Plan

Brin Prize On the work of Artur Avila on Quasi-periodic Schrödinger operators Raphaël KRIKORIAN

October 22nd, 2011

The model Results by Artur Avila Dynamics of the Schrödinger cocycle Sketches of some proofs The global theory of Artur Avila for one-frequency Schrödinger operators

rin Prize On the work of Artur Avila on Qua

October 22nd, 2011 1

Quasi-periodic 1D Schrödinger operator

We shall describe the **impressive** collection of **deep** results obtained by **Artur Avila** on the spectral properties of 1D quasi-periodic Schrödinger operators.

• 1D Schrödinger operator

$$H: l^{2}(\mathbb{Z}) \to l^{2}(\mathbb{Z})$$
$$(u_{n})_{n \in \mathbb{Z}} \mapsto (Hu)_{n \in \mathbb{Z}} := (u_{n+1} + u_{n-1} + V_{n}u_{n})_{n \in \mathbb{Z}}$$

The sequence $(V_n)_{n\in\mathbb{Z}}\in\mathbb{R}^{\mathbb{Z}}$ is called the *potential*.

• Quasi-periodic : means

$$V_n = V(\theta + n\alpha)$$

where $V : \mathbb{R}^d / \mathbb{Z}^d \to \mathbb{R}$ is, say, a continuous map, $\theta \in \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ is *the phase* and $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{T}^d$ is the *frequency vector*.

The model

Quasi-periodic 1D Schrödinger operator

Remarks :

n Prize On the work of Artur Avila on Qu

• We shall mainly concentrate on the case d = 1 (one frequency) and V real analytic.

The mode

- The potential is defined by a dynamics : we say that it is dynamically defined.
- Observe that the potential H_θ depends on the phase θ; we shall denote it by H_θ.

The model

October 22nd, 2011

- In that framework : H_{θ} is a symmetric bounded operator.
- Spectrum of H_{θ} ,

 $\Sigma(H_{\theta}) = Spec(H_{\theta}) := \mathbb{C} \setminus \{E \in \mathbb{C} : (H_{\theta} - E)^{-1} \text{ exists and is continuous} \}$

• It is a compact subset of \mathbb{R} .

Spectral measures

Spectral measures

• $\forall u \in l^2(\mathbb{Z}), \exists \mu_{u,\theta}$ probability measure s.t. $\forall z \in \mathbb{C}, \Im z > 0$

$$\langle (H_{ heta}-z)^{-1}u,u
angle = \int_{\mathbb{R}}rac{d\mu_{u, heta}(t)}{t-z}$$

 μ_u is called the spectral measure associated to u.

- This measures allow Functional Calculus (Spectral Theorem).
- Since H is of Schrödinger type, to understand H_{θ} it is enough to know

$$\mu_{\theta} = (1/2)(\mu_{\delta_0,\theta} + \mu_{\delta_1,\theta})$$

which is called the spectral measure of H_{θ} .

- One has $supp(\mu_{H_{\theta}}) = Spec(H_{\theta})$.
- One defines $Spec_{ac}(H_{\theta})$, $Spec_{sc}(H_{\theta})$, $Spec_{pp}(H_{\theta})$ as the support of the ac, sc, pp part of μ_{θ} .

The model

in Prize On the work of Artur Avila on Qua

October 22nd, 2011 6 / 38

The model

Important facts and concepts

- Since the potential is dynamically defined the spectrum $Spec(H_{\theta})$ does not depend on θ : denote it by Σ .
- The Integrated Density of States (IDS) :
 - This is the θ -independent probability measure

$$N = \int_{\mathbb{T}^d} \mu_{ heta} d heta$$

• If we denote by $(E_{n,i}(\theta))_{-n \le i \le n}$ the eigenvalues (which are all real) of the finite range operator H_{θ}^{n} , then the sequence of measures

$$N_n^{\theta} = \frac{1}{2n+1} \sum_{j=-n}^n \delta_{E_{n,j(\theta)}}$$

converges weakly to N.

