
MEASURE THEORY THROUGH DYNAMICAL EYES

ANATOLE KATOK AND VAUGHN CLIMENHAGA

These notes are a somewhat embellished version of two rather informal evening
review sessions given by the first author on July 14 and 15 2008 at the Będlewo
summer school ( see http://www.math.psu.edu/katok_a/Bedlewo/school.html ),
which provide a brief overview of some of the basics of measure theory and its
applications to dynamics which are foundational to the various courses at this
school.

Most results are quoted without proof, or with at most a bare sketch of a proof;
references are given where full proofs may be found. Similarly, most basic definitions
are assumed to be known, and we defer their reiteration to the references.

In light of the above, we emphasise that this presentation is not meant to be ei-
ther comprehensive or self-contained; the reader is assumed to have some knowledge
of the basic concepts of measure theory, ergodic theory, and hyperbolic dynamics,
which will appear without any formal introduction. The tone is meant to be con-
versational rather than authoritative, and the goal is to make accessible various
concepts which should eventually be examined thoroughly in the appropriate ref-
erences.

For a full presentation of the concepts in §1, which concerns abstract measure
theory, we refer the reader to Halmos’ book [Ha] (for more basic facts) and to
Rokhlin’s article [Ro1]. The topics in measurable dynamics mentioned in §2 receive
a more complete treatment in a later article by Rokhlin [Ro2], and the account in
§3 of the relationship between foliations and measures in smooth dynamics draws
on Barreira and Pesin’s book [BP], along with two articles by Ledrappier and
Young [LY1, LY2].

The second author would like to thank Andrey Gogolev and Misha Guysinsky
for providing useful references and comments.

1. Abstract Measure Theory

1.1. Points, sets, and functions. There are three “lenses” through which we can
view measure theory; we may think of it in terms of points, in terms of sets, or in
terms of functions. To put that a little more concretely, suppose we have a triple
(X,B, µ) comprising a measurable space, a σ-algebra, and a measure. Then we may
focus our attention either on the space X (and concern ourselves with points), or
on the σ-algebra B (and concern ourselves with sets), or on the space L2(X,B, µ)
(and concern ourselves with functions).

All three points of view play an important role in dynamics, but for the time
being we will focus on the first two, and on the correspondence between partitions
(of the space X) and σ-algebras (we will consider sub-σ-algebras A ⊂ B).

First let us consider the set of all partitions of X . This is a partially ordered
set, with ordering given by refinement; given two partitions ξ, η, we say that ξ is a
refinement of η, written ξ ≥ η, iff every C ∈ ξ is contained in some D ∈ η. In this
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case, we also say that η is a coarsening of ξ. The finest partition (which in this
notation may be thought of as the “largest”) is the partition into points, denoted ε,
while the coarsest (the “smallest”) is the trivial partition {X}, denoted ν.

As on any partially ordered set, we have a notion of join and meet, corresponding
to least upper bound and greatest lower bound, respectively. Following [Ro2], we
shall refer to these as the product and intersection, and we briefly recall their
definitions. Given two partitions ξ and η, their product (join) is

(1.1) ξ ∨ η := {C ∩ D | C ∈ ξ, D ∈ η }

This is the coarsest partition which refines both ξ and η, and is also sometimes
referred to as the joint partition. The intersection (meet) of ξ and η is the finest
partition which coarsens both ξ and η, and is denoted ξ ∧ η; in general, there is no
analogue of (1.1) for ξ ∧ η.

So much for partitions; what do these have to do with σ-algebras?1 Suppose
we partition our space X into some finite number of subsets C1, . . . , Cn—denote
this partition by ξ1. Then we may consider the σ-algebra which consists of all
measurable sets (elements of B) which are unions of none, some, or all of the Ci—
denote this σ-algebra by B1. If all the sets Ci are measurable, then B1 will contain
2n sets.

Carry this a step further, and partition each Ci into Ci,1, . . . , Ci,ki
. Then we

obtain another, larger σ-algebra B2 whose elements are unions of none, some, or all
of the Ci,j . Iterating this procedure, we have a sequence of partitions

(1.2) ξ1 < ξ2 < · · ·

each of which is a refinement of the previous partitions, and a sequence of σ-algebras

(1.3) B1 ⊂ B2 ⊂ · · ·

The idea here is the same as that involved in constructing the σ-algebra of Lebesgue
sets on [0, 1] by using intervals, but without the extraneous geometric information
which enters in that case.

In this picture, what do individual points of X correspond to? Provided we do
our refining intelligently, each point will be represented by a “funnel”

(1.4) Ci1 ⊃ Ci1,i2 ⊃ Ci1,i2,i3 ⊃ · · ·

of decreasing subsets within the sequence of partitions. A useful image to keep in
mind here is the standard picture of the construction of a Cantor set, in which the
unit interval is first divided into two pieces, then four, then eight, and so on—these
“cylinders” (to use the terminology arising from symbolic dynamics) are the various
sets denoted by Ci, Ci,j , etc. in (1.4).

1.2. Lebesgue spaces. In a state of affairs which Tolkein would surely render
quite poetically,2 there is in some sense one master σ-algebra, to which all others
(or at least the “nice” ones) are isomorphic.3

1Note that the set of σ-algebras A ⊂ B carries a partial ordering as well, coming from the
partial ordering by containment on the power set of B.

2Particularly if we were to adopt a slightly different line of exposition and consider σ-rings

instead of σ-algebras.
3We should really be speaking of measured σ-algebras, since we consider not just the σ-algebra,

but the measure it carries. This will be implicit in our discussion throughout this section.
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What do we mean by this? Perhaps the simplest imaginable class of measure
spaces is the collection of atomic spaces, for which X is a finite or countable set, B is
the entire power set of X , and µ is defined by the sequence of numbers µ(xi), xi ∈ X .

The canonical example of a measure space which is not quite so trivial is the
interval [0, 1] with Lebesgue measure; the σ-algebra of Lebesgue sets is the “master”
example referred to above.

Under what conditions is a σ-algebra isomorphic to the Lebesgue sets on the
interval? Put another way, what are the invariants of σ-algebras? Of course the
number of atoms4 and the weight they carry is one invariant; are there any others?

There turns out to be just one. We may introduce a pseudo-metric on the σ-
algebra B by the formula

dµ(A, B) = µ(A △ B)

where A△B denotes the symmetric difference (A∪B) \ (A∩B). If we pass to the
quotient space of B by the equivalence relation of having measure zero symmetric
difference, this is a true metric space; we say that the σ-algebra is separable if this
metric space is separable. That is, B is separable iff there exists a countable set
{An}n∈N which is dense in B with the dµ pseudo-metric. This allows us to state
the main classification result for σ-algebras:

Theorem 1.1. A separable σ-algebra with no atoms is isomorphic to the σ-algebra
of Lebesgue sets on the unit interval.

Proof. See [Ha, Section 41, Theorem C] �

As it stands, this is a classification result for the σ-algebra B, not the space X .5

What condition on X will guarantee that it is isomorphic to [0, 1] with Lebesgue
measure?

