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1. DIFFEOMORPHISMS OF T

Di f f r
+(T) group of orientation preserving diffeomorphisms of T

of class Cr. Dr(T) is the group of lifts of elements of Di f f r
+(T).

Dr(T) = { f = Id + φ : φ ∈ Cr(T, R), φ is Z-periodic}. When-
ever there is no danger of confusion, we will denote both diffeomor-
phisms and their lifts by the same notation. Otherwise, f will denote
lift of fT.

For α ∈ R by Rα we denote the rotation by α: Rα(x) = x + α
mod 1.

1.1. Rotation number. For f ∈ D0(T) then as n→ ∞, 1
n ( f n(x)− x)

converges uniformly in x to a constant ρ( f ). This is rotation number
of f .

Proposition 1. ρ( f ) has the following properties:

(1) Let f = id + φ. Then ρ(φ) = limn→∞
1
n ∑n−1

k=0 φ( f k)
(2) If µ is a probability measure on T invariant under f , then ρ( f ) =∫

T
φ(x)dµ.

(3) ρ(Rp ◦ f ) = p + ρ( f ) for p ∈ Z, thus ρ factors to a map ρ :
Di f f 0

+(T)→ T

(4) If f , g ∈ D0(T) and h is a homeomorphism which conjugates f and
g then ρ( f ) = ρ(g).

(5) ρ( f ) is irrational iff f (as a diffeomorphism of T) has no periodic
orbits.

(6) ρ( f ) is irrational than f on T is uniquely ergodic.
(7) If f ◦ g = g ◦ f then ρ( f ◦ g) = ρ( f ) + ρ(g).

Proof: (7) Let f = Id + φ and g = Id + ψ. If µ is a probabil-
ity measure invariant both by fT and gT (which exists by Markov-
Kakutani Theorem), then f ◦ g = Id + ψ + φ ◦ g. Thus ρ( f ◦ g) =
µ(ψ + φ ◦ g) = µ(ψ) + µ(φ ◦ g) = µ(ψ) + µ(phi) = ρ( f ) + ρ(g) �
The question of conjugating a diffeomorphism of T with irrational
rotation number to a rotation on T was first raised by Poincare.
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2 LOCAL RIGIDITY OF ZK ACTIONS

Theorem 1 (Denjoy). A C2 diffeo of T with no periodic points is topolog-
ically conjugated to irrational rotation.

Denjoy counterexample: For irrational α for every ε > 0 there
exists f ∈ D2−ε(T) such that there is no topological conjugacy to Rα.

Remark 1. (1)

Question 1 (Arnold). : What is the smoothness of the conjugacy in the
Denjoy theorem, depending on the smoothness of f and ρ( f )? In other
words this is asking: is the statistical distribution of f orbits in T (the
invariant measure) given by smooth density? C∞-density?

In the subsequent sections we will state the answers to the above
question of Arnold.

Definition 1. Or
α = {h−1 ◦ Rα ◦ h : h ∈ Dr(T)},

Fr
α = { f ∈ Dr(T) : ρ( f ) = α}. By (4) of Proposition 1.1 it is clear

that Or
α ⊂ Fr

α.

The question of Arnold can be interpreted as:
(Local). Given α irrational, determine k, r, l and condition on α, such
that there a neighborhood U of Rα in some Ck topology such that
U ∩ Fr

α ⊂ Ol
α.

(Global) Given α irrational, determine r, l and condition on α, such
that Fr

α ⊂ Ol
α.

Note that Denjoy theorem gives: Fk
α ⊂ O0

α for any k ≥ 2.

1.2. Local result for diffeomorphisms of T with Diophantine rota-
tion number.

1.2.1. Set-up of the problem, heuristics. We wish to study small per-
turbations of rotations. Therefore we look at f = Rα + f̃ ∈ D∞(T)
where α ∈ R and f ∼ Rα in some Ck topology, i.e. assume that
‖ f̃ ‖Cr ∼ ε << 1. If ρ( f ) = α is irrational, from Denjoy theorem
there exists a h = id + h̃ which gives a homeomorphism on T, but
the theorem produces no smoothness for h. So the idea of Arnold,
Moser and Kolmogorov was to construct this conjugacy anew, and
to obtain smoothness from the construction.

The conjugacy we look for h = id + h̃ should satisfy h̃ ∼ ε and

Rα ◦ h = h ◦ f

That is:

(1.1) h̃(Rα + f̃ )− h̃ = − f̃
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The idea for solving (1.1) comes from the Newton method: first lin-
earize the non-linear problem at the point which represents our ini-
tial guess for the solution, resolve the linear problem, use the solu-
tion to linear problem to construct a new approximate solution to the
non-linear problem which is much closer to being an actual solution
than our initial guess. If this can be done so that this process con-
verges fast enough and in nice enough spaces so that the limit exists,
then in the limit one gets an exact solution to the non-linear problem.

The linearized equation for our non-linear problem (1.1) is:

(1.2) h̃(Rα)− h̃ = − f̃

We will denote the operator which takes h̃ to h̃(Rα) − h̃ by L. SO
the question is whether this operator can be inverted, and in which
space this can be done.

First question to ask is what are the obstructions to inverting L and
there is one obvious obstruction: the average of f̃ :

(Obstructions-1): [ f̃ ] = 0.
Now assume that this obstruction vanishes, then can one solve the

linearized problem?

Passing to Fourier coefficients, for every n 6= 0: h̃(n) = f̃ (n)
1−e2πinα . If

we want h̃ to be C∞ we need that its Fourier coefficients decay faster
than any polynomial. Since f̃ is C∞ then f̃ (n) decay faster than any
polynomial, so in order to claim the same for h̃(n) we need an upper
polynomial bound for 1

|1−e2πinα| , something like:

1
|1− e2πinα|

< |n|τ

for some τ > 0. Numbers α which satisfy this condition for all n ∈
Z \ {0} are Diophantine numbers with exponent τ > 0.

1.2.2. Diophantine condition. Let τ > 0 and C > 0. For α ∈ R, let
‖nα‖ = minp∈Z |nα− p|. Then:

(1.3) DC(τ, C) = {α ∈ R \Q : ∀n ∈ Z \ {0}, ‖nα‖ ≥ C
|n|τ

We will use the following notation: DC(τ) = ∪DC(τ, C), DC =
∪D(τ).

Some properties of the sets of numbers satisfying Diophantine
condition:

• DC(τ, C) ⊂ DC(τ′, C′) for τ ≤ τ′ and C ≥ C′.
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• DC(τ, C) is closed and has empty interior. Thus DC and
DC(τ) are small in the topological sence (Baire category).
• For τ > 0, Leb(DC(τ)) = 1.
• Any irrational algebraic number is in DC(τ) for all τ > 0.
• Any irrational algebraic number of degree 2 has eventually

periodic continued fractions expansion, and vice versa. Such
numbers are in DC(0). It is not known (??) whether algbraic
irrationals of degree greater than 3 are in D(0)

1.2.3. Coboundary equation. Some notation:
-We will use notation ‖ · ‖r for ‖ · ‖Cr .
-We will use notation | · |r for | f |r = sup| f (n)||n|r.
-Relations between the two norms are: ‖ f ‖r ≤ ‖ f ‖r+2, | f |r ≤ ‖ f ‖r

Lemma 1. Let α ∈ DC(τ, C), let f̃ ∈ C∞(T, R) and let [ f̃ ] denote the
average of f . Then there exists a solution h̃ to the equation

(1.4) h̃ ◦ Rα − h̃ = f̃ − [ f̃ ]

such that

(1.5) ‖h̃‖r ≤ Cr‖ f̃ ‖r+σ

for all r ≥ 0 and σ > 2 + τ.

Note: If α is not Diophantine then there exists f̃ ∈ D∞(T) such
that the solution h̃ is not even a distribution. Namely, for α Liou-
ville, there exists a sequence nk of integers such that |e2πinkα − 1| ≤
C|nk|−τ. Then define f̃ by choosing its only non-zero Fourier coeffi-
cients to be f̃ (nk) = |e2πinkα − 1|1/2. Compute h̃ for this f̃ and check
that its Fourier coefficients do not even decay.