• On the other hand, the spectral measures μ_{θ} strongly depend on θ . The model

n Prize On the work of Artur Avila on Qua

October 22nd, 2011

The model

Aim : Understand

- the Spectrum of H_{θ}
- The nature of the spectrum which means whether H_{θ} has some ac, sc, pp component

The model

The model

• The spectral measures μ_{θ} for most/all phases.

rin Prize On the work of Artur Avila on Qua

Though the eigenvalue equation does not always have a solution in $l^2(\mathbb{Z})$ there exist a lot of solutions to this equation with moderate growth.

This is the content of Berezansky's theorem : For μ_{θ} -a.e. $E \in \Sigma(H_{\theta}) = \Sigma$ there exists a solution $(u_k)_{k\in\mathbb{Z}}$ of $H_{\theta}u = Eu$

$$\forall n \in \mathbb{Z}, \ u_{n+1} + u_{n-1} + V(\theta + n\alpha)u_n = Eu_n$$

such that
$$|u_n| = O((1 + |n|)^{1/2 + \epsilon}).$$

Almost Mathieu operator

- A very studied case is when $V(\theta) = 2\lambda \cos(2\pi\theta)$. One then speaks of the Almost-Mathieu Operator.
- λ is called the coupling constant : it determines different regimes.
- In that case we denote the operator by $H_{\lambda,\alpha,\theta}$.
- Aubry-André duality : $(u_k)_{k\in\mathbb{Z}} \in l^2(\mathbb{Z}), f(\varphi) = \sum_{k\in\mathbb{Z}} u_k e^{2\pi i k \varphi}$

$$\begin{split} H_{\lambda,\alpha,\theta} u &= Eu \iff \\ e^{2\pi i\theta} f(\varphi + \alpha) + e^{-2\pi i\theta} f(\varphi - \alpha) + \frac{1}{\lambda} \cos(2\pi\varphi) f(\varphi) = \frac{E}{2\lambda} f(\varphi). \end{split}$$

Ex. of consequence :

$$\Sigma(H_\lambda) = rac{1}{2\lambda} \Sigma(H_{1/\lambda})$$

The mode

n Prize On the work of Artur Avila on Qua

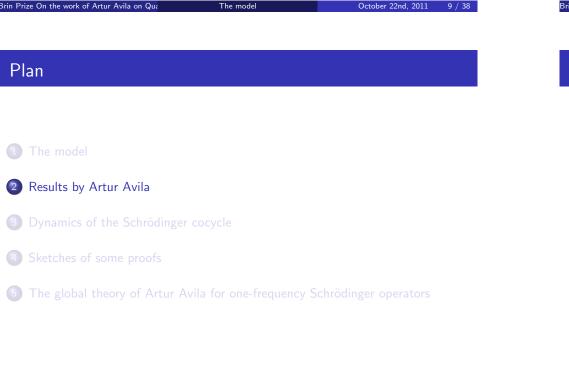
October 22nd, 2011 10/3

Results by Artur Avila

Artur Avila has obtained outstanding results

- on the Almost Mathieu Operator for the
 - Spectrum : measure and Cantor nature;
 - IDS : absolute continuity;
 - Spectral measures : Hölder continuity.
- on the Dynamics of the related Schrödinger cocycle (see below).
- He has developed a theory that shows that the intuition given by the study of the Almost Mathieu Operator is a good guide to study general potentials and at the same time it shows that the Almost-Mathieu potential is very particular.

Results by Artur Avila



Results on the spectrum of the Almost-Mathieu Operator

Theorem (Aubry-André conjecture, Avila-K)

The spectrum of $H_{\lambda,\alpha,\theta}$ has Lebesgue measure $4|1-\lambda|$ for any λ , θ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

Ann. of Maths, 2006

Previous results by Jitomirskaya-Krasovskii ($\lambda \neq 2$) and Last ($\lambda = 1, \alpha$ not CT).

Results by Artur Avila

Pb 5 of Simon's list

Techniques : Kotani theory+Renormalization+KAM

rin Prize On the work of Artur Avila on Qua

October 22nd, 2011

13 / 38

Artur and the Almost Mathieu Operator : the IDS

Results on the IDS of the Almost-Mathieu Operator

Theorem (Avila-Damanik)

For any α , and $|\lambda| \neq 1$ the Integrated Density of States of $H_{\lambda,\alpha,\theta}$ is absolutely continuous.