We need the notion of a basis, which is to generate both the σ-algebra B and
the space X . To this end, consider an increasing sequence ξ1 < ξ2 < · · · of finite
partitions, as in (1.2), which is generating in the following ways:

(1) It generates the σ-algebra B; that is, B is the union of the corresponding
σ-algebras Bn := B(ξn) from (1.3).

(2) It generates the space X ; that is, every “funnel” Ci1 ⊃ Ci1,i2 ⊃ · · · as
in (1.4) has intersection containing at most one point. Equivalently, any
two points x and y are separated by some partition ξn, and so ∨∞

n=1ξn = ε,
the partition into points.

Note that the existence of an increasing sequence of partitions satisfying (1) is
equivalent to separability of the σ-algebra.

Such a generating sequence of partitions is known as a basis—it is convenient to
choose a sequence ξn such that at each stage, each cylinder set C is partitioned into
exactly two smaller sets. This gives a one-to-one correspondence between sequences
in Σ+

2 := {0, 1}N and “funnels” as in (1.4).

Exercise 1.1. Determine the correspondence between the above definition of a basis
and the definition given in §1.2 of [Ro2].

4An atom is a measurable set A of positive measure such that every subset B has either
µ(B) = 0 or µ(B) = µ(A).

5While we will not discuss the third way of thinking about measures, the L2 spaces, it is worth
comparing Theorem 1.1 to the classification theorem for separable Hilbert spaces. See [Ro2] for
further continuations of this train of thought.
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Since each “funnel” corresponds to some element of B which is either a singleton
or empty, we have associated to each subset of Σ+

2 an element of B, and so µ yields
a measure on Σ+

2 . Thus we have a notion of “almost all funnels”—we say that the
basis is complete if almost every funnel contains exactly one point.6 That is, the
set of funnels whose intersection is empty should be measurable, and should have
measure zero. Equivalently, a basis defines a map from X to Σ+

2 which takes each
point to the “funnel” containing it; the basis is complete if the image of this map
has full measure.

The existence of a complete basis is the final invariant needed to classify “nice”
measure spaces.

Theorem 1.2. If (X,B, µ) is separable, non-atomic, and possesses a complete
basis, then it is isomorphic to Lebesgue measure on the unit interval.

Proof. See [Ro1]. �

Definition 1.3. A separable measure space (X,B, µ) with a complete basis is called
a Lebesgue space.

By Theorem 1.2, every Lebesgue space is isomorphic to the union of unit interval
with at most countably many atoms.

It is also worth noting that any separable measure space admits a completion,
just as is the case for metric spaces. The procedure is quite simple; take a basis
for X which is not complete, and add to X one point corresponding to each empty
“funnel”. Thus we need not concern ourselves with non-complete spaces.

Exercise 1.2. Show that every separable measure space which is not complete is
isomorphic to a set of outer measure one in a Lebesgue space.

Since the measure spaces which arise in conjuction with dynamics are all sepa-
rable, we will from now on restrict our attention to Lebesgue spaces.

1.3. Partitions and σ-algebras. We have seen how to go from a sequence of
partitions to a sequence of σ-algebras, and in general, one can always pass from a
partition ξ to a σ-algebra A ⊂ B by taking for the elements of A precisely those
elements of B which are unions of elements of ξ. We will usually denote this σ-
algebra by B(ξ).

For example, consider the unit square with Lebesgue measure, and take the
partition into vertical lines. To this partition we associate the σ-algebra A whose
elements are direct products of Lebesgue sets on the (horizontal) interval with the
(vertical) interval [0, 1].

The procedure in the reverse direction is somewhat more delicate. How do we
go from a σ-algebra to a partition? Given A, can we reconstruct ξ, at least in some
situations? It turns out that we can; Theorem 1.5 below gives what turns out to
be a sort of one-sided inverse to B(·).

First we need an appropriate notion of equivalence for partitions and σ-algebras.

Definition 1.4. Two sets E, F ∈ B are equivalent mod zero if dµ(E, F ) = µ(E △
F ) = 0, and we write E ⊜ F .

Two partitions ξ, η of X are equivalent mod zero if there exists a set E ⊂ X of
full measure such that

η = {C ∩ E | C ∈ ξ},

6Recall that there is also a notion of completeness for σ-algebras, distinct from this one.
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and we write ξ ⊜ η.
Two σ-algebras A,A′ ⊂ B are equivalent mod zero if they have the same

completion—that is, if given any set E ∈ B, we have E ⊜ A for some A ∈ A
iff we also have E ⊜ A′ for some A′ ∈ A′. In this case we also write A ⊜ A′.

For simplicity, from now on we will consider sets, partitions, and σ-algebras
only up to equivalence mod zero (in particular, we will not distinguish between a
σ-algebra and its completion), and we will write = in place of ⊜.

Theorem 1.5. Given a Lebesgue space (X,B, µ) and a sub-σ-algebra A ⊂ B, there
exists a partition ξ of X into measurable sets such that A and B(ξ) are equivalent
mod zero. ξ is unique up to equivalence mod zero, and we will denote it by Ξ(A).

Proof. Since the measure space is separable, we may take a generating system of
partitions for the σ-algebra A; that is, ξ1 < ξ2 < · · · such that the associated
σ-algebras B(ξn) exhaust A (i.e. A = ∪nB(ξn)), and consider the partition of X
into “funnels”. Thus our desired partition is obtained as ξ = ∨∞

n=1ξn.
The proof of uniqueness is left as an exercise. �

Note that the construction in the proof mirrors the definition of a basis, but
requires only that the system of partitions generates the σ-algebra A, and not
necessarily the space X , so some funnels may contain more than one point—in
fact, some must contain more than one point unless Ξ(A) = ε.

1.4. Measurable partitions. We now have a natural way to go from a partition
ξ to a σ-algebra B(ξ) ⊂ B, and from a σ-algebra A ⊂ B to a partition Ξ(A).

The definition of Ξ(·) in Theorem 1.5 guarantees that it is a one-sided inverse to
B(·), in the sense that B(Ξ(A)) = A for any σ-algebra A (up to equivalence mod
zero). So we may ask if the same holds for partitions; is it true that ξ and Ξ(B(ξ))
are equivalent in some sense?

We see that since each set in Ξ(B(ξ)) is measurable, we should at least demand
that ξ not contain any non-measurable sets. For example, consider the partition
ξ = {A, B}, where A ∩ B = ∅, A ∪ B = X , then if A is measurable (and hence B
as well), we have

B(ξ) = {∅, A, B, X}

and Ξ(B(ξ)) = {A, B}, while if A is non-measurable, we have

B(ξ) = {∅, X}

and so Ξ(B(ξ)) = ν. Thus a “good” partition should only contain measurable sets;
it turns out, however, that this is not sufficient, and that there are examples where
Ξ(B(ξ)) is not equivalent mod zero to ξ, even though every set in ξ is measurable.