Proof: For n 6= 0, h̃(n) = f̃ (n)
|e2πinkα−1|

. Since C1‖nα‖ ≤ |e2πinkα − 1| ≤
C2‖nα‖ and α is Diophantine it follows that |e2πinkα − 1|−1 ≤ C|n|τ.
Thus |h̃(n)| ≤ C| f̃ (n)||n|τ. So we have:

‖h̃‖Cr ≤ Cr|h̃|r+2 = Cr sup
n
|h̃(n)||n|r+2 ≤ Cr sup

n
| f̃ (n)||n|r+τ+2 ≤ Cr‖ f̃ ‖Cr+σ

�

It is clear from the above Lemma that there is certain loss of regu-
larity for the solution, in other words the operator L : h̃ 7→ h̃ ◦ Rα − h̃
takes Cr maps to Cr maps, but its inverse takes Cr maps to only Cr−σ

maps. This is clearly a problem if our goal here is to repeat this pro-
cess of lineariation ad infinitum.
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Standard method which allows us to overcome this obstacle was
used by Moser, and subsequently in all similar and/or more general
situations (see Section ??), is to use a family of smoothing operators
St which act on our function spaces Cr(T, R). The idea is to solve
the linear problem i.e. the coboundary equation in Lemma 1 not for
f̃ but for St f̃ , map which takes f̃ from Cr(T, R) to Cr+t(T, R), so that
the solution of the coboundary problem is again in Cr(T, R). This is
not quite how it is done because the residue f̃ − St f̃ should be made
very small with respect to f̃ , but this is the general idea.

Proposition 2. Let X be a compact space, then for the space of C∞ func-
tions on X there exists a collection of smoothing operators St : C∞(X) →
C∞(X), t > 0, such that the following holds:

(1.6)
‖St f ‖s+s′ ≤ Cs,s′ ts′‖ f ‖s

‖(I − St) f ‖s−s′ ≤ Cs,s′ t−s′‖ f ‖s

For the construction of smoothing operators see: Example 1.1.2. (2),
Definition 1.3.2, Theorem 1.3.6, Corollary 1.4.2 in [?]

Note: we may assume that [St f ] = [ f ].
The following is a classical fact, but also easy to prove from the

existence of smoothing family.

Corollary 1. In the set-up of the previous proposition, the following inter-
polation inequalities hold in C∞(X): ‖ f ‖r ≤ Cλ,r1,r2‖ f ‖1−λ

r1
‖ f ‖λ

r2
where

r = (1− λ)r1 + λr2.

By combining smoothing operators and Lemma 1 we obtain:

Lemma 2. Let α ∈ DC(τ, C), let f̃ ∈ C∞(T, R) and let [ f̃ ] denote the
average of f . Then there exists h̃ which solves the equation

(1.7) L(h̃) = h̃ ◦ Rα − h̃ = St f̃ − [ f̃ ]

such that

(1.8) ‖h̃‖r ≤ Crtσ‖ f̃ ‖r

for all r ≥ 0 and σ > 2 + τ.

Remark 2. Note that for any k ≤ r by the properties of the smoot-
thing operators, the following estimate holds as well: ‖h̃(n)‖r ≤
Crtσ+k

n ‖ f̃ (n)‖r−k
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1.2.4. Statement of the local result and proof.

Theorem 2 (Arnold, Moser). (1) Let τ ≥ 0, α ∈ DC(τ) , r0 > 2 + τ.
There exists a neighborhood U of Rα in Dr0(T) such that if r ≥ r0 satisfies
r /∈ N , s = r− 1− τ /∈ N , then Fr

α(T) ∩U ⊂ Os
α.

(2) In particular: There exists r0 > 0 and a neighborhood U of Rα in Dr0

such that F∞
α (T) ∩U ⊂ O∞

α .

Remark 3. In case both numbers in the theorem are in N, the con-
dition r− s = 1 + τ is replaced by r− s > 1 + τ.

Remark 4. In fact, the arithmetical conditions are optimal (Her-
man?): Let r ≥ s ≥ 1, τ = r − s− 1, α /∈ DC(τ). Then there exists
arbitrary near Rα in the Cr topology, diffeomorphisms f ∈ Dr(T)
with ρ( f ) = α which are not in Os

α.

Remark 5. It is worth noting here that this rigidity phenomenon
which appears in Theorem 2 is considered to be quite rare in rank-
one situation. The following is a question asked by Herman: Ques-
tion[Herman] Let M be a compact C∞ manifold, f ∈ Di f f ∞(M). Let
U be a small C∞-neighborhood of Id. Let O f ,U := {g ◦ f ◦ g−1 : g ∈
U}. If O f ,U is a finite codimension manifold, is it true that M = TN

and f is smoothly conjugate to a Diophantine rotation on Tn? (Note.
Compare this with the Greenfield-Wallach-Katok conjecture stated
in Flaminio-Forni lectures).

In what follows we will prove the statement (2) of Theorem 2.

Lemma 3. Assume that f = Rα + f̃ is in D∞(T), with ‖ f̃ ‖1 < 1.
Assume that there exists a h̃ ∈ C∞(T) such that:
(i) ‖Lh̃− (St f̃ − [ f̃ ])‖0 ≤ Ctσ‖ f̃ ‖0‖ f̃ ‖1
(ii) ‖h̃‖r ≤ Ctσ‖ f̃ ‖r, r ≥ 0
(iii) ‖h̃‖ < 1

4 and h = id + h̃, h−1 exists.
Then for the map f̃ (1) := h−1 ◦ f ◦ h− Rα we have:
(1) ‖ f̃ (1)‖0 ≤ Ctσ‖ f̃ ‖0‖ f̃ ‖1 + Clt−l‖ f̃ ‖l, for all l ≥ 0
(2) ‖ f̃ (1)‖l ≤ Cltσ(1 + ‖ f̃ ‖l), for all l ≥ 0.

Remark 6. By comparing Lemma 2 and condition (i) in Lemma
above, it is obvious that instead of the exact solution in Lemma 2
it would suffice to have a solution with certain error, namely the ex-
istence of h̃ satisfying ‖Lh̃− (St f̃ − [ f̃ ])‖0 ≤ Ctσ‖ f̃ ‖0‖ f̃ ‖1 is enough
for the application of Lemma 3. This observation will be crucial for
the application of this method to higher rank actions in subsequent
sections.
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Proof: Let f̃ (1) := h−1 ◦ f ◦ h − Rα = f (1) − Rα. Then since h =
id + h̃ and f = Rα + f̃ we have:

(1.9)

h ◦ f̃ (1) = f ◦ h

f̃ (1) = h̃− h̃ ◦ f (1) + f̃ ◦ h

= h̃− h̃ ◦ Rα + h̃ ◦ Rα − h̃ ◦ f (1) + f̃ ◦ h

= −Lh̃ + h̃ ◦ Rα − h̃ ◦ f (1) + f̃ ◦ h

= −(Lh̃− St f̃ + [ f̃ ]) + ( f̃ ◦ (Id + h̃)− f̃ ) + [ f̃ ]+

(h̃ ◦ Rα − h̃ ◦ f (1)) + ( f̃ − St f̃ )

Enumerate parentheses in the expression in the last line above from
left to right by (1), (2), (3), (4) and (5). We will estimate each term in
order to obtain C0 estimate for f̃ (1).

(1) By assumption (i), ‖Lh̃− (St f̃ − [ f̃ ])‖0 ≤ Ctσ‖ f̃ ‖0‖ f̃ ‖1.
(2) ‖ f̃ ◦ (Id + h̃)− f̃ ‖0 ≤ C‖ f̃ ‖1‖h̃‖0 ≤ Ctσ‖ f̃ ‖1‖ f̃ ‖0‖, by using

assumption (ii) for r = 0.
(3) |[ f̃ ]| can be absorbed by the left hand side, i.e. by the C0 norm

of f̃ (1). The reason tor this lies in the assumption that ρ( f ) =
α. From this it follows that ρ( f (1)) = α since the rotation
number is conjugacy invariant. Now since f (1) = Rα + f̃ (1)

and its rotation number is α, it follows that f̃ (1) has a zero.
Then for any constant C we have: ‖ f ‖0 ≤ max f (x)≥0 f (x) +
max f (x)<0(− f (x)) ≤ max f (x)≥0( f (x)−C)+ max f (x)<0(−( f (x)−
C)) ≤ 2 maxx | f (x)− C| = 2‖ f − C‖0. In place of constant C
we can put [ f̃ ] to obtain ‖ f ‖0 ≤ 2‖ f − [ f̃ ]‖0. Note: another ap-
proach to take care of the average is to carry out the iteration
with average accumulating at some point so that in the limit
one gets that the inital perturbation needs to be adjusted by
a certain rotation in order to have a conjugacy to a rotation,
and then the rotation number assumption implies that this
rotation adjustment has to be trivial.

