
Chapter 1

Various Ways of
Representing Surfaces
and Basic Examples

Lecture 1.

a. First examples. For many people, one of the most basic images
of a surface is the surface of the Earth. Although it looks flat to
the naked eye (at least in the absence of any striking geographic
features), we learn early in our lives that it is in fact round, and that
its shape is very well approximated by a sphere. Geometrically, the
sphere is defined as the locus of points at a fixed distance, called the
radius, from a given point, the centre. Using Cartesian coordinates
and putting the origin at the centre, we derive the familiar equation

(1.1) x2 + y2 + z2 = R2,

where R is the radius; the sphere is the set of all points in R3 whose
coordinates (x, y, z) satisfy this equation.

Many other familiar shapes can also be defined geometrically and
represented as the set of solutions of a single equation, as in (1.1). For
example, the (round) cylinder is the locus of points at a fixed distance
from a given straight line. If the line is taken to be the z-axis and the
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2 1. Various Ways of Representing Surfaces and Examples

Figure 1.1. Three familiar surfaces.

distance is equal to R, the equation for the cylinder is

(1.2) x2 + y2 = R2.

Another surface familiar from elementary geometry (and also
from ice-cream parlours) is the cone, which is obtained by rotating
a straight line around another line which intersects it. If the axis of
rotation is again the z-axis and the initial line lies in the xz-plane,
with the equation x = az, then the cone is given by the equation

(1.3) x2 + y2 = a2z2.

Exercise 1.1. If we construct a surface of revolution using parallel
lines instead of intersecting lines (as we did with the cone), we obtain
a cylinder. There is a third possibility; the lines may be skew, that
is, neither intersecting nor parallel. Describe the surface obtained in
this case, and derive its equation.

We feel immediately that the three objects expressed by equations
(1.1), (1.2), and (1.3), which are shown in Figure 1.1, are very different
in a variety of robust ways. For example, the sphere is bounded—
in fact, compact—while the cylinder and cone are not (contrary to
what the picture might suggest). The sphere and cylinder are smooth
everywhere, while the cone has a special point, the intersection of the
two lines in the construction, which is the origin in (1.3).

These differences are qualitative, and would not be changed if
we deformed each surface by a small amount—this reflects the fact
that the three surfaces in question have different topologies. Such a
deformation would, however, change the quantitative properties of a
surface, which constitute its geometry. For example, stretching or
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Figure 1.2. Three ellipsoids.

squeezing the sphere along the three coordinate axes produces an
ellipsoid given by the equation

(1.4)
x2

a2
+

y2

b2
+

z2

c2
= 1,

where a, b, and c are parameters which depend on the degree of
stretching or squeezing. Of the three surfaces above, the overall shape
and crude properties of an ellipsoid (its topology) are most similar
to that of a sphere, and are quite different from that of a cylinder
or a cone; its geometry, however, displays many differences from the
geometry of a sphere.1 For example, the sphere has many symmetries
(that is, rigid motions of the space which leave the sphere as a whole
in place), while a triaxial ellipsoid (one for which all three numbers
a, b, and c in (1.4) are different, such as the third shape shown in
Figure 1.2) has only a few.

Exercise 1.2. Find all the symmetries for

(1) a triaxial ellipsoid;

(2) an ellipsoid of revolution for which a = b != c (such as the
second ellipsoid in Figure 1.2).

Consider separately the symmetries which can be effected by a contin-
uous motion of the space and those which cannot, such as reflections
with respect to planes.

1For the time being, we rely on intuitive ideas of what constitutes a general shape.
For a reader steeped in mathematical rigor, we refer to notions of homeomorphism and
diffeomorphism, which will be introduced later in Lectures 4 and 17, respectively, and
say that two surfaces have similar shapes if they are homeomorphic, or diffeomorphic
in the case of smooth surfaces.
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Figure 1.3. A torus and a handle.

Another familiar example of a surface is a torus—just as the
sphere is the surface of a idealised ball, the torus is the surface of
an idealised doughnut (or perhaps a bagel, depending on what sort
of diet one is on). Like our first three examples, it is a surface of
revolution, and may be obtained by rotating a circle around a line
which lies in the plane of the circle, but does not intersect it. We will
derive a nice equation (1.5) for the torus in the next lecture.