Example 1.6. Consider the torus T
2 with Lebesgue measure λ, and let ξ be the

partition into orbits of a linear flow φt with irrational slope α; that is, φt(x, y) =
(x + t, y + tα). In order to determine B(ξ), we must determine which measurable
sets are unions of orbits of φt; that is, which measurable sets are invariant. Because
this flow is ergodic with respect to λ, any such set must have measure 0 or 1, and
so up to sets of measure zero, B(ξ) is the trivial σ-algebra! It follows that Ξ(B(ξ))
is the trivial partition ν = {T

2}.
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Definition 1.7. The partition Ξ(B(ξ)) is known as the measurable hull of ξ, and
will be denoted by H(ξ). If ξ is equivalent mod zero to its measurable hull, we say
that it is a measurable partition.

In particular (foreshadowing the next section), let O be the partition into orbits
of some dynamical system, then H(O) is also known as the ergodic decomposition
of that system, and is denoted by E .7

It is obvious that in general, the measurable hull of ξ is a coarsening of ξ, and
the definition says that if ξ is non-measurable, this is a proper coarsening.8

Exercise 1.3. Show that the measurable hull H(ξ) is the finest measurable partition
which coarsens ξ—in particular, if η is any partition with

ξ ≤ η < H(ξ),

then H(η) = H(ξ), and hence η is non-measurable.

B gives a map from the class of all partitions to the class of all σ-algebras, and
Ξ gives a map in the opposite direction, which is the one-sided inverse of B. We
see that the set of measurable partitions is just the image of the map Ξ, on which
H acts as the identity, and B and Ξ are two-sided inverses.

Thus we have a correspondence between measurable partitions and σ-algebras—
one may easily verify that the operations ∨ and ∧ on measurable partitions corre-
spond directly to the operations ∪ and ∩ on σ-algebras, and that the relations ≤
and ≥ correspond directly to the relations ⊂ and ⊃.

Example 1.6 shows that the orbit partition for an irrational toral flow is non-
measurable. This phenomenon is widespread in dynamical systems—for example,
the orbit partition O for any ergodic system with more than one orbit will exhibit
the same behaviour; we will see in §3 that the partition into unstable foliations is
non-measurable whenever entropy is positive.

Aside from finite or countable partitions into measurable sets (which are obvi-
ously measurable), a good example of a measurable partition is given by the square
[0, 1]× [0, 1] with Lebesgue measure λ, and the partition into vertical lines:

(1.5) ξ0 = { {x} × [0, 1] | x ∈ [0, 1] }

In fact, this is in some sense the only measurable partition, just as [0, 1] is, up to
isomorphism, the only Lebesgue space.

Theorem 1.8. Given a measurable partition ξ of a Lebesgue space (X,B, µ), there
exists a set E ⊂ X such that

(1) Each element of ξ|E has positive measure (and hence there are at most
countably many such elements).

(2) ξ|X\E is isomorphic to the partition of the unit square with Lebesgue mea-
sure into vertical lines given in (1.5).

Proof. See [Ro1]. �

7It should be noted that because we have not yet talked about conditional measures, one may
rightly ask just what about this decomposition is ergodic.

8Compare this with the action of the Legendre transform on functions—taking the double
Legendre transform of any function returns its convex hull, which lies on or below the original
function, with equality iff the original function was convex.
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Theorem 1.8 proves to be quite useful in dealing with measurable partitions;
however, it is quite unwieldy to have to resort to the definition every time we
want to know if a particular partition is measurable. We would like some alternate
characterisations, which may be easier to check in various situations.

One such characterisation may be motivated by recalling that in the “toy” exam-
ple of a partition into two subsets, the corresponding σ-algebra had four elements
in the measurable case, and only two in the non-measurable case. In some sense,
measurability of the partition corresponds to increased “richness” in the σ-algebra.
This is made precise as follows:

Theorem 1.9. Let ξ a partition of a Lebesgue space (X,B, µ). ξ is measurable
iff there exists a countable set {An}n∈N ⊂ B(ξ) such that for almost every pair
C1, C2 ∈ ξ, we can find some An which separates them in the sense that C1 ⊂ An,
C2 ⊂ X \ An.

Sketch of proof. The key observation is the fact that such a set {An}n∈N corre-
sponds to a refining sequence of partitions (1.2) defined by

ηk = {Ak, X \ Ak}

ξn =

n
∨

k=1

ηk �

Exercise 1.4. Complete the proof of Theorem 1.9.

It may not necessarily be immediately clear just what is meant by “almost every
pair C1, C2”; before addressing this point, we state another sufficient criterion for
measurability of a partition which follows from this one.

Theorem 1.10. Let X be a complete metric space, µ a Borel measure on X, Y a
second countable topological space, and φ : X → Y a Borel map (that is, preimages
of Borel sets9 are Borel). Then the partition

φ−1(εY ) = {φ−1(y) | y ∈ Y }

called the partition into preimages, is measurable.

Proof. . �

Returning to the statement of Theorem 1.9, recall that the natural projection
π : X → X/ξ takes x ∈ X to the unique partition element C ∈ ξ containing x. Thus
the space of equivalence classes X/ξ carries a measure which is the pushforward of
µ under π—given a measurable set E ⊂ X/ξ, we see that

µ∗(E) = µ(π−1(E))

This gives a meaning to the notion of “almost every” partition element, and hence
to “almost every pair” of partition elements. Another way to parse the statement
is to see that we may remove some set E of zero measure from X and pass to the
“trimmed-down” partition ξ|X\E , for which the statement holds for every C1, C2.

Example 1.11. Let C ⊂ [0, 1] be the usual ternary Cantor set, which has Lebesgue
measure 0 but contains uncountably many points. Then there is a bijection from
C to [0, 1] \ C, and so we may take a partition ξ of [0, 1], all of whose elements

9Recall that the Borel σ-algebra is the minimal σ-algebra containing the open sets.
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contain exactly two points, one in C and one not in C. Using the characterisation
in Theorem 1.9, we see that ξ is measurable, since we may take for our countable
collection the set of intervals with rational endpoints. Further, this partition is
equivalent mod zero to the partition into points.

The situation described in Example 1.11, where a partition is in some sense
finer than it appears to be, happens all the time in ergodic theory. A fundamental
example is the so-called Fubini’s nightmare, in which a partition which seems to
divide the space into curves in fact admits a set of full measure intersecting each
partition element exactly once, and hence is equivalent mod zero to the partition
into points.

This sort of behaviour stands in stark contrast to absolute continuity—but in
order to make any sense of that notion, we must first discuss conditional measures.

1.5. Conditional measures on measurable partitions. If a partition element
C carries positive measure (which can only be true of countably many elements),
then we can define a conditional measure on C by the obvious method; given E ⊂ C,
the conditional measure of E is

(1.6) µC(E) :=
µ(E)

µ(C)

However, for many partitions arising in the study of dynamical systems, such as
the partitions into stable and unstable manifolds which will be introduced later,
we would also like to be able to define a conditional measure on partition elements
of zero measure, and to do so in a way which allows us to reconstruct the original
measure.