(4) This term can also be absorbed by the left hand side due to
the assumption (iii) on smallness of C1 norm of h̃. Namely:

‖h̃ ◦ Rα − h̃ ◦ f (1)‖0 ≤ ‖h̃‖1‖ f̃ (1)‖0 ≤
1
4
‖ f̃ (1)‖0

(5) The last term is estimated by using properties of smoothing
operators:

‖ f̃ − St f̃ ‖0 ≤ Ct−l‖ f̃ ‖l
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From (1)-(5) the first estimate follows.
The second is a consequence of the general fact about conjugacy

equation that from f (1) = h−1 ◦ f ◦ h there follows a ’linear’ estimate
in any Cr norm: ‖ f (1)‖l ≤ Cl(1 + ‖h‖l + ‖ f ‖l). (this ‖ f̃ ‖1 < 1).
Combining this with the assumption (ii) we have ‖ f (1)‖l ≤ Cltσ(1 +
‖ f̃ ‖l).

(Note. This last fact is in fact very general and very useful in
this set-up as was pointed out by Zehnder. Namely, any operator
F(x, Dn f , Dmh) on spaces of functions which involves only partial
derivatives or functional substitution grows at most linearly with
| f |s+n|h|s+m. For example ‖ f ◦ h‖s ≤ C(| f |s + | f |1|h|s.)

Note. It may be easier to prove all this inequalities for the norm
defined as |||v|||r := supx |

drv
dxr |, instead of ‖ · ‖.

�

Proof of Theorem 2
Now we use Lemmas 2 and 3 to construct a sequence of perturba-

tions f n and a sequence of conjugacy maps hn which converge.
To begin this process, let f (0) = f , our initial perturbation. Let

h(0) = id. For n ≥ 1, given f (n) = Rα + f̃ (n), apply Lemma 2 with
specific tn, to f̃ (n) to obtain h̃(n) and define h(n) = Id + h̃(n). Assum-
ing that invertibility of h(n) is assured, define

f (n+1) = (h(n))−1 ◦ f (n) ◦ h(n)

Set:

speed of convergence κ = 4/3
C0-error at n-th step of iteration εn := ε(κn)

choice of smoothing operator at n-th step tn = ε
− 1

3(σ+1)

The upper norm which is controlled l = 8(σ + 1), σ = τ + 2

Claim. Under the assumptions, the estimates:

(1.10)

(1) ‖ f̃ (n)‖0 < εn

(2) ‖ f̃ (n)‖l < ε−1
n

(3) ‖h̃(n)‖1 < ε1/2
n

hold for all n ∈ .
Proof of the Claim Is by induction. Let us assume that we have

constructed f (n) and h(n) for which the statements of the Claim hold.
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From Lemma 2 we have the following estimates:

(1.11) L(h̃(n)) = Stn f̃ (n) − [ f̃ (n)]

and

(1.12) ‖h̃(n)‖r ≤ Crtσ+k
n ‖ f̃ (n)‖r−k

(see the remark after Lemma LEsmoothing) Since these estimates
satisfy the conditions in Lemma 3, we have for f̃ (n+1):

(1.13) ‖ f̃ (n+1)‖0 ≤ Ctσ
n‖ f̃ (n)‖0‖ f̃ (n)‖1 + Clt−l

n ‖ f̃ (n)‖l

(1.14) ‖ f̃ (n+1)‖l ≤ Cltσ
n(1 + ‖ f̃ (n)‖l)

From (1.14) it follows that

(1.15) ‖ f̃ (n+1)‖l ≤ 2Cltσ
nε−1

n = 2Clε
− 1

3
σ

σ+1
n ε−1

n < ε−
1
3−1 = ε−1

n+1

This proves inequality (2) of the Claim. Similarly, the inequality (3)
of the Claim follows from (1.12) with k = 1:

(1.16) ‖h̃(n)‖1 ≤ Ctσ+1
n | f̃ (n)‖0 < Ctσ+1

n εn = Cε
1− 1

3
n < ε1/2

n

Finally, check that (1) holds for f (n+1) if it holds for f (n). Here we
will see where l comes from. How big l we need to take depends on
the speed of convergence and on σ. From (1.13):

(1.17) ‖ f̃ (n+1)‖0 ≤ C(tσ
nε

2(1− 1
l

n + t−l
n εn) ≤ 2Cεx

n + ε
y
n

where x = −1
3

σ
σ+1 + 2(1− 1

l ) and y = l
3(σ+1) In order to have ‖ f̃ (n+1)‖0 ≤

εn+1 = ε4/3
n , we need x > 4

3 and y > 4
3 . Both of these conditions

are satisfied when l ≥ 8(σ + 1), and we chose the smallest such
l = 8(σ + 1).

This concludes the proof of the Claim which implies existence of
a C1 conjugacy H in the limit of the sequence Hn := h(n) ◦ h(n−1) ◦
h(n−2) ◦ · · · ◦ h(0) providing ε is small enough.

To prove convergence in any Ck suggestion of Zehnder was to use
interopolation inequalities. From (1.14):

‖ f̃ (n)‖m ≤ Cmtσ
n−1(1 + ‖ f̃ (n−1)‖l) ≤ ε

− 1
3

n−1(1 + ‖ f̃ (n−1)‖l)

≤ Cm

n−1

∏
i=1

ε
− 1

3
i (1 + ‖ f̃ ‖m) ≤ Dmε−1

n
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where in the second line above the constant Dm is Dm := Cm(1 +
‖ f̃ ‖m). Naw take m = 3k. Then:

‖ f̃ (n)‖k ≤ Ck‖ f̃ (n)‖
2
3
C0‖ f̃ (n)‖

1
3
3k < Ckε

2
3
n ε
− 1

3
n = Ckε

1
3
n

‖h̃(n)‖k ≤ Cktσ
n‖ f̃ (n)‖k ≤ Ckε

− σ
3(σ+1))

n ε
1
3
n = Ckεδ

n

with δ =
1

3(σ + 1)
> 0 and the constant Ck changing throughout the

above procedure, but depending only on k and the C3k norm of the
initial perturbation f̃ .

This implies the convergence of the sequence Hn in Ck norm for
every k ∈N i.e. the limitH is a C∞ map.

1.3. Global result for diffeomorphisms of T with Diophantine ro-
tation number.

Theorem 3 (Herman, Yoccoz). If α ∈ D(C, τ) for some C > 0, τ > 0,
F∞

α ⊂ O∞
α .

1.4. Zk actions on T and simultaneously Diophantine numbers.
Let f , g be smooth commuting diffeomorphisms. Then they generate
a Z2 action α on T by α((n, m), x) = f ngm(x). We assume that all ρ
are irrational.

Since the rotation number function is a homomorphisms on com-
mutative subgroups in D∞(T), we have that ρ( f ngm) = nρ( f ) +
mρ(g). We assume that ρ( f ngm) are irrational.

If one element of the action, say f is topologically conjugated to
a rotation Rα with α irrational, then all other other elements of the
action are conjugated to rotations via the same conjugacy. Indeed,
if f is conjugate to a rotation, then conjugates of all the other ele-
ments commute with that irrational rotation. Since centralizer of Rα

consists of rotations, it follows that the whole action is conjugate to
action by rotations.

To see that the centralizer of rotations consists of rotations, it is
enough to look at f ◦ Rα = Rα ◦ f , for f = id + f̃ . Then f̃ ◦ Rα = f̃ i.e.
f̃ is constant on every orbit, and since Rα is topologically transitive
and f̃ continuous, f̃ is constant everywhere. So f is a rotation.

Thus the Denjoy theorem as in the rank-one case produces a home-
omorphism.

We note here that in the Denjoy theorem for commuting diffeo-
morphisms recently obtained by Navas et al, [?], the topology re-
quired is C1+φ where φ > 1/d and d is the dimension of the action.
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To the best of my knowledge, the case φ = 1/d hasn’t been resolved
yet.

However, as in the rank-one case, Denjoy theorem gives only a
homeomomorphism.

Now if we put more stringent conditions on rotation numbers,
namely if we assume that rotation number of at least one element
of the action has Diophantine rotation number, then it is possible to
use Herman’s global result to obtain C∞ conjugacy to a rotation, and
by the above discussion the same conjugacy works for all other ele-
ments of the action.

This raised the question of weather Herman’s rank-one result is
applicable to all higher-rank actions which conjugate smoothly to
rotations. In other words the question is:

Question. Do there exist for example Z2-actions by smooth circle
diffeomorphisms which are smoothly conjugate to rotations but all
the rotation numbers of action elements are all Liouville?

This question was completely answered by Moser in 1990 [] for
the local set-up, and in the global situation it was answered recently
by Fayad and Khanin [].