We can obtain new surfaces with qualitatively distinctive shapes
by the procedure called “attaching a handle”. A handle can be
thought of as a torus with a hole (or if you like, an inner tube with
a small patch cut out), as shown in Figure 1.3—this is attached to
a hole cut in a given surface. Applying this procedure to a sphere
produces a surface in the general shape of a torus. If we continue to
attach more handles, we obtain something reminiscent of a pretzel
with an increasing number of holes or, alternatively, a chain of tori
linked to each other—Figure 1.4 shows a sphere with two handles.
Like all the surfaces we have dealt with so far, these surfaces can
also be represented by equations with a certain amount of effort (see
Exercise 1.6).

b. Equations vs. other methods. We have obtained several dif-
ferent surfaces as the set of points whose coordinates (x, y, z) satisfy
one equation or another. It is natural to ask what sort of equations
will always yield nice, recognisable surfaces. Will any old equation
do? Or must we impose some restrictions? And conversely, can we
represent every surface by an equation?



Lecture 1. 5

Figure 1.4. A sphere with two handles.

We begin by asking what sorts of equations are acceptable. By
moving all the terms to the same side, any equation in x, y, and z can
be written in the form F (x, y, z) = 0. If we hope to get a smooth sur-
face, we must demand that the function F is at least differentiable—
any of the equations (1.1), (1.2), (1.3), and (1.4) can be written in
this form with a quadratic polynomial as the function F . But why
are the sphere, the cylinder, and the ellipsoid all smooth, while the
cone has a special point? The difference is clearly seen in the geo-
metric description of the surfaces, since the line we use to define the
cone passes through the axis of rotation, but it is not so easy to see
what feature of the equations is responsible. How does this point of
non-smoothness turn up in the equations?

The answer is that the origin is a critical point of the function
x2 +y2−a2z2 and lies on the surface defined by (1.3), while the other

functions—x2 + y2 + z2 − R2, x2 + y2 − R2, and x2

a2 + y2

b2 + z2

c2 − 1—
have no critical points at the zero level. Thus, if we want to define a
smooth surface in R3 by an equation of the form F (x, y, z) = 0, the
function F should have no critical points at the zero level.

Turning to the other half of the relationship between surfaces
and equations, we find that not every geometric object which com-
mon sense would call a surface can be represented as the solution set
of an equation. One difficulty is caused by boundaries—notice that
the cylinder defined in (1.2) is unbounded, and extends infinitely far
in both the positive and negative z-directions. Suppose we want to
consider a finite cylinder, which may be obtained by rotating an inter-
val around a parallel line, or by rolling up a rectangular sheet of paper
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Figure 1.5. Two ways of gluing ends together.

and gluing together two opposite edges. How are we to represent such
a surface by an equation?

One possibility is to add an auxiliary inequality—for example,
one particular bounded cylinder is given as the solution set of

x2 + y2 = R2, z2 ≤ 1

This method solves the problem in some cases, but not all. Consider
the second description of a cylinder given above, in which we take
a band of paper and glue together the two ends—now look at what
happens if we twist the band halfway around before gluing the ends
together! The result is the famous Möbius band (or Möbius strip),
shown in Figure 1.5. Its most surprising property is that it only has
one side: an insect which crawls once around the band will find itself
at the same place, but on the opposite side of the surface.

Now any surface which is given by an equation F (x, y, z) = 0
(with or without inequalities) and which does not contain any critical
points must have two sides—the function F is positive on one side
and negative on the other. It follows that the Möbius strip cannot
be represented as the solution set of a ‘nice’ equation in the sense
discussed above.