The model to keep in mind is the canonical example of a measurable partition,
the square partitioned into vertical lines. Then denoting by λ, λ1, and λ2 the
Lebesgue measures on the square, the horizontal unit interval, and vertical intervals,
respectively, Fubini’s theorem says that for any integrable f : [0, 1]2 → R we have

(1.7)

∫

[0,1]2
f(x, y) dλ(x, y) =

∫

[0,1]

∫

[0,1]

f(x, y) dλ2(y) dλ1(x)

By Theorem 1.8, any measurable partition of a Lebesgue space is isomorphic to
the standard example—perhaps with a few elements of positive measure hanging
about, but these will not cause any trouble, as we already know how to define
conditional measures on them. Taking the pullback of the Lebesgue measures λ1

and λ2 under this isomorphism, we obtain a factor measure µ∗ on X/ξ, which
corresponds to the horizontal unit interval (the set of partition elements), and a
family of conditional measures {µC}C∈ξ, which correspond to the vertical unit
intervals.

Note that the factor measure is exactly the measure on the space of partition
elements which was described in the last section. Note also that although the
measure λ2 was the same for each vertical line (up to a horizontal translation), we
can make no such statement about the measures µC . The key property of these
measures is that for any integrable function f : X → R, the function

(1.8) ξ 7→

∫

ξ

f dµC
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is a measurable function on X/ξ, and we have

(1.9)

∫

X

f dµ =

∫

X/ξ

∫

ξ

f dµC dµ∗

Each µC is “supported” on C in the sense that µC(C) = 1, but the reader is
cautioned that the measure theoretic support of a measure is a different beast than
the topological support of a measure, as the following example illustrates.

Example 1.12. Let A ⊂ [0, 1] be such that both it and its complement intersect
every interval in a set of positive measure.10 Let λ1 be one-dimensional Lebesgue
measure, and define a measure µ on the unit square by

µ(E) = λ1(E ∩ A × {0}) + λ1(E ∩ ([0, 1] \ A) × {1})

Then the topological support of µ is the union of the two lines, [0, 1] × {0, 1}, and
intersects each partition element in two points, but the conditional measures are
δ-measure supported on a single point.

We cannot in general write a simple formula for the conditional measures, as
we could in the case where partition elements carried positive weight, so on what
grounds do we say that these conditional measures exist? We have already alluded
to one proof, which relies on the characterisation of measurable partitions given
by Theorem 1.8—this is presented in Viana’s notes [Vi], which draw on Rokhlin’s
paper [Ro1]. There are other proofs available, such as Furstenberg’s [Fu], which
uses methods from functional analysis made available by defining a topology on X
in which all partition elements are closed, which has the effect of enlarging the class
of continuous functions.

1.6. Measure classes and absolute continuity. Given a measurable space (X,B),
consider the set M of all measures on X . This set has various internal structures
which may be of importance to us; for the time being, we focus our attention on the
fact, guaranteed by the Radon-Nikodym Theorem, that measures come in classes.
This theorem addresses the relationship between two measures ν and µ, and al-
lows us to pass from a qualitative statement to a quantitative one; namely, if ν is
absolutely continuous with respect to µ,11 then there exists a measurable function
dν/dµ, known as the Radon-Nikodym derivative, which has the property that

ν(E) =

∫

E

dν

dµ
(x) dµ(x)

for any E ∈ B.12

Given a reference measure µ and any other measure ν, we also have the Radon-
Nikodym decomposition of ν; that is, we may write ν = ν1 + ν2, where ν1 ≪ µ
and ν2 ⊥ µ (the latter means that there exists A ∈ B such that ν2(A) = 1 and
µ(A) = 0).

The notion of absolute continuity plays an important role in smooth dynamics,
where we have a reference measure class given by the smooth structure of the

10Such a set can be constructed, for instance, by repeatedly removing and replacing appropriate
Cantor sets of positive measure.

11This means that if µ(E) = 0, then ν(E) = 0 as well, a state of affairs which is denoted
ν ≪ µ.

12As an aside, note that if we change the σ-algebra B, then we also change the Radon-Nikodym
derivative, a fact which is crucial to the proof of the Birkhoff Ergodic Theorem in [KH].
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manifold in question, and are often particularly interested in measures which are
absolutely continuous with respect to this measure class.

Given a partition ξ, we may also speak of ν as being absolutely continuous with
respect to µ on the elements of ξ by passing to the conditional measures νC and
µC and applying the above definitions. This is also an important notion in smooth
dynamics, where it allows us to ask not just if a measure is absolutely continuous
on the manifold as a whole, but if it is absolutely continuous in certain directions,
which correspond to the various rates of expansion and contraction given by the
Lyapunov exponents. In particular, we are often interested in measures which are
absolutely continuous on unstable leaves, so-called SRB measures.

2. Measurable Dynamics

2.1. Partitions of times past and future. One of the key notions in dynamics
is that of invariance—given a dynamical system T : X → X , we are interested in
properties and characterisations of sets, functions, measures, etc. which are invari-
ant under the action of f .

We may consider the property of invariance for partitions as well; we say that
a partition ξ is invariant if T (C) ∈ ξ for every C ∈ ξ, that is, if T maps partition
elements to partition elements. This is written as Tξ = ξ, where

Tξ = {T (C) | C ∈ ξ }.

Given an invariant partition ξ, let π denote the canonical projection X → X/ξ,
as before. Then T induces an action π ◦ T ◦ π−1 on the space of partition elements
X/ξ, and the dynamics of T may be viewed as a sort of skew product over this
action.

In light of the correspondence between measurable partitions and σ-algebras
discussed in the previous section, we may also consider invariant σ-algebras. It is
then natural to ask if there is a natural way to associate to an arbitrary partition
or σ-algebra one which is invariant. One obvious way is to take a σ-algebra A,
and consider the σ-subalgebra A′ ⊂ A which contains all the T -invariant sets in A.
However, there is another important construction, which we now examine.

Let ξ be a finite partition of X into measurable sets, and define

ξT :=
∨

n∈Z

T nξ = lim
n→∞

n
∨

j=−n

T jξ

The elements of this partition are given by ∩n∈ZT nCn, where Cn ∈ ξ. Because each
of the partitions ξ(n) := ∨n

j=−nT jξ have finitely many elements, all measurable,

these partitions themselves are measurable, and we have ξ(n) = Ξ(B(ξ(n))); passing
to the limit, we see that ξT = Ξ(B(ξT )), so ξT is measurable as well.

Exercise 2.1. Show that a partition ξ is measurable iff it is the limit (ξ = ∨∞
n=1ξn)

of an increasing sequence {ξn}n∈N of finite partitions into measurable sets. Further,
show that ξ is measurable is the ξn are any measurable partitions, and also that the
limit (ξ = ∧∞

n=1ξn) of a decreasing sequence of measurable partitions is measurable.