Before we state Moser’s results and prove the local one, we will try
to apply the same reasoning as in the rank-one case for small pertur-
bations of actions by rotations, and try to come up with necessary
conditions for this method to work.

Remark 7. We include here a remark made by Moser that if a group
of circle mappings generated by f1, f2, . . . , fn contains only fixed point
free elements then this group is necessarily commutative. References
produced are due to J. Mather, namely this is a consequence of a the-
orem on ordered Archimedean groups which goes all the way back
to Hölder.

1.4.1. Set-up and heuristics. Let < f , g >∼< Rα, Rβ > in some Ck

topology, f , g ∈ D∞(T) and f ◦ g = g ◦ f . Let f = Rα + f̃ and g =
Rβ + g̃ with f̃ , g̃ ∼ ε << 1. Let F∞

(α,β) = {( f , g) : ρ( f ) = α, ρ(g) = β}.
The conjugacy we look for h = id + h̃ should satisfy h̃ ∼ ε and

Rα ◦ h = h ◦ f , Rβ ◦ h = h ◦ g

. That is:

(1.18)
h̃(Rα + f̃ )− h̃ = − f̃

h̃(Rβ + g̃)− h̃ = −g̃
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The linearized equation for our non-linear problem (1.18) is:

(1.19)
h̃(Rα)− h̃ = − f̃

h̃(Rβ)− h̃ = −g̃

We will denote the operator which takes h̃ to h̃(Rα) − h̃ by Lα and
the operator which takes h̃ to h̃(Rβ)− h̃ by Lβ. Also let L = (Lα, Lβ).
As before, the question is whether this operator can be inverted, and
in which space this can be done.

First let us look for the obstructions to existence of any kind of a
common solution to (1.19). Unlike the rank-one case we had earlier,
here the averages are not the only obstructions.

Obstructions-2:
(1) [ f̃ ] = [g̃] = 0
(2) Lα g̃ = Lβ f̃

Now we assume that the obstructions above vanish, and we try to
produce a solution h by using Fourier expansions as before:

h̃(n) =
f̃ (n)

e2πinα − 1
=

f̃ (g)
e2πinβ − 1

Therefore to estimate h̃(n) it is enough to have a lower bound for at
least one of the numbers |e2πinα − 1| and |e2πinβ − 1|. In other words,
in ordr to obtain C∞ h what is needed is that for some τ > 0 and
some constant C > 0, max{‖nα‖, ‖nβ‖} ≥ C|n|−τ. This is known as
a simoultaneous Diophantine condition.

So it seems like this condition suffices for carrying out the iteration
scheme. The obstructions (1) should be taken care of as in the rank-
one case if we assume that ρ( f ) and ρ(g) satisfy the simultaneous
Diophantine condition. However, two non-trivial problems remain,
namely that the obstruction (2) does not vanish, and the second one
would be to show that it make sense to consider actions generated
by f , g with ρ( f ) and ρ(g) simult. Diophantine, i.e. that there exist
such actions without elements with Diophantine rotation number.

The former problem we discuss later, we first mention the resolu-
tion of the latter:

Theorem 4 (Moser). For τ > 2 (and in fact for τ = 2 as well, which was
proved by Masser), there exists a set of cardinality of continuum of vectors
(α, β) ∈ R2 which are simultaneously Diophantine with constants C and
τ, but such that all ratios j0+j1α+j2β

l0+l1α+l2β are Liouville where (j0, j1, j2), (l1, l2, l3) ∈
Z3
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Remark 8. For τ < 1 there are no such vectors as described in The-
orem above. This follows from Khinchine’s transference principle.
And for 1 ≤ τ < 2 it is still an open problem whether such vectors
exist.

1.4.2. Local result for Zk actions on T.

Theorem 5. Let (α, β) be simult. Diophantine with constants C and τ.
Then there exist neighborhoods Uα of Rα and Uβ of Rβ such that any pair of
commuting f and g such that ( f , g) ∈ Uα × Uβ ∩ F∞

(α,β) there exists a C∞

diffeomorphism which conjugates both f and g to rotations.

From the above heuristics and the proof of rank-one counterpart,
Theorem 2, it is clear that the proof of Theorem 2 goes through here
verbatim, modulo Lemma 2. As we remarked after the statement
of Theorem 2, it suffices to obtain an approximate solution to the
linearized problem instead of an actual one, i.e. it is enough to obtain
a solution which would satisfy an estimate (i) in Lemma 3. If this is
done, and this approximate solution to linear problem (1.19) satisfies
(i), (ii) and (iii) of Lemma 3, then the proof of Theorem 2 applies here
as well and gives the conjugacy required here.

The main problem with solving (approximately) the linear prob-
lem in rank-two is the existence of additional assumptions. In fact
obstruction (2) merely states that f̃ and g̃ generate a cocycle over the
linear action < Rα, Rβ >. However, this is only approximately true,
with error of order of ε2. Namely from commutativity assumption
on f and g we have:

‖Lα g̃− Lβ f̃ ‖0 ≤ ‖g̃‖1‖ f̃ ‖0 + ‖g̃‖0‖ f̃ ‖1

Main part of the proof is to show that g̃ and f̃ can be approximated
by g̃0 and f̃0 to the order of ε2 (or so...) so that for g̃0 and f̃0 the
obstruction (2) vanish, i.e. so that g̃0 and f̃0 generate a cocycle over
the action < Rα, Rβ >.

Denote by K : ( f̃ , g̃) 7→ Lα g̃ − Lβ f̃ then we are trying to split a
pair ( f̃ , g̃) into one part which is in the image of L (and in the kernel
of K) and the other part which is in the preimage of K( f̃ , g̃), and
whose size is comparable to that of K( f̃ , g̃). I other words we are
trying to find two tame maps L∗ : ( f̃ , g̃) 7→ L∗( f̃ , g̃) ∈ C∞(T) and
K∗ : K( f̃ , g̃) 7→ K∗K( f̃ , g̃) ∈ C∞(T)2 in such a way that

LL∗ + K∗K = I

.
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Moser resolved this issue by constructing formal adjoints K∗ and
L∗ of K and L and then he showed that LL∗ + K∗K = M is a tame
bijection with a tame inverse.

Then LL∗M−1 + K∗KM−1 = Id. Now approximate solution to
our linear problem for ( f̃ , g̃) can be defined as h̃ = L∗M−1(St f̃ , St g̃)
and K∗KM−1(St f̃ , St g̃) is proved to have a C0 norm bounded by
Ctσ max{‖ f̃ ‖0, ‖g̃‖0}, max{‖ f̃ ‖1, ‖g̃‖1}. After this, Lemma 3 applies,
along with the rest of the proof of Theorem 2.

Before we outline this proof we give some definitions.

Definition 2. Map F : C∞(R) → C∞(R) is tame if there exists fixed
numbers σ > 0 and C > 0 such that for all r ≥ 0:

‖F‖r ≤ C‖F‖r+σ

Definition 3. An exact sequence of maps L : A → B, K : B → C
(KL = 0) splits if there exist maps K∗ : C → B and L∗ : B → C such
that LL∗ + K∗K = IdB. Then L∗ and K∗ is called a splitting for this
exact sequence.

Lemma 4. There exist tame operators L∗, K∗, M and M−1 such that
LL∗M−1 + K∗KM−1 = IdC∞

0 (T)2 , where C∞
0 (T) denotes the space of C∞

functions of average 0.

Proof: During the course of the proof we swich to notation (α1, α2)
instead of (α, β) for simultaneously Diophantine numbers on the
statement of the Theorem 5.

Definitions of L∗ and K∗
Let Liv = v(x + αi)− v(x), and let L∗i v = v(x− αi)− v(x)
Let L∗(w1, w2) = L∗1w1 + L∗2w2.

Let K(w1, w2) =
(

0 L1w2 − L2w1
L2w1 − L1w2 0

)
Let K∗(

(
z11 z21
z21 z22

)
= (L∗1z11 + L∗2z21, L∗1z12 + L∗2z22)

Finally, let M(w1, w2) = (LL∗ + K∗K)(w1, w2). Using the fact that
Li and L∗j commute, M is reduced to: M(w1, w2) = (Mw1, Mw2),
where M = L1L∗1 + L∗2 L2. It is very simple to show that all the op-
erators defined above are tame. in fact, no regularity is lost after
application of any one of those operators defined above.