A related counterintuitive property of the Möbius strip has to do
with closed curves. In the plane, any closed curve divides the plane
into two regions2—on the Möbius strip, though, we can draw closed
curves which have no “inside” or “outside”. Consider the curve which
divides the strip in half, so to speak, running halfway between the free

2This if the Jordan Curve Theorem, which we will state and prove rigorously in
Lectures 34 and 35. It is not as easy as one might first think!
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Figure 1.6. Immersing a Klein bottle in R3.

edges. If we take a pair of scissors and cut along this curve, we will
be left with a single connected surface, rather than two disconnected
pieces, which is what would happen if we performed the same oper-
ation on the cylinder, for example. This fact is intimately connected
to the observation that if we place a clock at some point on this curve
and move it once around the strip, when it returns it will be running
counterclockwise!

The existence of the Möbius strip is the first indication that rep-
resenting surfaces by equations is not sufficient. In the next lecture
we will discuss an alternative way of representing it in an analyti-
cal fashion. Notice, however, that the Möbius strip, along with all
our other examples, still lives comfortably in three-dimensional Eu-
clidean space. Our next example challenges the assumption that all
interesting surfaces can be realised this way.

If we want to glue together two opposite sides of a rectangle, we
can either glue them with no twist, which produces a cylinder, or with
a half-twist, which produces a Möbius strip.3 A similar dichotomy
arises if we decide to glue together the two ends of a cylinder. If we
do this in the conventional way, we produce a torus—however, this is
only one of two possible alignments for the pair of circles which are to
be attached. The second possibility involves ‘flipping’ one of the ends
around somehow, and results not in a torus, but in a Klein bottle.
The closest we can come to visualising this in three dimensions is to
have one end approach the other end not from outside the cylinder,

3A second half-twist will produce something which turns out to be homeomorphic
to a cylinder, but with a different embedding in R

3.
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Figure 1.7. Planar models of a Klein bottle and a torus.

as with the torus, but from inside—to accomplish this, we must pass
the end through the wall of the cylinder, creating a sort of twisted
bottle (hence the name), as shown in Figure 1.6.

c. Planar models. Unlike the earlier examples, the Klein bottle
cannot be embedded in R3, and so it is more difficult to represent
properly. Abstractly, however, the procedure we followed to create
it is not hard to describe, and this idea introduces a totally different
way of looking at surfaces. We begin by taking the unit square for
our rectangle:

X = { (x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 }.

We may then ‘glue’ together two opposite edges by declaring that
for each value of x between 0 and 1, the pair of points (x, 0) and
(x, 1) are now the same point. This gives an abstract representation
of the cylinder—to obtain a Klein bottle, we must ‘glue’ together the
two remaining edges with a flip.4 We do this by considering each
pair of points (0, y) and (1, 1 − y) as a single point—notice that all
four corners are now identified. One easily checks that a piece of this
object near every point looks like a piece of ordinary plane, so this
seems to be a legitimate surface.5

Now we can look at the procedure just described and contemplate
what happens when we identify both pairs of sides of the square in
the conventional way—(x, 0) with (x, 1) and (0, y) with (1, y). We

4These edges are now “circles”, in the topological sense at least, since (0, 0) and
(0, 1) are the same point, and similarly for (1, 0) and (1, 1).

5Of course, we have not defined rigorously what we mean by a ‘legitimate surface’.
A two-dimensional smooth manifold (see Lecture 16) certainly qualifies.
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Figure 1.8. Meridians and parallels on two tori with different geometries.

obtain a surface resembling a torus as far as its global properties are
concerned. For example, vertical and horizontal segments become
closed curves which are identified with “parallels” and “meridians”
of the torus of revolution—this will become clear in the next lecture
when we introduce parametric representations of surfaces. However,
the geometry of our surface, the flat torus, is different from that of
the torus of revolution. For example, all vertical and all horizontal
“circles” in the flat torus have the same length, while in the torus
of revolution the meridians have the same length but the parallels
do not (Figure 1.8). This is a consequence of the fact that although
the cylinder in R3 has the same intrinsic geometry as the sheet of
paper with only one pair of sides identified (that is, the paper is not
stretched), it cannot be bent in R3 without a distortion. So far, our
notion of internal geometry is intuitive, but soon we will make it more
precise.

Let us try to exhaust the possibilities of surface-building from a
rectangular piece of paper. The only remaining way of identifying
pairs of opposite sides is to identify both pairs of sides using a flip, so
that we identify (x, 0) with (1 − x, 1) and (0, y) with (1, 1 − y). We
will now turn our attention to this construction.