It follows immediately from the construction of ξT that it is an invariant parti-
tion, whose σ-algebra is very different from the invariant σ-algebra described above.
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Example 2.1. Let A be the 0-1 matrix

A =









1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1









and consider the space

X = ΣA := { (xn)n∈Z ∈ {0, 1, 2, 3}Z | Axnxn+1
= 1 ∀n ∈ Z }

Let T be the shift σ : (xn)n∈Z 7→ (xn+1)n∈Z; this is a simple example of a non-
transitive subshift of finite type. Equip X with the Bernoulli measure µ which
gives each n-cylinder weight (1/4)n.

Geometrically, X may be thought of as the disjoint union of two copies of Σ2,
each of which is the direct product of two Cantor sets C (representing the one-sided
shift space Σ+

2 ), and is invariant under f . In this picture, T acts on each copy of
C × C ⊂ [0, 1] × [0, 1] as follows; draw a vertical line down the middle of the unit
square, take each of the resulting rectangles, contract it in the vertical direction by
a factor of two, expand it in the horizontal direction by the same factor, and then
stack the resulting rectangles one on top of the other.

Now let ξ be the partition of X into one-cylinders; that is, ξ = {C0, C1, C2, C3},
where

Ci := { (xn)n∈Z ∈ ΣA | x0 = i }

Each one-cylinder Ci corresponds to one of the four vertical rectangles in the above
description, and the reader may verify that in this case, ξT is the partition into
points.

Another important partition, which is not necessarily invariant, is

ξ− :=

−∞
∨

n=−1

T nξ

It is useful to think of the various partitions related to ξ as encoding certain types
of information, and to describe what we know about the point x and its trajectory
under the action of T if we know which element of these partitions it lies in.

If we know which element of ξT a point x lies in, when we know which element of
ξ all its iterates, both forward and backward, lie in. In this sense, ξT corresponds
to both the infinite past and the infinite future; ξ−, by contrast, corresponds to
just the infinite past, since points whose forward iterates lie in different elements
of ξ may still lie in the same element of ξ−.

This last statement is just another way of saying that ξ− is not necessarily
invariant under the action of T ; indeed, we have

Tξ− = ξ ∨ ξ− ≥ ξ−

that is, ξ− is an increasing partition.13

Example 2.2. Let X , T , and ξ be as in Example 2.1; then the elements of ξ− are
the sets

C(x) = { y ∈ ΣA | yn = xn ∀n ≤ 0 }

13Note that ξ− is increasing in the sense that it is refined by its image; for this to be the
case, each individual element must decrease in size. Thus one could conceivably define increasing
partitions as those for which Tξ ≤ |xi, which is the convention followed in [LY1, LY2].
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each of which is a copy of Σ+
2 , and corresponds in the geometric picture to a

horizontal Cantor set

C × {t} ⊂ C × C ⊂ [0, 1] × [0, 1],

where t ∈ C and C is the Cantor set mentioned previously. Note that passing to the
partition Tξ− corresponds to dividing each of these Cantor sets into two identical
pieces.

There are two possibilities for ξ−; either Tξ− = ξ−, and ξ− is in fact invariant,
or Tξ− is a proper refinement of ξ−, which is thus not invariant, as in Example 2.2.
In the former case, knowledge of the infinite past gives us knowledge of the infinite
future; in the latter case, this is not so.

2.2. Entropy. What is the difference between the two cases just discussed, between
the case Tξ− = ξ− and the case Tξ− > ξ−? The key word here is entropy; recall
that the entropy of a transformation T with respect to a partition ξ is defined as

(2.1) hµ(T, ξ) := lim
n→∞

1

n
H(

n
∨

k=0

−1T−kξ).

Exercise 2.2. Show that if ξ− is invariant, then ξ has zero entropy, hµ(T, ξ) = 0,
whereas if Tξ− is a proper refinement of ξ−, then the partition carries positive
entropy, hµ(T, ξ) > 0.

The notion of entropy is intimately connected with one more partition canoni-
cally associated with ξ, defined as

(2.2) Π(ξ) :=

∞
∧

n=1

T−nξ−

Recall that the intersection ξ ∧ η of two partitions is the finest partition which
coarsens both ξ and η; if the partitions are measurable, then this corresponds to
taking the intersection B(ξ) ∩ B(η) of the σ-algebras.

For the partitions in (2.2), T−(n+1)ξ− ≤ T−nξ− for every n, and so

(2.3)

N
∧

n=1

T−nξ− = T−Nξ−

The partition in (2.3) corresponds to knowing the infinite past but having forgotten
what happened in the most recent N steps. Thinking of (2.2) in the same way, Π(ξ)
may be thought of as having had an infinite amount of time to forget an infinite
history, a characterisation which is somewhat less transparent than the analogous
descriptions of ξT and ξ−.

Exercise 2.3. Let X , T , and ξ be as in Examples 2.1 and 2.2. Verify that Π(ξ) is
the partition {C0 ∪ C1, C2 ∪ C3}, which separates X into two copies of Σ2, each
homeomorphic to a product C × C of two Cantor sets.

Exercise 2.4. Let T : X → X be a measure-preserving transformation of a Lebesgue
space, and let ξ be a measurable partition. Using the results of Exercises 1.3 and 2.1,
show that Π(ξ) is a coarsening of both the partition into orbits O(T ) and the ergodic
decomposition E(T ).

(1) Π(ξ) ≤ O(T );
(2) Π(ξ) ≤ E(T ).
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The three partitions we have constructed from ξ are related as follows:

(2.4) ξT ≥ ξ− ≥ Π(ξ)

The reader may also find it useful to consider the partitions

ξ−(N)
:=

−∞
∨

n=N

T nξ,

which represent knowledge of everything that happened up to time N . Then ξ− =
ξ−(0), while ξT and Π(ξ) may be thought of as the limits of ξ−(N) as N goes to +∞

and −∞, respectively. In light of Exercise 2.1, all three partitions in (2.4) are
measurable; this is important for part (2) of Exercise 2.4.

If h(T, ξ) = 0, then ξ− = ξ−(N) for all N , and all three partitions ξT , ξ−, and

Π(ξ) are equal; there is nothing new under the sun, as it were. In the positive
entropy case, each is a proper refinement of the next, as in Examples 2.1 and 2.2,
and Exercise 2.3. Although all three are measurable, only ξT and Π(ξ) are always
invariant; ξ− is not invariant except in the zero entropy case.

Exercise 2.5. Show that the partition Π(ξ) derived in Exercise 2.3 has zero entropy.

The result of Exercise 2.5 is actually quite general, and we would like to somehow
think of Π(ξ) as the “zero entropy” coarsening of ξ−. Notice that that Π(ξ) may
be a continuous partition, whose elements all have zero measure as in the case of
h(T, ξ) = 0 discussed above. The proper meaning of “zero entropy” here is that for
any finite partition η ≤ Π(ξ) we have hµ(T, η) = 0.

Theorem 2.3. Let η ≤ Π(ξ) be a finite or countable partition with finite entropy.
Then hµ(T, η) = 0.