Invent. Math., 2008. Previous and related results by Jitomirskaya, Goldstein-Schlag.

Theorem (Avila-Jitomirskaya)

For any α in DC, and $\lambda \neq -1, 0, 1$ the Integrated Density of States of the Almost Mathieu operator $H_{\lambda,\alpha,\theta}$ is 1/2-Hölder.

JEMS, 2010

Results on the spectrum of the Almost-Mathieu Operator

Theorem (Ten Martini problem, Avila-Jitomirskaya)

For any α irrational, and $\lambda \neq 0$ the spectrum of the Almost Mathieu operator is a Cantor set.

Ann. of Mahs, 2009 Pb 4 of Simon's list. Previous results by Bellissard-Simon, Sinai, Hellfer-Sjöstrand, Choi-Eliott-Yui, Avron-van Moche-Simon, Last, Puig...

Theorem (Dry Ten Martini problem, Avila-Jitomirskaya)

For any α in DC, and $\lambda \neq -1, 0, 1$ all the gaps of the spectrum of the Almost Mathieu operator predicted by the gap labeling theorem are open.

Results by Artur Avil:

JEMS, 2010

n Prize On the work of Artur Avila on Qua

October 22nd, 2011 14 / 3

Artur and the Almost Mathieu Operator : regularity of spectral measures

Results on the Spectral measures of the Almost-Mathieu Operator

Theorem (Problem 6 of Simon's list, Avila-Damanik)

For any α , $|\lambda| < 1$ and almost every θ , the spectral measures of $H_{\lambda,\alpha,\theta}$ are absolutely continuous.

Theorem (Problem 6 of Simon's list, Avila-Jitomirskaya)

For any α in DC, $0 < |\lambda| < 1$ and all θ the spectral measures of the Almost Mathieu operator $H_{\lambda,\alpha,\theta}$ are absolutely continuous.

Artur and the Almost Mathieu Operator

How to attack these problems? Techniques

- (a) As usual in spectral theory : Harmonic and complex analysis (complexify the energy E).
- (a') Kotani's theory (projective Schrödinger cocycle for complex energies).
- (b) Dynamical techniques : study of Schrödinger cocycles : KAM Theory
- (c) How generalized eigenfunctions given by Berezansky's theorem decay : (Anderson) localization.
- (d) In the case of the Almost Mathieu Operator : Aubry-André duality.

Generally parts (b) and (c) are sensitive to arithmetic conditions : diophantine conditions (in particular on α).

In the case of Almost Mathieu, Point (d) establishes a bridge between (b) and (c).

Results by Artur Avila

rin Prize On the work of Artur Avila on Qua

October 22nd, 2011 17

Dynamics of the Schrödinger cocycle

• Schrödinger cocycle : the map $(\alpha, S_E(\cdot))$:

$$\mathbb{T}^d \times \mathbb{R}^2 \to \mathbb{T}^d \times \mathbb{R}^2 \tag{1}$$

$$(\theta, v) \mapsto \left(\theta + \alpha, \underbrace{\begin{pmatrix} E - V(\theta) & -1 \\ 1 & 0 \end{pmatrix}}_{S_E(\theta)} v \right)$$
 (2)

• Iterates : $(\alpha, S_E(\cdot))^n = (n\alpha, S_E^n(\cdot))$ where $(n \ge 1)$

$S_E^{(n)}(\theta) = S_E(\theta + n\alpha) \cdots S_E(\theta)$

• Berezansky theorem : θ -fixed, μ -ae E there exist generalized eigenfunctions $H_{\theta}u = Eu$; equivalent to

$$\begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = S_E(\theta) \begin{pmatrix} u_n \\ u_{n-1} \end{pmatrix} = S_E^{(n)}(\theta) \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}$$

Plan

1 The model

2 Results by Artur Avila

3 Dynamics of the Schrödinger cocycle

- Links between spectral and dynamical objects
- Reducibility
- Different regimes of the Almost Mathieu