M is a bijection and it has a tame inverse M−1 on C∞(T) . To
show this, look at M, namely

w = Mv = 4v(x)− v(x− α1)− v(x + α1)− v(x− α2)− v(x + α2) = φ
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Now by using Fourier expansions for w and v, the Fourier coeffi-
cients of w are:

ŵn = v̂n(4− 2 cos 2πnα1 − 2 cos 2πnα2)

Since we assume (α1, α2) ∈ SDC(C, τ), we have: |4− 2 cos 2πnα1 −
2 cos 2πnα2| ≥ |4(sinπnα1)2 + 4(sinπnα2)2| ≥ max ‖nα1‖2, ‖nα2‖2 ≥
C|n|−2τ, it follows that

‖v‖r ≤ Cr‖w‖r+σ

where σ = 2τ + 2.
�

Lemma 5. Let (α, β) ∈ SDC(τ, C), let f̃ , g̃ ∈ C∞(T, R) such that f ◦
g = g ◦ f where f = Rα + f̃ and G = Rβ + g̃. Then there exists h̃ such
that:

(1.20) ‖(Lαh̃, Lβh̃)− (St f̃ − [ f̃ ], St g̃− [g̃])‖0 ≤ Ctσ‖ f̃ , g̃‖0‖ f̃ , g̃‖1

and

(1.21) ‖h̃‖r ≤ Crtσ‖ f̃ ‖r

for all r ≥ 0 and σ > 2 + 2τ.

Proof: To shorten the notation, we denote St f̃ − [ f̃ ] by St f̃0 and
St g̃− [g̃] by St g̃0 By applying Lemma 4 to (St f̃0, St g̃0) we have:

LL∗M−1(St f̃0, St g̃0) + K∗KM−1(St f̃0, St g̃0) = (St f̃0, St g̃0)

So we can define
h̃ := L∗M−1(St f̃0, St g̃0)

Then
‖h̃‖r ≤ Cr‖St f̃ , St g̃‖r+σ ≤ Crtσ‖ f̃ , g̃‖r

Now to check the main inequality, since K∗ is tame with no loss of
regularity, L∗i and Lk commute, and St( f ◦ Rα) = (St f ) ◦ Rα (smooth-
ing operators can be chosen so that they are translation invariant [6],
[?]):
(1.22)
‖Lh̃− (St f̃0, St g̃0)‖0 = ‖K∗KM−1(St f̃0, St g̃0)‖0 ≤ ‖K(M−1(St f̃0), M−1(St g̃0))‖0

≤ C‖M−1StK12( f̃0, g̃0)‖0 ≤ C‖StK( f̃0, g̃0)‖σ ≤ Ctσ‖K( f̃0, g̃0)‖0

≤ Ctσ‖ f̃ , g̃‖0‖ f̃ , g̃‖1

�
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1.4.3. Global result for Zk actions on T.

Theorem 6. If (α1, α2) ∈ SDC(τ, C) then any commuting pair ( f , g) ∈
F∞
(α,β)(T) is simultaneously and smoothly conjugated to (Rα, Rβ).

2. TORAL AUTOMORPHISMS

2.1. Set-up, basic facts and some heuristics. We consider a Z2 ac-
tion by automorphisms of TN. This action is defined by a map α :
Z2 → SL(N, Z) , and for α(n)(x) we will sometimes use a notation
α(n, x). Let us call the generating matrices A and B and denote this
action also by α :< FA, FB >, or sometimes simply as α :< A, B >
keepinf in mind that it takes place on the torus.

First, it is possible that such an action factors to an action which
is essentially generated by a single diffeomorphism. Namely, an ac-
tion α′ : Z2 ×TN′ → TN′ is an algebraic factor of α if there exists an
epimorphism h : TN → TN′ such that h ◦ α = α′ ◦ h.

An action α′ is a rank-one factor if it is an algebraic factor and if
ρα′(Zk) contains a cyclic subgroup of finite index.

If it so happens that α has a rank-one factor than we cannot expect
to have rigidity. Single toral automorphism, if hyperbolic, is struc-
turally stable but its eigenvalues serve as moduli of smooth conju-
gacy. If a single toral automorphism is partially hyperbolic, then it is
not even structurally stable.

However, if we assume that α is such that every non-trivial element
of α is ergodic then α has no non-trivial rank-one factors. This fact
was explicitely proved by Starkov [7] but was well known before
his proof came about. The proof exploits the fact that ergodicity for
toral automorphisms just means that the corresponding matrix has
no eigenvalues which are roots of unity.

Proposition 3. (exercise) Let A be a matrix in SL(N, Z) and let FA de-
note the corresponding map on TN. The following are equivalent:
(1) FA is ergodic
(2) A has no eigenvalues which are roots of unity
(3) There are no finite orbits for the dual action of A
(4) FA is mixing

Thus from now on we assume that the action α :< A, B >, AB =
BA, is such that for any (k, l) ∈ Z2 \ 0 we have that AkBl is ergodic.

Now assume that we have another Z2 action α̃ which is C∞ and
close to α in some, say Cl toplogy. In other words (after passing to the
lifts) we consider a Z2 action by diffeomorphisms of TN, generated
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by two commuting maps A + RA and B + RB such that RA, RB ∼
ε << 1 in some Cl norm. As for Anosov actions, the question is
whether this action α̃ is smoothly conjugated to α providing ε is suf-
ficiently small i.e. whether there exists a C∞ map H = Id + Ω of TN

so that

(2.1)
H ◦ A = (A + RA) ◦ H
H ◦ B = (B + RA) ◦ H

This is our non-linear problem. As before we linearize it and ask two
questions:

Q1: What are the obstructions to solving the linear problem?
Q2: Assuming that the obstructions vanish, how well can we solve

the linear problem?
If answers to either one of these questions are not within reach

than we have no chance of applying the iteration scheme similar to
that applied for circular rotations. If we can answer these questions
than we can hope to be able to get into the iteration process at least.

The linear problem is:

(2.2)
AΩ−Ω ◦ A = RA

BΩ−Ω ◦ B = RB

After choosing appropriate coordinates (and assuming for the mo-
ment that A and B have no non-trivial Jordan blocks), the equations
above simplify to pairs of equations of the kind:

(2.3)
Lλ,A(ω) := λθ − θ ◦ A = θ

Lµ,B(ω) := µθ − θ ◦ B = ψ

where λ and µ are corresponding eigenvalues of A and B, so they
ar not roots of unity, and θ and ψ are C∞ functions on TN.

Then one obstruction is easy to notice. If there is a solution ω, then
Obstructions-2: Lλ,A(ψ)− Lµ,B(θ) = 0
Since λ and µ are not 1, there are no other obvious obstructions

(such as average).
Now we address the second question. Assume we do not have the

obstruction above, i.e assume that indeed Lλ,A(ψ) = Lµ,B(θ). Then
the question is how to construct a solution.

For a single equation λω−ω ◦ A = θ we can look at the dual prob-
lem and get λω̂n − ω̂A∗n = θ̂n. By iterating forward (or backward)
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we get

ω̂
+

(−)
n = +

(−) ∑
i≥0

(i≤−1)

λ−(i+1)θ̂Ain, n 6= 0.

Each sum converges absolutely since θ is C∞ and all non-zero inte-
ger vectors have non-trivial projections to expanding and contract-
ing subspaces for A due to the ergodicity assumption on A.

Clearly, if solution ω exists, the two sums, positive and negative,
ought to be the same. In other words we should have that

∑
λ,A

θ̂n := ∑
i∈Z

λ−(i+1)θ̂Ain = 0, n ∈ ZN \ 0

So it seems that there are in fact infinitely many obstructions in the
dual space to solving each one of the equations in (2.2).

However, if we assume that (Obstruction-3) vanishes, then all of
these obstructions for single equations vanish as well (Lemma 6).
Once the obstructions for single equations vanish, the equations can
be solved with good estimates. This is the content of the subsequent
section.

After that we will describe how to get rid of small obstructions and
at the end we sketch a proof of local rigidity for higher rank ergodic
actions by toral automorphisms.

2.2. Cocycle rigidity.

Lemma 6. If K(ψ, θ) = Lλ,A(ψ)− Lµ,B(θ) = 0, for C∞ functions ψ and
θ, then the obstructions to solving equations:

(2.4)
Lλ,A(ω) = θ

Lµ,B(ω) = ψ

vanish.

