integers) and introduce negative
numbers and 0 to make a group of integers Z by addition. Then we define
Q as the set of fractions in order to obtain a field. Thus, we have a notion of
positive rational number: % > 0 if p and ¢ are both positive or both negative.
We also have a notion of order on Q: z <y iff y — xz > 0.

For = € Q we define the absolute value

T if >0
|| =10 if =0
—x if x<0.

3. Prove that |- | is a norm on Q, i.e.
(1) |z| =0if and only if z =0

(2) [eyl = lzllyl, Vz,yeQ
3) |z +y| <|z|+ |y, VYaz,y € Q (triangle inequality).

Notice that the norm | - | takes non-negative rational values.
4. Prove that for all z,y € Q |x £ y| > ||z| — |y||-

Let d(z,y) = |z —y.

5. Prove that d is a distance function on Q, i.e.
(1) d(z,y) > 0, and d(z,u) = 0 if and only if x =y

(2) d(z,y) = d(y,z)
(3) |d(z,2) < d(z,y) + d(y, z) (triangle inequality).

Now (Q,|-|) is a metric space. A sequence {a,} in Q is said to be
o bounded if there is a constant C' > 0 (of course, C' € Q) such that

’an’ <C Vn;

e a null sequence if

lim |a,| =0,
n—oo

i.e., for any € > 0 (¢ € Q) there is a natural number N such that
for all n > N |a,| < ¢
e a Cauchy sequence if
lim |a, — apn| =0,
7,1Mm—00
i.e., for any € > 0 there is an NV such that for all n,m > N we have
lan, — am| < &



e convergent to a € F (we write a = lim,,_,o ay,) if
lim |a, —a| =0,
n—oo
i.e., for any € > 0 there is an N such that for alln > N |a, —a| < €.

6. Prove that

(1) any null sequence converges to 0,
(2) any converging sequence is a Cauchy sequence.

In particular, every null sequence is a Cauchy sequence.

7. Prove that in Q

(1) Every Cauchy sequence is bounded.

(2) Let {a,} be a Cauchy sequence and {ni,nso,...} be an increasing
sequence of positive integers. If the subsequence a,,,ay,,... is a
null sequence, then {a,} itself is a null sequence.

(3) If {an} and {b,} are null sequences, so is {a, + b,}, and if {a,} is
a null sequence and {b,} is a bounded sequence, then {a,b,} is a
null sequence.

8. Prove that |z| < 1if and only if lim, .. 2™ = 0.

However, Q is not complete with respect to |- |, i.e. not every
Cauchy sequence in Q has a limit in Q.

9. Give an example of a Cauchy sequence of rational numbers which
has no limit in Q.
Cauchy sequences can be added, subtracted and multiplied.

10. Prove that if {a,} and {b,} are Cauchy sequences, then so are
{an, +bp},{an — by}, and {a,b,}.

Therefore the set of all Cauchy sequences in (Q, |- |), denoted by {Q},
becomes a commutative ring. Its identity element under addition is the
sequence

0=1{0,0,0,...},
and its identity element under multiplication is the sequence
1={1,1,1,... }.

It is clear that {Q} is not a field since it contains zero divisors:
{1,0,0,...1{0,1,0,0,...} = 0.
For every a € @) the Cauchy sequence
a={a,a,a...}
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lies in {Q}. Hence {Q} contains a subring isomorphic to Q. Of particular
importance is the set P of all null sequences. By Exercise 7(2) P is a subset
of {Q}. In fact, P is an ideal in {Q} (i.e., a subring such that for all p € P
and all a € Q we have ap € P). Indeed, if {a,} and {b,} are in P, so is
{an £b,}, and if {a,} is in P and {b,} is a bounded sequence (in particular
if it is Cauchy), then {a,b,} is in P (Exercise 7(3)).

Let Q = {Q}/P. Its elements are equivalence classes of Cauchy se-
quences in (Q, |-]), two Cauchy sequences being equivalent if their difference
is a null sequence. Notice that constant sequences

a={a,a,a,...},

where a € Q belong to different equivalent classes in Q for different a. We
shall denote the equivalence class of a Cauchy sequence {a,} by (a,), so
(a,) is an element of Q. We will think of Q as a subset of Q, identifying
a € Q with (a) € Q. In this notaions, P = (0).

11.  Prove that if {a,} ~ {al,} and {b,} ~ {b],} are two pairs of
equivalent Cauchy sequences, then {a, + b,} ~ {a}, £ b),} and {a, - b,} ~
{ar, - b}

12. Let A be an equivalence class in Q different from the class of
null sequences P, and let {a,,} be any Cauchy sequence in A. Describe the
equivalence class A~! such that AA~1 = (1).

Thus we showed that Q is a field. B
Now we want to define a norm on Q which would extend the norm | - |
on Q. Recall that for x € Q

T if >0
lz] =<0 if x=0
—x if z<0O.

Therefore we need to define positive and negative classes of Cauchy sequences
in Q. We say that A > 0 if it has a representative Cauchy sequence {a,}
with all a,, > 0. Similarly, A < 0 means that it has a representative {a,}
with all a,, < 0. Notice that if A > 0, then —A < 0, and vice versa.

Now for any A € Q we define

A if A>0
Al =<0 if A=P=(0)
—-A if A<O.

Obviously, if A =a, a € Q, then |A| = |a|.

13. Show that |- | is the norm on Q, i.e. that it saftsfies the properties
of Execrcise 3.



Thus we extended the norm from Q to Q, and we can talk about
bounded, null and Cauchy sequences in (Q, | - |).

14. Prove that Q is a dense subset of Q, i.e. for any A € Q there
exists a sequence of rational numbers {a,,} such that A = lim,,_,~(a;,) in

@)
Now we can prove that (Q, |- ) is complete.

15.  Use Exercise 14 to show that every Cauchy sequence in Q1)
converges to an element of (Q, |- |).

Thus we have constructed a normed field which is a completion of Q
with respect to the absolute value norm |- |. It is called the field of real
numbers and denoted by R.

Notice that the extended norm takes a larger set of values on R than it
did on Q: {0} UR™, the set of nonnegative real numbers. We have an order
onR: z>yiffz —y >0, ie z—yecRT.

16. Prove that the norm | | on R satisfies the Archimedian property:
given X,y € R, z # (0), there exists a positive integer n such that |nz| > |y|.

17. For which « |+ |* is a norm on Q7

We say that two norms on Q are equivalent if any Cauchy sequence in
one norm is a Cauchy sequence in the other, and vise versa.

18. Prove that if || - |1 and || - ||2 are equivalent (we write || - ||1 ~ || - [|2),
then ||z|; < 1iff ||z||2 < 1, ||z|1 > 1iff |||l > 1, and ||z|; = 1 iff ||z||2 = 1.

19. Use Exercise 18 to show that | - |, for such « that it is a norm on
Q (cf Exrecise 17), is equivalent to | - |.