4 Sketches of some proofs

Prize On the work of Artur Avila on Qua

5) The global theory of Artur Avila for one-frequency Schrödinger operators

Dynamics of the Schrödinger cocycle

• Projective cocycle : the map $(\alpha, \hat{S}_F(\cdot))$ $(\mathbb{H} = \{z \in \mathbb{C} : \Im z > 0\})$:

Dynamics of the Schrödinger cocycle

$$\mathbb{T}^d \times \mathbb{H} \to \mathbb{T}^d \times \mathbb{H}$$
(3)

$$(\theta, m) \mapsto \left(\theta + \alpha, \underbrace{E - V(\theta) - \frac{1}{m}}_{\hat{S}_{E}(\theta) \cdot m} \right)$$
 (4)

- Complexification : (α, Ŝ_{E+iϵ}(·)) (ϵ > 0) contracts the Poincaré metric on ℍ ((α, S_{E+iϵ}) is uniformly hyperbolic).
- Gives existence of invariant sections $m^{\pm}_{E+i\epsilon}(\cdot):\mathbb{T}^d \to \mathbb{H}$:

$$\hat{S}_{E+i\epsilon}(\theta) \cdot m_{E+i\epsilon}^{\pm}(\theta) = m_{E+i\epsilon}^{\pm}(\theta + \alpha)$$

such that $\begin{pmatrix} \mp m_{E+i\epsilon}^{\pm}(\cdot) \\ 1 \end{pmatrix} \mathbb{C}$ is the stable/unstable bundle of the uniformly hyperbolic cocycle $(\alpha, S_{E+i\epsilon})$.

October 22nd, 2011

18/3

• The fibered rotation number :

$$\rho(\alpha, S_E) = \lim_{n \to \infty} \frac{\arg(S_n(x, v), v)}{n}$$

• Lyapunov exponent :

n Prize On the work of Artur Avila on Qua

$$LE(\alpha, S_E) = ae - \lim_{n \to \infty} \frac{1}{n} \|S_E^{(n)}(x)\|$$

Dynamics of the Schrödinger cocycle

(if α minimal, otherwise integrate).

Links between the spectral and dynamical objects

SPECTRAL OBJECTS		DYNAMICAL OBJECTS
Hu = Eu	\longleftrightarrow	$S_E \begin{pmatrix} u_n \\ u_{n-1} \end{pmatrix} = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}$
RESOLVENT SET $\mathbb{C} \setminus \Sigma(H)$	\longleftrightarrow	UNIFORM HYPERBOLICITY
$\mathbb{C}\setminus\Sigma(H)$	=	$\{E: (\alpha, S_E)$ Uniformly hyperbolic $\}$
IDS	\longleftrightarrow	ROTATION NUMBER
$N(-\infty, E])$	=	$1-2 ho(lpha,\mathcal{S}_{\mathcal{E}})$
DECAY OF GREEN FUNCTION	\longleftrightarrow	LYAPUNOV EXPONENT
SPECTRAL MEASURES	\longleftrightarrow	<i>m</i> -FUNCTIONS
$\int_{\mathbb{R}} \frac{d\mu_{\theta,0}(t)}{t - (E + i\epsilon)}$	_	$m^+_{E+i\epsilon}(heta)m^{E+i\epsilon}(heta)-1$
$\int_{\mathbb{R}} \overline{t - (E + i\epsilon)}$	_	$\overline{m^+_{E+i\epsilon}(heta)+m^{E+i\epsilon}(heta)}$
THOULESS FORMULA	\longleftrightarrow	COMPLEX ROT. NB. IS HOLOM.
$LE(\alpha, S_E) = \int_{\mathbb{R}} \log t - E dN(E)$		$z\mapsto LE(z)+2\pi i ho(z),\ \Im z>0$

in Prize On the work of Artur Avila on Qua Dynamics of the Schrödinger cocycle

October 22nd, 2011 22 / 38

Links between the spectral and dynamical aspects

 Cocycle (α, S_E) is reducible if conjugated to constant : ∃B : ℝ^d/2ℤ^d → SL(2, ℝ), ∃A₀ ∈ SL(2, ℝ)

$$S_E(\theta) = B(\theta + \alpha)A_0B(\theta)^{-1}.$$

• Almost reducible if $\exists B_n : \mathbb{R}^d/2\mathbb{Z}^d \to SL(2,\mathbb{R}), \exists A_n \in SL(2,\mathbb{R}) \text{ s.t. in}$ the appropriate topology

$$B_n(\theta + \alpha)^{-1}S_E(\theta)B_n(\theta) - A_n \to 0$$

Does not always hold due to possible Non-Uniform Hyperbolicity but when true very useful.