Proof:

(2.5) K(θ, ψ) = Lµ,Bθ − Lλ,Aψ = 0

After passing to to the dual action this implies:

(2.6)

∑
µ,B

(Lµ,Bθ̂n) = ∑
µ,B

(Lλ,Aψ̂n)

∑
λ,A

(Lλ,Aψ̂n) = ∑
λ,A

(Lµ,Bθ̂n)
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Consider now the first equation above. Since all the sums involved
converge absolutely we have

Lµ,B ∑
µ,B

θ̂n = 0

which implies

∑
µ,B

(Lλ,Aψ̂n) = 0

This implies that the obstruction for ψ is not only multiplied by µ
under the action of B, but is also multiplied by λ under the action of
A, i.e. λ ∑µ,B ψ̂n = ∑µ,B ψ̂An. By iterating this equation we obtain:

λk ∑
µ,B

ψ̂n = ∑
µB

ψ̂Akn,

for every k ∈ Z. Therefore

(2.7) ∑
k∈Z

λk ∑
µ,B

ψ̂n = ∑
k∈Z

∑
µB

ψ̂Akn

The series in the left hand side of (2.7) does not converge unless
∑µB ψ̂n = 0 while the right hand side of (2.7) converges absolutely
by Lemma 9 b). Therefore ∑µB ψ̂n = 0, ∀n 6= 0. Similarly ∑µA θ̂n =
0, ∀n 6= 0. �

Now we consider a single equation: λω − ω ◦ A = φ, we assume
that the obstructions for φ vanish and ask how we can solve for ω.
This is done in Lemma 8. However, before we state this and prove
it, we state the following fact which is very useful:

Lemma 7. (Katznelson, [5]) Let A be an N × N matrix with integer
coefficients. Assume that RN splits as RN = V ⊕V′ with V, V′ invariant
under A and such that A|V and A|V′ have no common eigenvalues. If V ∩
ZN = {0} then there exists a constant γ such that d(n, V) ≥ γ‖n‖−N

for all n ∈ ZN where ‖ · ‖ is Euclidean norm and d is Euclidean distance.

Remark 9. This can be viewed as a version of the Liouville’s the-
orem about rational approximation of algebraic irrationals, i.e.|α −
m
n | ≥ Cn−N for any non-zero integers m and n, where α is an ir-
rational first order root of an integer polynomial of degree N. The
proof of this classical result inspires the proof of Lemma 7 in [5]
which we repeat here since it gives some insight on arithmetic vs.
dynamical properties of toral automorphisms.
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Proof: Any polynomial p sufficiently close to the minimal poly-
nomial f of A on V satisfies the condition p(A)n 6= 0 for all n ∈
ZN, n 6= 0 because its null space is contained in V and V ∩ZN = {0}
by assumption. Then one can construct a polynomial fQ with ratio-
nal coefficients of that kind, and since A is an integer matrix we have
‖ fQ(A)n‖ > 1

q (the choice is made as |aj − rj/q| ≤ 1
qQ , where aj are

coefficients of f , rj/q coefficients of fQ and q ≤ Qk) for any non-zero
n. Now if nV is the projection of n to V then:

fQ(A)n = fQ(A)(n− nV) + ( fQ(A)− f (A))nV

This implies 1
q ≤ C(d(n, V) + ‖n‖

qQ ). Then by choosing Q = C‖n‖
where C is a constant depending on A, the estimate follows:

d(n, V) >
1

Cq
≥ 1

CQk > C1‖n‖−k > C1‖n‖−N

with C1 being a positive constant depending only on A. �

Remark 10. In particular, if A is ergodic the dual map A∗ on ZN in-
duces a decomposition of RN into expanding, neutral and contract-
ing subspaces. We will denote the expanding subspace by V1(A), the
contracting subspace by V3(A) and the neutral subspace by V2(A).

(2.8) RN = V1(A)⊕V2(A)⊕V3(A)
All three subspaces Vi(A), i = 1, 2, 3 are A-invariant and

(2.9)

‖Aiv‖ ≥ Cρi‖v‖, ρ > 1, i ≥ 0, v ∈ V1(A)

‖Aiv‖ ≥ Cρ−i‖v‖, ρ > 1, i ≤ 0, v ∈ V3(A)

‖Aiv‖ ≥ C(|i|+ 1)−N‖v‖, i ∈ Z, v ∈ V2(A)

In Lemma 7 let V = V3 ⊕V2 from then V ∩ZN = {0}. So Lemma 7
implies for n ∈ ZN:

‖π1(n)‖ ≥ γ‖n‖−N

where π1(n) is the projection of n to V1, the expanding subspace for
A.

Lemma 8. Let θ be a C∞ function on the torus and λ ∈ C, λ 6= 1. Let
A be an integer matrix in GL(N, Z) defining an ergodic automorphism of
TN such that for all non-zero n ∈ ZN the following sums along the dual
orbits are zero i.e.

(2.10)
+∞

∑
i=−∞

λ−(i+1)θ̂Ain = 0
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then the equation:

(2.11) λω−ω ◦ A = θ

has a C∞ solution ω and the following estimate:

(2.12) ‖ω‖a−δ ≤
Ca

δν
‖θ‖a

holds for δ > 0, ν = aN + 1 and a >
| log |λ||

log ρ . Here ρ > 1 is the expansion
rate for A from (2.9). Thus for r ≥ 0:

(2.13) ‖ω‖Cr ≤ Cr‖θ‖Cr+σ

where σ is an integer greater than max{N + 1, | lg |λ||lg ρ }.

Proof: Suppose ω is a C∞ solution to the and let ω̂n and θ̂n denote
Fourier coefficients of ω and θ. Then the equation λω − ω ◦ A = θ
in the dual space has the form:

λω̂n − ω̂An = θ̂n, ∀n ∈ ZN

For n = 0, since λ 6= 1, we can immediately calculate ω̂0 = θ̂0
λ−1 . For

n 6= 0 the dual equation has two solutions

ω̂
+

(−)
n = +

(−) ∑
i≥0

(i≤−1)

λ−(i+1)θ̂Ain, n 6= 0.

Each sum converges absolutely since θ is C∞ and all non-zero inte-
ger vectors have non-trivial projections to expanding and contract-
ing subspaces for A due to the ergodicity assumption on A. By as-

sumption ∑λ,A θ̂n = 0 , ∀n 6= 0 i.e. ω̂+
n = ω̂−n

def= ω̂n. This gives a
formal solution ω = ∑ ω̂+

n en = ∑ ω̂−n en. We estimate each ω̂n using
both of its forms in order to show that ω is C∞.

If n is mostly contracting, i.e. if n↪→3(A) use the ω̂−n form for the
solution to obtain the following bound on n-th Fourier coefficient:

|ω̂n| =
∣∣∣∣∣∑k≤0

λ−(k+1)θ̂Akn

∣∣∣∣∣ ≤ ∑
k≤0
|λ|−(k+1)|θ̂Akn| ≤ ‖θ‖a ∑

k≤0
|λ|−(k+1)|Akn|−a

≤ ‖θ‖a ∑
k≤0
|λ|−(k+1)‖Akπ3(n)‖−a ≤ ‖θ‖aC−a ∑

k≤0
|λ|−(k+1)ρak‖π3(n)‖−a

≤ Ca‖θ‖a|n|
−a

where a >
log |λ|
log ρ .
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Similarly, if n↪→1(A), using the form ω̂n = ω̂+
n , the estimate |ω̂n| ≤

Ca‖θ‖a|n|
−a holds, if a >

log |λ|−1

log ρ .
If n↪→2(A) and |λ| ≥ 1 using the form ω̂+

n of the solution it follows
that:

(2.14)

|ω̂n| ≤ ‖θ‖a ∑
k≥0
|λ|−(k+1)|Akn|−a

≤ ‖θ‖aC−a ∑
k≥0
|λ|−(k+1)(1 + k)Nα‖π2(n)‖−a

However, the above sum need not converge. This is where we use
again the fact that A is ergodic. Namely, no integer vector can stay
mostly in the neutral direction for too long. After the time which is
approximately lg |n| the expanding direction takes over. The precise
statement of this fact is Lemma 7. Namely, from Lemma 7 it follows
that ‖π1(n)‖ ≥ γ|n|−N for some γ and all n. Therefore

|Akn| ≥ ‖Akπ1(n)‖ ≥ Cρk‖π1(n)‖ ≥ γCρk|n|−N ≥ γCρk−k0 |n|

for k ≥ k0 and ko = [ (1+N) log |n|
log ρ ] + 1. This fact can be used to estimate

most terms of the series in (2.14), that is, all but finitely many terms.
For the rest the polynomial estimate in (2.9) for vectors in V2 holds.
Hence:

|ω̂n| ≤ ‖θ‖a

k0−1

∑
k=0
|λ|−(k+1)|k|Na‖π2(n)‖−a + C‖θ‖a

∞

∑
k=k0

|λ|−(k+1)ρ−a(k−k0)|n|−a

Thus using that n↪→2(A) and |λ| > 1 we have:

|ω̂n| ≤ C‖θ‖a|k0|Na+1|n|−a + C‖θ‖a|n|−a

Now by choice of k0, k0 ∼ log |n|. Thus the following estimate holds:

|ω̂n| ≤ Ca(log |n|)Na+1|n|−a‖θ‖a

For |λ| < 1 the same estimate follows using the second form for
ω̂n i.e. the negative sum and the fact that A−1 is also an ergodic
toral automorphism thus going backwards in time the contracting
direction takes over, that is, we use the Lemma 7 for A−1. Therefore
for all n ∈ ZN we have:

|ω̂n| |n|a−δ ≤ Ca

δν
‖θ‖a
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for a >
| log |λ||

log ρ and δ > 0. This implies the estimate (2.12) for ‖ω‖a−δ.
The estimate for Cr norms follows immediately using the norm com-
parison from Section ??. In particular if θ is C∞, ω is also C∞. �

It is clear that from the above two statements we get a corollary:

Corollary 2. If K(ψ, θ) = Lλ,A(ψ)− Lµ,B(θ) = 0, for C∞ functions ψ
and θ, then equations:

(2.15) Lλ,A(ω) = θLµ,B(ω) = ψ

have a common C∞ solution which also satisfies the estimate:

(2.16) ‖ω‖Cr ≤ Cr‖θ, ψ‖Cr+σ

(2.17)

2.3. Orbit growth for the dual action. In this Section the crucial es-
timates for the exponential growth along individual orbits of the
dual action are obtained. They may be viewed as a generalization
of Lemma 7 to higher rank actions by toral automorphisms.

The existence of such estimates in case of Zd actions with d ≥
2 relies fundamentally on the higher rank assumption i.e. on the
ergodicity of all non-trivial elements of the action.

Lemma 9. Let α be a Z2 action by automorphisms of TN such that all
non-trivial elements of the action are ergodic. Then there exist constants
τ > 0 and C > 0 depending on the action only, such that:

a) For every integer vector n ∈ ZN and for all k ∈ Z2:

|αkn| ≥ C exp{τ‖k‖}|n|−N

b) For any C∞ function ϕ on the torus, any non-zero n ∈ ZN and any
vector y ∈ R2 the following sums

SK(ϕ, n) = ∑
k∈K

yk ϕ̂αkn,

where yk def= ∏2
i=1 yki

i , converge absolutely for any K ⊂ Z2.
c) Assume in addition to the above that for an n ∈ ZN and for every

k ∈ K = K(n) ⊂ Z2 we have P(‖k‖)|αkn| ≥ |n| where P is a polynomial
of degree N. Then:

(2.18) |SK(ϕ, n)| ≤ Ca,y‖ϕ‖a|n|−a+κy,α

for any a > κy,α
def= N+1

τ ∑2
i=1 | log |yi||.
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d) If the assumptions of c) are satisfied for every n ∈ ZN then the func-
tion

S(ϕ) def= ∑
n∈ZN

SK(n)(ϕ, n)en

is a C∞ function if ϕ is. Moreover, the following norm comparison holds:

(2.19) ‖S(ϕ)‖Cr ≤ Cr,y‖ϕ‖Cr+σ

for r > 0 and any σ > N + 2 + [κy,α].

Proof: Proof of a).
we first notice that it is enough to obtain the constant τ and to

show the exponential estimate in a) in the semisimple case i.e. when
the action is generated by matrices A1, A2 which are simultaneously
diagonalizable over C. If the action is not semisimple, only poly-
nomial growth may occur in addition, thus the same estimate holds
with slightly smaller τ and with possibly larger C (for more deatails
see [?])

Here we give the proof in the case when the action is irreducible
which shows the main idea, but is technically simpler and we refer
to [3] for the proof in the general case.

In the case when the action is irreducible we may project a non-
trivial n ∈ ZN to the Lyapunov directions corresponding to non-zero
Lyapunov exponents of the action. Lyapunov exponents are defined
as:

χi(k) =
2

∑
j=1

k j ln |λij|

where k = (k1, k2) ∈ Z2, i = 1, .., r, and λ1j, ..λrj are the eigenvalues
of Aj for j = 1, 2. Individual Lyapunov directions are irrational and
due to the irreducibility assumption each of the projections of the
vector n to the Lyapunov directions is non-trivial. Thus one may
apply the Katznelson lemma to each of these projections and choose
τ as the minimum of the function max χi(t) for t on the unit sphere
in R2. This minimum has to be positive.

Indeed, if the minimum was non-positive, it would have to be zero
since ∑i χi(t) = 0 for all t. This implies that, since t is not zero,
all Lyapunov lines coincide. In other words, all non-zero Lyapunov
exponents are proportional. Thus, if the action has non-trivial neu-
tral direction, it would have to contain elements which have all Lya-
punov exponents zero, and this is only possible for integer matrices
if all the eigenvalues are roots of unity which contradicts the ergod-
icity assumption. Therefore the neutral direction is trivial, and in all
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the other directions Lyapunov exponents are proportional, so this is
in fact a rankone action, generated by a single toral automorphism.
Therefore, τ is strictly positive.

Thus using the following norm:

‖αkn‖χ =
r

∑
i=1
‖ni‖ exp χi(k)

where ni are projections of n to the corresponding Lyapunov direc-
tions, and the Katznelson’s Lemma, we obtain the needed estimate

|αkn| ≥ C‖αkn‖χ ≥ C exp{τ‖k‖}min
i
‖ni‖ ≥ C exp{τ‖k‖}‖n‖−N.

The statements b)-d) are left as an exercise.
�

2.4. Approximating almost a cocycle by a cocycle. Notation: Given
a complex number λ and a function ϕ on the torus, define the twisted
coboundary operators:

∆λ
A ϕ

def= λϕ− ϕ ◦ A(2.20)

∆λ
A ϕ̂n

def= λϕ̂n − ϕ̂An,(2.21)

In what follows λ will usually be an eigenvalue of A, and µ will
usually denote an eigenvalue of B, so we will often use the following
simpler notation:

∆λ def= ∆λ
A, ∆µ def= ∆µ

B

∆λ ϕ̂n
def= ∆λ

A ϕ̂n, ∆µ ϕ̂n
def= ∆µ

B ϕ̂n

Lemma 10. Let θ, ψ, ϕ be C∞ functions such that L(θ, ψ) = ∆µθ −
∆λψ = ϕ, then it is possible to split θ and ψ as

θ = Pθ − Eθ

ψ = Pψ + Eψ

so that L(Pθ,Pψ) = 0, L(Eθ, Eψ) = ϕ and the following estimates hold:

(2.22) ‖Eθ, Eψ‖Cr ≤ C‖ϕ‖Cr+σ

for any r > 0 and any σ > M̃λ,µ and

(2.23) ‖Pθ,Pψ‖Cr ≤ C‖θ, ψ‖Cr+σ
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for any r > 0 and any σ > Ṁλ,µ. As λ and µ are eigenvalues of A and
B, constants M̃λ,µ and Ṁλ,µ depend only on A, B and the dimension of the
torus and are precisely defined below (see (??) and (2.35)).

Proof: (i) Construction of Pθ,Pψ, Eθ and Eψ.

Let ω
def= ∑ ω̂nen where

ω̂n
def=


∑

+

B
ψ̂n, n↪→1, 2(B)

−∑
–

B
ψ̂n, n↪→3(B)

for n ∈ ZN \ {0} and ω̂0 = (µ− 1)−1ψ̂0.
Let

(2.24) Pψ
def= ∆µω = µω−ω ◦ B

Call n minimal and denote it by nmin if n is the lowest point on its
B-orbit in the sense that n↪→3(B) and Bn↪→1, 2(B) (for the definition
of ”↪→” see Section ??). There is one such minimal point on each

non-trivial dual B-orbit. Now let Eψ
def= ∑ Êψnen where

(2.25) Êψn
def=

{
µ ∑

B
ψ̂n, n = nmin

0, otherwise

for n 6= 0 and Êψ0
def= 0. Then it is easy to check that

ψ = Pψ + Eψ

In part (ii) and (iii) bellow we will show that both Pψ and Eψ are
smooth functions such that Pψ is of the order of ψ and Eψ is the
order of ϕ.

Let us define Pθ as:

(2.26) Pθ
def= ∆λω

Then it is easy to see that L(Pθ,Pψ) = 0 since operators ∆λ and
∆µ commute due to the commutativity of the generators A and B.
Therefore by defining Eθ as:

(2.27) Eθ
def= θ −Pθ

we obtain L(Eθ, Eψ) = ϕ i.e.

