CONTINUED FRACTIONS

Let $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ be an infinite sequence of positive integers. We define two sequences of integers $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}, n \geq-2$, inductively:

$$
\begin{align*}
p_{-2} & =0, p_{-1}=1 ; p_{i}=a_{i} p_{i-1}+p_{i-2} \text { for } i \geq 0 \\
q_{-2} & =1, q_{-1}=0 ; q_{i}=a_{i} q_{i-1}+q_{i-2} \text { for } i \geq 0 \tag{0.1}
\end{align*}
$$

1. Prove that $1=q_{0} \leq q_{1}<q_{2}<\cdots<q_{n}<\ldots$.

Now we define

$$
\left\langle a_{0}, a_{1}, \ldots, a_{n-1}, x\right\rangle=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot+\frac{1}{x}}}}
$$

2. Prove that for any $x \geq 1$ we have

$$
\left\langle a_{0}, a_{1}, \ldots, a_{n-1}, x\right\rangle=\frac{x p_{n-1}+p_{n-2}}{x q_{n-1}+q_{n-2}} .
$$

3. Prove that $p_{i-1} q_{i}-p_{i} q_{i-1}=(-1)^{i}$ for $i \geq 1$.

Let $r_{n}=\left\langle a_{0}, \ldots, a_{n}\right\rangle$. Using Problem 2, we obtain

$$
\begin{equation*}
r_{n}=\frac{a_{n} p_{n-1}+p_{n-2}}{a_{n} q_{n-1}+q_{n-2}}=\frac{p_{n}}{q_{n}} . \tag{0.2}
\end{equation*}
$$

4. Show that $\left\{r_{n}\right\}$ is a sequence such that

$$
r_{0}<r_{2}<r_{4}<\cdots<r_{5}<r_{3}<r_{1},
$$

that the limit $\lim _{n \rightarrow \infty} r_{n}$ exists, and this limit is a real number.
Conversely, let α be any real number. We define a sequence of integers $\left\{a_{i}\right\}$, $i=0,1,2, \ldots$ and a sequence of real numbers $\left\{\alpha_{i}\right\}, i=1,2 \ldots$, inductively:

$$
a_{0}=[\alpha], \quad \alpha_{1}=\frac{1}{\alpha-a_{0}} a_{n}=\left[\alpha_{n}\right], \alpha_{n+1}=\frac{1}{\alpha_{n}-a_{n}} .
$$

This process will terminate if α_{n} is an integer for some n.
5. Prove that $a_{i} \geq 1$ for those $i \geq 1$ for which a_{i} is defined.

Now we can define a sequence $r_{n}=p_{n} / q_{n}$ as in (0.2), which can be infinite or finite, as explained above.
6. Prove that if the sequence $\left\{r_{n}\right\}$ is infinite, then $\lim _{n \rightarrow \infty} r_{n}=\alpha$; if the sequence is finite, $\left\{r_{0}, r_{1}, \ldots, r_{n}\right\}$, then $\alpha=r_{n}$.

Moreover, we deduce that the convergents $r_{n}=p_{n} / q_{n}$ are the best approximations of α :
7. If α is irrational, then

$$
\left|\alpha-\frac{p_{n}}{q_{n}}\right| \leq \frac{1}{q_{n}^{2}}
$$

Thus there is a one-to-one correspondence between the set of real numbers α and the set of sequences (finite and infinite) $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ of integers with
$a_{0} \in \mathbb{Z}$ and $a_{i} \geq 1$ whenever $i \geq 1$. Using this correspondence, prove the following statements.
8. The real number α is rational if and only if the algorithm described above terminates, i.e., α_{n} is an integer for some n.

Problem 8 can be solved using the Euclidean algorithm.
9. The real number α is a quadratic irrationality, i.e., a real root of the equation $a x^{2}+b x+c=0$ with coefficients $a, b, c \in \mathbb{Z}, c \neq 0$, that has two distinct real roots, if and only if its continued fraction expansion is eventually periodic.