Typical results on reducibility

"Reducibility Theorem" : α diophantine. There exists $\epsilon_0(\alpha)$ such that if $\rho(\alpha, S_E(\cdot))$ is diophantine w.r.t. α and if $||V|| < \epsilon_0$ then $(\alpha, S_E(\cdot))$ is reducible.

"Almost Reducibility Theorem" : There exists ϵ_0 such that if $||V|| < \epsilon_0$ then $(\alpha, S_E(\cdot))$ is almost-reducible.

- Reducibility Theorem : is a theorem due to Eliasson in the analytic category (also true C^k). It is a extension of Dinaburg-Sinai (ε₀ depended on α and ρ).
- The almost reducibility theorem is a theorem due to Eliasson when α is diophantine and in the analytic or smooth category : ε₀ = ε₀(α).
- There are extensions of both theorems when α is any irrational (but then the notion of reducibility has to be changed).
- Non-Uniform Hyperbolicity is a clear obstruction for these theorems to be true.

October 22nd, 2011

SPECTRAL ASPECTS		DYNAMICAL ASPECTS
$\Sigma_{\theta}(\alpha, V)$		$(\alpha, S_E(\cdot))$
AC PART OF Σ	\longleftrightarrow	REDUCIBILITY
PP PART OF Σ	\longleftrightarrow	NON-UNIFORM HYPERBOLICITY
SC PART OF Σ	\longleftrightarrow	?

$$(Hu)_n = u_{n+1} + u_{n-1} + 2\lambda\cos(2\pi n\alpha + \theta)u_n$$

Three regimes

- Subcritical |λ| < 1 : LE(α, S_E) = 0, ac-spectrum, reducibility (most of the time).
- Supercritical $|\lambda| > 1$: $LE(\alpha, S_E) > 0$, pp-spectrum, Non-Uniform Hyperbolicity and Anderson Localization (when dioph. condition).
- Critical $|\lambda| = 1 : LE(\alpha, S_E) = 0$, sc-spectrum.



Sketches of some proofs

Sketch of the proof of the Aubry-André conjecture

- \bullet Otherwise, Σ has positive Lebesgue measure.
- By Bourgain-Jitomirskaya : LE(α, S_{E,λ=1}) = 0 for E in a positive Leb. meas. set.
- By a result of Kotani : for a.e E in that set the cocycle is L^2 -conjugated to an $SO(2, \mathbb{R})$ -valued cocycle.
- This is enough (*via a priori* estimates) to implement a renormalization scheme;
- Allows a global \rightarrow local reduction.
- Then use Eliasson's (KAM) reducibility theorem to reduce to constant case.
- Aubry-André duality implies existence of exponentially decaying eigenfunctions.
- Contradicts $LE(\alpha, S_E) = 0$.

October 22nd, 2011

31 / 38

Sketch of the proof of the Ten Martini Conjecture

- (1) Have to prove that $\boldsymbol{\Sigma}$ cannot contain an interval. Otherwise :
- (2) By an improved version of a theorem of Kotani : (α, S_E) is analytically SO(2, ℝ)-reducible on an interval I.
- (3) This and AA-duality already implies the result when $\beta = 0$.
- (4) This and AA-duality also implies that Anderson Localization ⇒ Cantor spectrum.
- (5) In any case this implies that the IDS is lipschitz w.r.t. $\alpha.$

Now : two different regime

- (a) Diophantine side : by Jitomirskaya's technique localization holds for $\lambda \ge e^{(16/9)\beta}$.
- (b) Liouvillian side : If $e^{-2\beta} < \lambda \leq 1$: point (5) allows to use periodic approximations which are known to give good understanding of the spectrum.