(2.28) ∆µEθ = ∆λEψ + ϕ

Since operators ∆µ and ∆λ are bounded, if Eψ is proved to be
smooth with norm comparable to some norm of ϕ, then by Lemma
8 the same holds true for Eθ as a solution of the equation (2.28) (The
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operator ∆µ is injective on C∞ whenever µ 6= 1. This fact is contained
in the proof of the Lemma ?? and is a consequence of the ergodicity
of B).

(ii) Estimates for Eψ and Eθ.

To estimate Eψ we need to bound ∑
B
ψ̂n in case n↪→3(B) and

Bn↪→1, 2(B) with respect to ϕ. Since ∆µθ = ∆λψ + ϕ, the obstruc-
tions for ∆λψ + ϕ with respect to B vanish, therefore:

∆λ ∑
B
ψ̂n = −∑

B
ϕ̂n

Iterating this equation with respect to A we obtain:

∑
B
ψ̂n + λ−l lim

l→∞
∑

B
λ−lψ̂Aln = −

l

∑
i=0

∑
B

ϕ̂Ain

From Lemma 9 b) the limit above is 0. By iterating backwards and
applying the same reasoning, we obtain:

(2.29) ∑
B
ψ̂n = ∑

–

A
∑

B
ϕ̂n = −∑

+

A
∑

B
ϕ̂n

In the notation of Lemma 9 c), (2.29) implies that for n ∈ ZN which
is minimal on its B orbit, we have:

Êψn = SH+(ϕ, n) = −SH−(ϕ, n)

where H+ is the set of lattice points (l, k) in Z2 with positive l, and
H− the set of points with negative l. Then according to Lemma 9 d),
the needed estimate for Eψ with respect to ϕ follows if in at least one
of the half-spaces H− and H+ the dual action satisfies some polyno-
mial lower bound for every n = nmin.

In case Bn↪→2(B) for all l and all k we obviously have:

(2.30) |AlBkn| ≥ C|l|−N|k|−N|n|
thus the polynomial estimate needed for the application of part c) of
Lemma 9 is satisfied both in H+ and H− for such n.

However in the other case i.e. when Bn↪→1(B) the same estimate
holds either in H+ or in H−. This follows from the fact that in this
case ( n↪→3(B) and Bn↪→1(B)), n is substantially large both in the
expanding and in the contracting direction for B.

To see this we let ni1 and ni3 be (large) projections of n to some
expanding and contracting Lyapunov subspaces Vi1 and Vi2 for B
with Lyapunov exponents χi1 and χi2 , respectively, i.e. let

‖ni1‖ ≥ C|n| and ‖ni3‖ ≥ C|n|
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where C is some fixed positive number. Then (assuming for the mo-
ment that α is semisimple) this implies:

(2.31)
|AlBkn| ≥ C

r

∑
i=1

exp χi(l, k)‖ni‖

≥C(exp χi1(l, k) + exp χi3(l, k))|n|
Now we notice that the union H of half-spaces {(l, k) : χi1(l, k) ≥ 0}
and {(l, k) : χi3(l, k) ≥ 0} covers either H+ or H−. Namely, for any

k ∈ Z, (l, k) is in H if l(
log |λi1

|
log |µi1

| −
log |λi3 |
log |µi3 |

) ≥ 0 and this is true for l ≥ 0

or for l ≤ 0 depending on the sgn(
log |λi1

|
log |µi1

| −
log |λi3 |
log |µi3 |

). Here λi3 , λi1

and µi3 , µi1 are corresponding eigenvalues of A and B, respectively.
Therefore, from (2.31) we obtain

|AlBkn| ≥ C|n|
in H+ or in H− if α is semisimple. If α is not semisimple then it
decomposes a product of its semisimple and its unipotent part. For
the semisimple part we use the estimate above and in the unipotent
part only a polynomial growth may occur. This implies that (2.30)
holds in H+ or in H− for a general (non-semisimple) α.

Now choose the half-space in which the estimate (2.30) holds, that
is choose one of the sums SH+(ϕ, n) or SH−(ϕ, n). then the assump-
tions of d) in Lemma 9 are satisfied for one of the sums above SH+ or
SH− and therefore the estimate for Eψ follows:

(2.32) ‖Eψ‖a−δ−κ(λ,µ),α
≤ Ca

δν
‖ϕ‖a

for any a > κ(λ,µ),α and any δ > 0, where

(2.33) κ(λ,µ),α
def=

N + 1
τ

(| log |µ||+ | log |λ||)

Here, τ = τ(A, B) > 0 is the constant chosen as in the Lemma 9 a)
As we mentioned in part (i), by construction we have ∆µEθ =

∆λEψ + ϕ. This by using Lemma 8 implies the following estimate
for Eθ with respect to ϕ:

(2.34) ‖Eθ‖a−δ−κ(λ,µ),α
≤ Ca

δν
‖ϕ‖a

for any a > κ(λ,µ),α and any δ > 0. This implies the Cr estimate (2.22)
for Eψ and Eθ with the loss σ > M̃λ,µ, where

(2.35) M̃λ,µ
def= N + 2 + [κ(λ,µ),α]
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where κ(λ,µ),α is defined in (2.33).
�

2.5. Linearization. Let α be a linear action as described in Theo-
rem ??. Let α̃ be its small perturbation (the topology in which the
perturbation is made will become apparent from the proof). The
goal is to prove the existence of a C∞ map H : TN → TN such that
α̃ ◦ H = H ◦ α.

One can consider the problem of finding a conjugacy as a problem
of solving the following non-linear functional equation:

N (α̃,H) def= α̃ ◦ H −H ◦ α = 0

Following the ideas of the elementary Newton method and assum-
ing the existence of a linear structure in the neighborhood of the id,
the id may be viewed as an approximate solution of the non-linear
problem. The linearization of the operator N at (α, id) is:

N (α̃, H) = N (α, id) + D1N (α, id)(α̃− α)
+ D2N (α, id)(Ω) + Res(α̃− α, Ω)
= α̃− α + α(Ω)−Ω ◦ α + Res(α̃− α, Ω)

where Ω = H − id, and Res(α̃ − α, Ω) is quadratically small with
respect to α̃− α and Ω. If one finds H so that the linear part of the
equation above is zero, i.e.:

α(H − id)− (H − id) ◦ α = −(α̃− α)

then such H is a better approximate solution of the equationN (α̃,H) =
0 than the id is. After obtaining a better solution, the linearization
procedure and solving the linearized equation may be repeated for
the new perturbation leading to an even better approximation. The
difficulties which arise in particular applications of this iterative scheme
are of two kinds: one is to solve, or solve approximately the lin-
earized equation, and the other has to do with obtaining good esti-
mates for the solution so that the sequence of approximate solutions
produced by this scheeme converges in some reasonable function
space.

We now adapt this general scheme to our specific problem con-
cerning toral automorphisms. Any map of the torus TN into itself
can be lifted to the universal cover RN. For every g ∈ Zk, the lift
of α(g) is a linear map of RN i.e. a matrix with integer entries and
with determinant±1, which is also denoted by α(g) . The lift of α̃(g)
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is α(g) + R(g) where R(g) is an N−periodic map for every g, i.e.
R(g)(x + m) = R(g)(x) for m ∈ ZN. The lift of H is id + with an
N−periodic Ω.

In terms of Ω the conjugacy equation is:

(2.36) αΩ−Ω ◦ α = −R ◦ (id + )

If Ω is a solution for the corresponding linearized equation

(2.37) αΩ−Ω ◦ α = −R

or at least its approximate solution i.e. if it solves (2.37) with an error
which is small with respect to R, then one may expect that the new
perturbation defined by:

α̃(1) def= H−1 ◦ α̃ ◦ H

is much closer to α than α̃ i.e. the new error

R(1) def= α̃(1) − α

is expected to be small with respect to the old error R.
Also, if common solution to 2.37 exists, then :

(2.38) L(RA, RB) def= (RA ◦ B− BRB)− (RB ◦ A− ARB) = 0,

In terms of R this condition is saying that R is a twisted cocycle over
the Z2 action on TN generated by A and B.

The key step is to show that if R is almost a twisted cocycle over α
then R is close to an actual twisted cocycle over α. In other words, we
construct a projection PR of R to the space of twisted cocycles over
α so that the difference ER = PR− R is small with respect to R.

After this the rest of the proof goes along the same lines as the
proof of Moser’s theorem, including the smoothing.

3. GENERAL OUTLINE FOR APPLYING THE ITERATION SCHEME TO
GROUP ACTIONS
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