Proof. See [Ro2]. �

2.3. The Pinsker partition. We may consider the set of all partitions with the
property exhibited by Π(ξ) in Theorem 2.3. This set has an infimum in the partially
ordered set of all partitions; that is, there exists a partition π(T ) which is the finest
(biggest) partition such that every finite partition coarser (smaller) than it has zero
entropy. This is the Pinsker partition, and we may rephrase the above statement
as the fact that a finite partition η has hµ(T, η) = 0 iff η ≤ π(T ).

Equivalently, π(T ) may be defined through its σ-algebra; consider all finite or
countable measurable partitions with zero entropy, and take the union of their asso-
ciated σ-algebras. This union is the Pinsker σ-algebra, whose associated measurable
partition is π(T ).

Even more concretely, we have the following criterion: a set E ∈ B is contained
in the Pinsker σ-algebra iff the partition ξ = {E, X \ E} has hµ(T, ξ) = 0.

The Pinsker partition may be thought of as the canonically defined zero entropy
part of a measure preserving transformation; there are two extreme cases. On the
one hand, we may have π(T ) = ε, the partition into points, in which case every
finite partition is a coarsening of π(T ), and hence has zero entropy. Thus T is a zero
entropy transformation, hµ(T ) = 0. At the other extreme, we may have π(T ) = ν,
the trivial partition {X}, in which case every finite partition has positive entropy,
and we say that T is a K-system.
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2.4. Conditional entropy. At this point we must grapple with the difficulty
hinted at before Example ??. That is, we would like to make sense of the no-
tion of entropy of T relative to a partition for as broad a class of partitions as
possible. The definition (2.1) relies on the following notion of the entropy of a
partition (which is measure-theoretic rather than dynamical):

Hµ(ξ) = −
∑

C∈ξ

µ(C) log µ(C)

This only makes sense when ξ is a finite or countable partition whose elements carry
positive measure; for a continuous partition such as the partitions into stable and
unstable manifolds which will appear in the next section, or the partition of the
unit square into vertical lines which we have already seen, this definition is useless,
since µ(C) = 0 for each individual partition element C.

The way around this impasse is to recall the definition of conditional entropy,
and adapt it to our present situation by making use of a system of conditional
measures, which as we have seen may be defined for a measurable partition even
when individual elements have measure zero.

To this end, recall that given two finite or countable partitions ξ and η, one defi-
nition of the conditional entropy Hµ(ξ|η) is as the expected value of the conditional
information function

(2.5) Iξ,η
µ : x 7→ − logµπη(x)(πξ(x))

where πη and πξ denote the canonical projections taking x to the elements of η and
ξ, respectively, in which it is contained.

The useful feature of (2.5) is that it works for any measurable partitions ξ and
η, including continuous ones—all we need is a system of conditional measures.

We could also avoid the explicit use of the information function and consider the
usual entropy HµC

(ξ|C) on each partition element C ∈ η, then integrate using the
factor measure to obtain Hµ(ξ|η). Provided ξ|C has elements of positive conditional
measure µC , the usual entropy will be well defined, and we are in business.

Exercise 2.6. Let ξ be a finite or countable partition, so that we may apply the
usual definition of entropy, and show that

hµ(T, ξ) = Hµ(Tξ−|ξ−)

Further, show that if ξ is increasing (Tξ ≥ ξ), we have

(2.6) hµ(T, ξ) = Hµ(Tξ|ξ)

Since the right hand side of (2.6) is defined for any measurable increasing par-
tition, and is shown by Exercise 2.6 to agree with the usual definition of entropy
for finite and countable partitions, we may take it as a definition of entropy for an
arbitrary measurable increasing partition.

The key fact connecting these considerations to smooth dynamics is the obser-
vation that if hµ(T ) = 0, then the conditional entropy on each partition element is
0, which in the context of the next section will imply that conditional measures on
stable and unstable leaves must be atomic.

3. Foliations and Measures

3.1. Uniform hyperbolicity—stable and unstable foliations. Consider now
a diffeomorphism f : M → M , where M is a Riemannian manifold. If Λ ⊂ M is a
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hyperbolic set for f , then we are guaranteed the existence of local and global stable
and unstable manifolds at each point x ∈ Λ.

The local manifolds are characterised as containing all points whose orbit con-
verges to that of x under forward or backward iteration, without ever being too far
away:

W s
x,ε =

{

y ∈ M
∣

∣

∣ lim
n→+∞

d(fny, fnx) = 0 and d(fny, fnx) < ε ∀n ≥ 0

}

and similarly for Wu
x,ε, with n → −∞ and n ≤ 0.

The global manifolds are characterised similarly, without the requirement that
the orbits always be close:

W s
x =

{

y ∈ M
∣

∣

∣ lim
n→+∞

d(fny, fnx) = 0

}

For Wu
x , the limit is again taken as n → −∞.

The local manifolds are embedded images of R
k; the global manifolds, however,

are usually only immersed, and have a somewhat strange global topology.14 For
example, they are dense in T

2 for the Anosov diffeomorphism given by the action
of ( 2 1

1 1 ), and hence cannot be embedded images.
The connection with the previous two sections comes when we observe that

given two points x, y ∈ M , either W s
x ∩W s

y = ∅ or W s
x = W s

y , and similarly for the
unstable manifolds. It follows that the global stable manifolds form a partition of
some invariant set X ⊃ Λ; we denote this partition into global stable manifolds by
Π−, and its counterpart, the partition into global unstable manifolds, by Π+.

For the linear toral automorphism mentioned above, these partitions are exactly
the same as the partition into orbits of the irrational linear flow in Example 1.6,
and we saw there that such partitions are non-measurable. In fact, such behaviour
is quite common.

Theorem 3.1. Given a C2 diffeomorphism f : M → M and a hyperbolic set Λ ⊂
M , the following are equivalent:

(1) hµ(f) = 0;
(2) Π− is measurable;
(3) Π+ is measurable.

Sketch of proof. We outline a proof which is due to Sinai in the case of absolutely
continuous µ. and in the general case 15 can be found in [LY2].

Without loss of generality, assume µ is ergodic; we will sketch the construction
of a leaf-subordinated partition.

Definition 3.2 ([BP], Theorem 9.4.1). A leaf-subordinated partition associated
with the global stable manifolds is a measurable partition ξ such that

(1) For µ-a.e. x, the element of ξ containing x is an open subset of W s(x)
(hence in particular, ξ ≥ Π−);

(2) fξ ≥ ξ (ξ is increasing);
(3) ξT = ε;

14Hence the terminology “strange attractor” which we see in conjuction with various dissipative
systems such as the Hénon map.

15In fact, the argument was known as a “folklore” since the sixties but probably had not
appeared inn print before the Ledrappier-Young paper
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(4) Π(ξ) = H(Π−).

The existence of such partitions is Lemma 3.1.1 in [LY1], and Theorem 9.4.1
in [BP] (although the latter deals only with the case where µ is absolutely contin-
uous).

One then proves the following lemma:

Lemma 3.3. For any leaf-subordinated partition ξ associated with the global stable
manifold, we have

hµ(f) = Hµ(fξ|ξ).