Exercise 1.3. Describe the surface obtained from the square by iden-
tifying points on pairs of adjacent sides, i.e. (0, t) with (1 − t, 1) and
(1, t) with (1−t, 0). Pay attention both to the shape and to geometry.

d. Projective plane and flat torus as factor spaces. To get a
more symmetric picture for the last construction, we may inflate the
square to a disc into which the square is inscribed, project the bound-
ary of the square radially to the circumference of the disc, and observe
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Figure 1.9. Various models for the real projective plane.

that the identified pairs become antipodal points on the boundary cir-
cle. Thus our object becomes the disc with pairs of opposite points
on the boundary identified, as in Figure 1.9. To make this even more
symmetric, inflate the disc to a hemisphere, keeping the boundary as
the equator. Now we can add the other hemisphere and observe that
each point of our object is represented by a pair of opposite points
on the sphere.

Instead of taking pairs of antipodal points as the points of our
surface, we may observe that any such pair determines a unique line in
R3 passing through the centre of the sphere, and vice versa. Thus we
may also think of our surface as the set of all lines through a particular
point—the surface so obtained is called the projective plane, denoted
RP 2. An obvious advantage of the sphere representation over gluing
is that it highlights the uniformity of the surface; all points look the
same.

Inspired by the last construction, we may try to look at the flat
torus differently. First recall that the circle can be represented either
by an interval, say [0, 1], with endpoints identified, or as the set of
equivalence classes of real numbers modulo one, i.e. the set of all
fractional parts of real numbers. If we simply think of all numbers
with the same fractional part as the same element of the circle we
come to the representation S1 = R/Z—note that here every point on
the circle is represented in the same way, in contrast to the interval
with endpoints identified, where the choice of representation led to a
false distinction between endpoints and non-endpoints. This choice
of representation is a matter of fixing a fundamental domain; that is,
a subset of R which contains exactly one element of each equivalence
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class, except along its boundary, where it may contain two or more. In
this case, we may take any unit interval as our fundamental domain.

A similar observation may be made with two variables, where we
observe that the (flat) torus T2 can be identified with the set of pairs
of fractional parts of real numbers:

T2 = R2/Z2,

where Z2 is the lattice of vectors with integer coordinates. These
equivalence classes are represented by points in the unit square (the
fundamental domain), once pairs of boundary points whose difference
is an integer have been identified.

We may make one further step into abstraction; instead of vectors
with integer coordinates, think about translations by those vectors.
Then each equivalence class in R2/Z2 becomes an orbit of the group
of such translations acting on R2, and our factor space (or quotient
space) naturally becomes the space of orbits.

The same approach may be taken with the projective plane—
notice that the flip on the sphere is a transformation which generates
a group of two elements, since its square is the identity. The orbit
of a point under the action of this group consists of the point itself,
together with its antipode—identifying each such pair of points yields
the projective plane, which can thus be thought of as the space of
orbits of this two-element group acting on the sphere.

Exercise 1.4. Represent the cylinder, the infinite Möbius strip, and
the Klein bottle as orbit spaces for some groups acting on the Eu-
clidean plane R2. The infinite Möbius strip is the infinite rectangle
[0, 1] × R with each pair of points (0, y) and (1,−y) identified.

Lecture 2.

a. Equations for surfaces and local coordinates. Consider the
problem of writing an equation for the torus; that is, finding a function
F : R3 → R such that the torus is the solution set {(x, y, z) ∈ R3 |
F (x, y, z) = 0}. Because the torus is a surface of revolution, we begin
with the equation for a circle in the xz-plane with radius 1 and centre
at (2, 0):

S1 =
{

(x, z) ∈ R2
∣

∣ (x − 2)2 + z2 = 1
}
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To obtain the surface of revolution, we replace x with the distance
from the z-axis by making the substitution x '→