Sketches of some proofs

In any case Cantor spectrum.

Sketch of the proof of the Ten Martini Conjecture

Theorem (Ten Martini problem, Avila-Jitomirskaya)

For any α irrational, and $\lambda \neq 0$ the spectrum of the Almost Mathieu operator is a Cantor set.

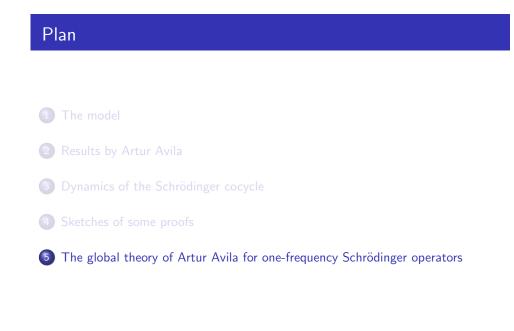
Important quantity $\beta = \limsup_{n \to \infty} \frac{\log q_{n+1}}{q_n}$. Important Theorem : Bourgain-Jitomirskaya theorem : $(\alpha, E) \mapsto LE(\alpha, E)$ is continuous on $(\mathbb{R} \setminus \mathbb{Q}) \times \mathbb{R}$.

Sketches of some proof

rin Prize On the work of Artur Avila on Qua

in Prize On the work of Artur Avila on Qua

October 22nd, 2011 30



32 / 38

The global theory of Artur Avila for one-frequency q.p. Schrödinger operators

Different regimes (analytic case)

Subcritical : Uniform subexponential bound on the growth of
 (α, S_E(z)) for |ℑz| < ε (implies LE(α, S_E(· + is)) = 0 for all |s| < ε).

October 22nd, 2011

- Supercritical : $LE(\alpha, S_E(\cdot) > 0.$
- Critical : otherwise.

Prize On the work of Artur Avila on Qua

Theorem

 $\alpha \in \mathbb{R} \setminus \mathbb{Q}, \, \delta > 0$. The set of (V, E) s.t. E is critical for $H_{\alpha,V}$, is contained in a contable union of codimension one analytic submanifolds of $C^{\omega}_{\delta}(\mathbb{R}/\mathbb{Z}, R) \times \mathbb{R}$.

Conjecture

For a typical operator H, the spectral measures have no singular continuous component.

Brin Prize On the work of Artur Avila on Qua

October 22nd, 2011 34 / 38

Stratified analyticity of the Lyapunov exponent

Definition : If X is a topological space, a stratification of X is a finite or countable strictly decreasing sequence of closed sets $X = X_0 \supset X_1 \supset \cdot$ s.t $\bigcap_i X_i = \emptyset$. $X_i \setminus X_{i+1}$ is the *i*-th stratum of the stratification. If X is a subset of a real analytic manifold and $f : X \rightarrow \mathbb{R}$ a continuous function, we say that f is C^r -stratified if there exists a stratification s.t the restriction of f to each stratum is C^r .

Theorem

 $\alpha \in \mathbb{R} \setminus \mathbb{Q}, V : \mathbb{R}/\mathbb{Z} \to \mathbb{R}$ real analytic. Then the Lyapunov exponent is a C^{ω} -stratified analytic function of the energy !!!!!

Quantization of the acceleration and regularity

- Quantification of the acceleration : the map ε → LE(α, A(· + iε) is piecewise linear with integer slopes.
- Regularity : if ε → LE(α, A(· + iε) is affine for ε in a neighborhood of 0.
- Regularity theorem : if (α, A) is regular and LE(α, A) > 0 then (α, A) is uniformly hyperbolic.

Conjecture

 $LE(\alpha, A) = 0 + regularity \Longrightarrow almost reducibility$

Conjecture proved for

- Almost Mathieu
- Cocycles close to constants
- α exponentially well approximated by rationals ($\limsup \frac{\log q_{n+1}}{q_n} > 0$)

Brin Prize On the work of Artur Avila on Que one-frequency Schrödinger operators October 22nd, 2011 37 / 38