Proof. Corollary 5.3 in [LY1]. �

Finally, one must show that Hµ(fξ|ξ) = 0 iff Π− is measurable; the result for
Π+ follows upon considering f−1.

To construct ξ, divide the manifold into rectangles—that is, domains which
exhibit the local product structure of the manifold. More precisely, a rectangle is
a domain X ⊂ M which admits a diffeomorphism φ : X → [0, 1]N such that the
connected component of φ(W s(x)∩X) containing x is given by the set of points in
[0, 1]N whose first N −k coordinates match those of φ(x), and similarly for Wu(x),
with the last k coordinates matching; here N is the dimension of M and k the
dimension of the stable manifolds.16

Such a partition into rectangles may be constructed in a variety of ways—for
example, by using a triangulation of the manifold M . Further, a standard argument
allows us to assume that the boundary of each rectangle has measure zero.

Exercise 3.1. Let {Sr}r>0 denote the family of concentric spheres around the origin
in R

n, and show that for any measure ν, at most countably many of the Sr have
positive measure.

Now consider the partition ξ0 whose elements are connected components of the
stable manifolds W s intersected with a rectangle. This guarantees part of the first
property, that our partition is a refinement of Π−; to obtain an expanding partition,
pass to the further refinement

ξ :=

∞
∨

n=0

f−nξ0

which may be denoted ξ = (ξ0)
− using our earlier notation. Thus ξ satisfies prop-

erty (2).
To see that almost every element of ξ contains a ball in W s, we must be slightly

more careful in our construction of the rectangles, choosing them so that the mea-
sure of an δ-neighbourhood of the boundary decreases exponentially with δ. Using
this fact, and the fact that ξ0 refines Π− so that the size of elements in f−nξ0 grows
exponentially, it is possible to show that typical elements of ξ0 are only cut finitely
many times during the refinement into ξ, which establishes property (1).

Because ξ is a refinement of the partition into stable manifolds, we may bound the
diameter of elements of fnξ from above, and the bound is exponentially decreasing
in n. Thus ξT = ε, the partition into points, so (3) holds, and we obtain (4)
similarly, using the fact that f−1 expands elements of ξ exponentially along the

16Such rectangles are of critical importance in the construction of Markov partitions, a key
tool in relating smooth dynamics to symbolic dynamics.
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leaves W s, and so Π(ξ) := ∧∞
n=0f

−nξ = H(Π−). Thus ξ is the leaf-subordinated
partition we were after.

Now we want to describe the entropy of f in terms of the entropy of ξ; this is
accomplished by Lemma 3.3.

Regarding the proof of this lemma, recall from basic entropy theory that if η
is a finite or countable partition with ηT = ε, then we say that η is a generating
partition, and we have

hµ(T ) = hµ(T, η) = Hµ(Tη|η−) = Hµ(Tη−|η−)

and so the result would follow if ξ0 was finite or countable, since ξ = (ξ0)
−. However,

ξ0 is continuous, so its elements have zero measure, and we cannot use this argument
directly. In the uniformly hyperbolic case, we can simply use the finite partition η
into rectangles, which refines to ξ0 under iterations of f−1. In the general setting
(for in fact versions of this theorem are true beyond the uniformly hyperbolic case),
one needs a more subtle argument, as given in [LY1].

For a finite generating partition η, a basic result from entropy theory says that
Π(η) = πµ(f), the Pinsker partition, and so if η− = ξ, property (4) of a leaf-
subordinated partition guarantees that

H(Π−) = π(f),

that is, that the Pinsker partition is the measurable hull of the partition into global
unstable manifolds. The general result is Theorem B in [LY1] (stated there in terms
of the associated σ-algebras). It follows that Π− is measurable iff it is equivalent
mod zero to the Pinsker partition.

With the lemma in hand, note that hµ(f) = Hµ(fξ|ξ) = 0 iff Hµ(fnξ|ξ) = 0
for any (all) n ≥ 0, and recall that if any element of ξ is split into two elements of
positive measure in fnξ, then information is gained and the conditional entropy is
positive. Since we have an exponential upper bound on the size of elements in fnξ,
we see that if µ is not atomic, then there exists n such that the refinement fnξ ∨ ξ
splits some partition element of positive measure into two (or more) elements of
positive measure, which guarantees Hµ(fnξ|ξ) > 0, and hence hµ(f) > 0.

Thus if hµ(f) = 0, then µ is atomic, with at most one atom in each element of
ξ. In this case, the set of atoms on each leaf W s is discrete, and since a discrete
set gets denser (rarer) under forward (backward) iteration, and the measure µ is
invariant, one can see that each leaf has at most one atom, and so the conditional
measures are in fact δ-measures.17 In particular, taking the union of the supports
of these δ-measures, we have a set of full measure which intersects each leaf exactly
once (the so-called Fubini’s nightmare), and hence Π− is equivalent mod zero to
the point partition ε, which in the zero entropy case is also the Pinsker partition
π(f). Hence hµ(f) = 0 implies that Π− is measurable.

Finally, we must prove the implication in the other direction, that positive en-
tropy implies non-measurability of Π−. Suppose Π− is measurable; then we have a
system of conditional measures on global stable leaves, each of which is finite. The
main idea is to use the assumption of positive entropy to obtain arbitrarily small
bounds on the conditional measure of any element of ξ, which will then show that
all such elements have conditional measure zero, a contradiction since countably
many of them cover the leaf, which has positive measure.

17One must work slightly harder to show that the conditional measure cannot be atomic with
dense support—in this case the idea is to focus on the big atoms.
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Let us make this more explicit: for a given x, let Cn(x) ∈ f−nξ denote the
element of f−nξ containing x, and define functions In by

In(x) = − log µCn+1(x)(Cn(x))

These are conditional information functions, as in 2.5, for which

Hµ(f−(n+1)ξ|f−nξ) =

∫

X

In(x) dµ(x)

For any n, the left hand side is equal to hµ(f, ξ) = hµ(f), and so we see that
hµ(f) =

∫

X In(x) dµ(x). Further, it is apparent that

n−1
∑

k=0

Ik(x) = − log µCn(x)(C0(x))

and that µCn(x) converges weakly to µW s(x), where the latter comes from the
system of conditional probability measures which exists by the assumption that the
partition into global stable leaves is measurable. So to obtain our contradiction, we
need only show that

∑∞
k=0 Ik(x) diverges unless Ik vanishes almost everywhere.

How are the Ik related to each other? Note that given a system µC of condi-
tional measures on elements of f−nξ, the pullback f∗µC is a system of conditional
measures on elements of f−(n+1)ξ, with respect to which we have Ik+1 = Ik. How-
ever, since conditional measures are unique up to a constant, we do in fact have
Ik+1 = Ik, and the result follows. �

As an aside, note that the only property of W s that was used in the proof of
Lemma 3.3 was uniform contraction along its leaves. In general, we could take W to
be any uniformly contracting partition, and we would have a version of the lemma
with equality replaced by the inequality

Hµ(fξ|ξ) ≤ hµ(f)

Taking W to be the foliation in a single stable direction (say a subspace correspond-
ing to a negative Lyapunov exponent), this allows us to speak of the contribution
made by certain directions (or certain Lyapunov exponents) to the entropy.