√

x2 + y2, and obtain

T2 =
{

(x, y, z) ∈ R3
∣

∣ (
√

x2 + y2 − 2)2 + z2 − 1 = 0
}

At first glance, then, setting F (x, y, z) = (
√

x2 + y2 − 2)2 + z2 − 1
gives our desired solution. However, this suffers from the defect that
F is not differentiable along the z-axis; we can overcome this fairly
easily with a little algebra. Expanding the equation, isolating the
square root, and squaring both sides, we obtain

x2 + y2 + 4 − 4
√

x2 + y2 + z2 − 1 = 0

x2 + y2 + z2 + 3 = 4
√

x2 + y2

(x2 + y2 + z2 + 3)2 = 16(x2 + y2)

and hence consider the function F defined by

(1.5) F (x, y, z) = (x2 + y2 + z2 + 3)2 − 16(x2 + y2).

It is easy to check that the new choice of F from (1.5) does not
introduce any extraneous points to the solution set, and now F is
differentiable on all of R3.

Exercise 1.5. Prove that a sphere with m ≥ 2 handles cannot be
represented as a surface of revolution.

Due to the result in Exercise 1.5, this argument cannot be applied
directly to find an equation whose set of solutions look like a sphere
with m ≥ 2 handles, but we can reverse engineer the result to find
a general method. Instead of beginning with a vertical plane, we
consider the intersection of the torus and the horizontal xy-plane,
which is given by two concentric circles. F (x, y, 0) is negative between
the circles, hence F (x, y, z) = F (x, y, 0) + z2 = 0 has two solutions
for those values of x and y, leading to the torus shape. By beginning
with three or more circles (no longer concentric) we may use this idea
to represent a sphere with any number of handles.

Exercise 1.6. Represent a sphere with two handles as the set of
solutions of the equation F (x, y, z) = 0, where F is a differentiable
function, and none of its critical points satisfy this equation.
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Figure 1.10. The sphere as a union of graphs.

What good is all this? What benefit do we gain from representing
the torus, or any other surface, by an equation? Of course, it allows
us to plug the equation into a computer and look at pretty pictures of
our surface, but what we are really after is coordinates on our surface.
After all, the surface is a two-dimensional affair, and so we should be
able to describe its points using just two variables, but the equations
we obtain are written in three variables.

To address this, we first backtrack a bit and discuss graphs of
functions. Recall that given a function f : R2 → R, the graph of f is

graph f = { (x, y, z) ∈ R3 | z = f(x, y) }

If f is ‘nice’, its graph is a ‘nice’ surface sitting in R3. Of course,
most surfaces cannot be represented globally as the graph of such a
function; the sphere, for instance, has two points on the z-axis, and
hence we require at least two functions to describe it in this manner.

In fact, more than two functions are required if we adopt this
approach. The unit sphere is given as the solution set of x2+y2+z2 =
1, so we can write it as the union of the graphs of f1 and f2, where

f1(x, y) =
√

1 − x2 − y2

f2(x, y) = −
√

1 − x2 − y2
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The graph of f1 is the northern hemisphere, the graph of f2 the
southern. However, we run into problems at the equator z = 0;
for reasons which will be made apparent when we give the precise
definition of a manifold (topological or differentiable), it is important
that the domain on which we define each graph be open. In this
particular case, this means we cannot include the equator in either
the northern or the southern hemisphere, and must cover those points
with other graphs. By using graphs with x or y as the dependent
variable, we can cover the ‘eastern’ and ‘western’ hemispheres, as
it were, but find that we require six graphs to deal with the entire
sphere, as shown in Figure 1.10.

This approach has wide validity. Recall that (x, y, z) ∈ R3 is
a critical point of a smooth function F : R3 → R if the gradient of
F vanishes at (x, y, z), and that a point is called regular if it is not
critical. If S is the zero set of such a function, then at any regular
point in S we can apply the Implicit Function Theorem and obtain
a neighbourhood of the point which is the graph of some function;
in essence, we are projecting patches of our surface to the various
coordinate planes in R3. If our surface contains only regular points,
this allows us to describe the entire surface in terms of these local
coordinates.