3.2. Conditional measures on global leaves. The theorem on existence of con-
ditional measures only applies to measurable partitions, and as we have seen, the
partitions into global stable or unstable manifolds are only measurable in the zero
entropy case. Thus we cannot apply the theorem directly; however, by restrict-
ing our attention to a small section of the manifold, a rectangle, we may consider
conditional measures on W s and Wu within that domain.

Of course, we could choose another rectangle, which may overlap the first, and
obtain conditional measures there as well; how will these two sets of conditional
measures relate on the intersection?

The answer is as simple as we could hope for, and is best visualised by considering
two subsets A, B ⊂ X of positive measure with nontrivial intersection. Conditional
measures µA and µB are defined in the obvious way, as the normalised restriction
of µ to the appropriate domain, and it is easy to see that given E ⊂ A∩B, we have

µA(E) =
µ(E)

µ(A)
=

µ(B)

µ(A)

µ(E)

µ(B)
=

µ(B)

µ(A)
µB(E)
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That is, µA and µB are proportional to each other; a similar result holds for con-

ditional measures on stable and unstable manifolds. If µ
(1)
W s(x) and µ

(2)
Ws(x) are two

families of conditional measures on stable manifolds coming from different rectan-
gles, then they are proportional on the intersection of the two rectangles. However,
because the conditional measure on each leaf is normalised, the constant of propor-
tionality may vary from leaf to leaf.

In this way we may define a σ-finite measure on each leaf, by gluing together
conditional measures on rectangles, a procedure that is important for certain con-
structions in rigidity theory.

In principle, we may think of the conditional measure on a leaf W s(x) as being
the result of a limiting process. Having fixed a rectangle, we have a product struc-
ture, and may consider small cylinders C around the leaf, whose cross-sections are
transversal to the leaf. Given a set E ⊂ W s(x), then, we may consider its product
with this transversal cross-section, and approximate µW s(x)(E) by µ(E)/µ(C). We
would like to say that in the limit as the size of the cross-section goes to zero, this
quantity converges to the conditional measure.

The difficulty with this interpretation is that the limit is only guaranteed to exist
on almost every leaf,18 and so it may fail for the particular leaf we are interested
in at a given time. This is a manifestation of the fact that even if µ itself is
rather “nice”, the conditional measures may have very irregular dependence on the
transversal direction.

3.3. Non-uniform hyperbolicity, the Pesin Entropy Formula, and the

Ledrappier-Young Theorem. In the non-uniformly hyperbolic setting, all of
the above results go through more or less unchanged, with the caveat that now
the structure of the foliations is intimately dependent on the measure. We are
only guaranteed existence of W s and Wu at µ-a.e. point, and there are some extra
technical difficulties in construction ξ−, which we shall not get into here.

The word “foliation” must be used guardedly in this setting; here it refers to
a family of immersed manifolds which have continuous transversal dependence on
particular compact subsets (the Pesin sets), on which all estimates are uniform, but
which are not themselves invariant.

Given a diffeomorphism f : M → M and an f -invariant measure µ, the Multi-
plicative Ergodic Theorem of Oseledets guarantees the existence of the Lyapunov
exponents χ1(x) < · · · < χk(x) at almost every point, along with the correspond-
ing subspaces E1(x) ⊂ · · · ⊂ Ek(x) = TxM . These geometric quantities give
infinitesimal rates of expansion and contraction, and are independent of the mea-
sure; however, if µ is ergodic then they are constant a.e., and so we occasionally
speak of the Lyapunov exponents of an ergodic measure.

The following fundamental inequality is due to Margulis and Ruelle:

Theorem 3.4. If f : M → M is a C1 diffeomorphism of a smooth compact Rie-
mannian manifold preserving a Borel probability measure µ, and di(x) = dim(Ei(x))
is the multiplicity of the ith Lyapunov exponent at x, then

(3.1) hµ(f) ≤

∫

X

∑

χi(x)>0

di(x)χi(x) dµ(x)

18Compare this with the statement of the Lebesgue density theorem, that almost every point
is a density point for a given measure.
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Proof. Theorem 10.2.1 in [BP]. �

Pesin gave conditions under which equality holds.

Theorem 3.5 (Pesin Entropy Formula). If in addition to the above hypotheses we
have that f is C1+α and µ is absolutely continuous, then

(3.2) hµ(f) =

∫

X

∑

χi(x)>0

di(x)χi(x) dµ(x)

Proof. Theorem 10.4.1 in [BP]. �

Note that the integral in (3.1) and (3.2) is the exponential rate of volume ex-
pansion in the unstable direction, and may also be written as

∫

X

log |Ju
x f | dµ(x)

where Ju
x := Jx|W u

x
is the Jacobian on the unstable manifold.

The proof of Pesin’s entropy formula relies on the construction of leaf-subordinated
partitions outlined in the proof of Theorem 3.1. The key step is to show that the
conditional measures on Wu are absolutely continuous, which allows one to estab-
lish bounds on the rate at which the volume of elements in the refined partitions
decreases.

In fact, it turns out that no particular regularity of µ in the stable direction is
required for Pesin’s entropy formula to hold, which led Ledrappier and Young to
prove the following:

Theorem 3.6 (Ledrappier-Young). Let f : M → M be a C2 diffeomorphism of a
compact Riemannian manifold M preserving a Borel probability measure µ. Then
µ has absolutely continuous conditional measures on unstable manifolds iff (3.2)
holds.

Proof. Theorem A in [LY1]. �

A measure µ satisfying the conditions of the theorem is called an SRB measure,
after Sinai, Ruelle, and Bowen; despite having absolutely continuous conditional
measures on unstable manifolds, such measures are generally singular on M .

SRB measures may or may not exist for a particular system; however, in the
Anosov case, they always exist, and in fact one obtains two SRB measures, one
corresponding to forward iterations (which is a.c. in the unstable direction), and
one corresponding to backward iterations (which is a.c. in the stable direction).
The two coincide iff they are absolutely continuous on M .

In fact, Ledrappier and Young proved a more general theorem than Theorem 3.6;
in [LY2], they show that (3.2) holds for arbitrary measures µ, when the multiplicities
di(x) are replaced with coefficients δµ

i , which depend on the geometry of µ along
the various foliations corresponding to different Lyapunov exponents, but which
have no explicit dependence on the dynamics.

For the largest Lyapunov exponent, the coefficient δµ
n represents the Hausdorff

dimension of the conditional measures on the corresponding foliation. However,
this does not extend to intermediate exponents, as shown by a counterexample due
to Ruelle and Wilkinson,[RW] for which (3.2) holds, but the conditional measure
in the slow unstable direction is atomic, and so the foliation is singular. A formula
for these coefficients may be found in Theorem 14.1.18 of [BP].
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