As indicated in the first lecture, if the gradient vanishes at a point,
the set of solutions may not look like a nice surface. A trivial example
is the sphere of radius zero, x2 + y2 + z2 = 0; a more interesting
example is the cone x2 + y2 − z2 = 0 near the origin.

b. Other ways of introducing local coordinates. From the geo-
metric point of view, the choice of planes involved in representing a
surface as the union of graphs of functions is somewhat arbitrary
and unnatural; for example, the orthogonal projection of the north-
ern hemisphere of S2 to the xy-plane represents points in the ‘arctic’
quite well, but distorts things rather badly near the equator, where
the derivative of the function blows up. If we are interested in an-
gles, distances, and other geometric qualities of the surface, a more
natural choice is to project to the tangent plane at each point; this
will lead us eventually to the notion of a Riemannian manifold. If
the previous approach represented an effort to draw a ‘world map’ of
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Figure 1.11. Stereographic projection from the sphere to the plane.

as much of the surface as possible, without regard to distortions near
the edges, this approach represents publishing an atlas, with many
smaller maps, each zoomed in on a small neighbourhood of each point
in order to minimise distortions.

Orthogonal projections, whether to coordinate planes or tangent
planes, form only a subset of the class of local coordinates on sur-
faces; there are many other members of this class besides. In the case
of a sphere, one well-known example of local coordinates is stereo-
graphic projection (Figure 1.11), which gives a diffeomorphism6 from
the sphere minus a point to the plane.

Another example is given by the use of the familiar system of
longitude and latitude to locate points on the surface of the earth;
these resemble polar coordinates, mapping the sphere minus a point
onto the open disc (Figure 1.12). The north pole is the centre of the
disc, while the (deleted) south pole is its boundary; lines of longitude
(meridians) become radii of the disc, while lines of latitude (parallels)
become concentric circles around the origin.

However, if we want to measure distances on the sphere using any
of these local coordinates, we cannot simply use the usual Euclidean
distance in the disc or the plane—for example, the polar coordinates
mentioned in the last example preserve distances along lines of longi-
tude (radii), but distort distances along lines of latitude (circles cen-
tred at the origin). This is especially true near the boundary of the

6That is, a bijective differentiable map with differentiable inverse. See Lecture
17 for more details.
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Figure 1.12. From the sphere to a disc via geographic coordinates.

disc, where the actual distance between points is much less than the
Euclidean distance (since every point on the boundary is identified)—
notice how much Antarctica is stretched out in Figure 1.12. This gives
us our first example of a Riemannian metric (which for the time be-
ing we may simply think of as a notion of distance) on D2, apart from
the usual Euclidean one.

Exercise 1.7. Stereographic projections from the north and south
poles introduce two coordinate systems on the sphere minus the poles.
Find the coordinate transformation from one of those systems to the
other—that is, if a point on the sphere has coordinates (x, y) in the
coordinate system projected from the north pole and (x′, y′) in the
projection from the south, find (x′, y′) as a function of (x, y).

c. Parametric representations. While the idea of putting local
coordinates on a surface will turn out to be more useful in general, we
will occasionally have reason to deal with parametric representations.
There are two important distinctions between these two methods of
introducing coordinates on a surface.

First, local coordinates involve a map from the surface to a plane
domain, while a parametric representation is a map from a plane
domain to the surface. Formally, then, these two constructions are
mutual inverses.

The second distinction is that a local coordinate system usually
does not attempt to cover the entire surface by a single coordinate
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system, but rather uses several patches to accomplish the task. A
parametric representation, on the other hand, usually involves a map
from a plane domain to a surface which is onto, or at at least nearly
so, as in the inverse to the stereographic projection. One should also
keep in mind that, while the notion of an atlas of local coordinate
systems has a precise meaning which we will describe in Chapter 3,
the notion of parametric representation is somewhat vague.

Exercise 1.8. Write a parametric representation of the torus of rev-
olution (1.5) using the ‘latitude’ (position of a plane section) and
‘longitude’ (the angular coordinate along a plane section) as parame-
ters. Use this representation to construct a bijection between the flat
torus from Lecture 1(d) and the torus of revolution.

d. Metrics on surfaces. As our discussion of local coordinates sug-
gested, we must address the question of how the distance between two
points on a surface is to be measured. In the case of the Euclidean
plane, we have a formula, obtained directly from the Pythagorean
theorem. For points on the sphere of radius R we also have a for-
mula: the distance between two points is simply the angle they make
with the centre of the sphere, multiplied by R. Properties of this dis-
tance, such as the triangle inequality, can be deduced via elementary
geometry, or by representing the points as vectors in R3 and using
properties of the inner product.

These explicit formulae are serendipitous consequences of the ex-
tremely symmetric shapes of the plane and the sphere. What is the
correct notion of distance on an arbitrary surface? Recalling that in
the plane at least, the shortest path between two points is a straight
line, and it is precisely along this line that the distance given by the
Pythagorean theorem is measured, we may suggest that the distance
between two points should naturally be defined as the length of the
shortest path connecting them.

In general, since we do not yet know whether such a shortest
path always exists, the proper definition of distance is as the infimum
of the set of lengths of paths connecting the two points. Of course,
this requires that we have a definition for the length of a path on the
surface. We can find the length of a path in R3 by approximating
it with piecewise linear paths and then using the notion of distance
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in R3, which we already know. If our surface is not embedded in
Euclidean space, however, we must replace this with an infinitesimal
notion of distance, the Riemannian metric alluded to above. We will
give a precise definition and discuss examples and properties of such
metrics later in this course.

Lecture 3.

a. More about the Möbius strip and projective plane. Let us
go back to the Möbius strip. The most common way of introducing
it is as a sheet of paper (or belt, carpet, etc.) whose ends have been
attached after giving one of them a half-twist. In order to represent
this surface parametrically, it is useful to consider the factor space
construction, which was discussed in the first lecture for the Klein
bottle and the flat torus, and which is even simpler in the case of the
Möbius strip.

Begin with a rectangle R. We are going to identify each point on
the left-hand vertical boundary of R with a point on the right-hand
boundary; if we identify each point with the point directly opposed to
it (on the same horizontal line), we obtain a cylinder. To obtain the
Möbius strip, we identify the lower left corner with the upper right
corner and then move inwards; in this fashion, if R = [0, 1] × [0, 1],
the point (0, t) is identified with the point (1, 1 − t) for 0 ≤ t ≤ 1.

To embed this in R3, we can effect the half-twist by a continuous
uniform rotation of an interval (the vertical lines in the model) whose
centre moves around a closed curve (say a circle), and which remains
perpendicular to that circle. Using the x-coordinate in the model as
the angular coordinate along the circle, and the y-coordinate as the
distance along the interval, one can write a parametric representation
of a Möbius strip in R3 (see Figure 1.5).

Exercise 1.9. Write explicit expressions for the parametric represen-
tation of a Möbius strip embedded into R3 without self-intersections
described above.
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Figure 1.13. Multiple geodesics between antipodal points.

The projective plane with distance inherited from the sphere7 is
called the elliptic plane—it will be one of the star exhibits of this
course. We can motivate its definition by considering the sphere as a
geometric object, on which the notion of a line in Euclidean space is
to be replaced by the concept of a geodesic; one key property of the
former is that it is the shortest path between two points, and so infor-
mally at least, geodesics are simply curves which have this property.
On the sphere, we will see that the geodesics are great circles, and so
we may attempt to formulate various geometric propositions in this
setting. However, this turns out to have some undesirable features
from the point of view of conventional geometry; for example, every
pair of geodesics intersects in two (diametrically opposite) points, not
just one. Further, any two diametrically opposite points on the sphere
can be joined by infinitely many geodesics (Figure 1.13), in stark con-
trast to the “two points determine a unique line” rule of Euclidean
geometry.

Both of these difficulties are related to pairs of diametrically op-
posed points; the solution turns out to be to identify such points with
each other. Identifying each point on the sphere with its antipode
yields a quotient space, which is the projective plane described at the
end of the first lecture. Alternatively, we can consider the flip map
I : (x, y, z) '→ (−x,−y,−z), which is an isometry of the sphere with-
out fixed points. Declaring all members of a particular orbit of I to

7This simply means that the distance between two points in the projective plane
is taken to be the minimum of pairwise distances between points in the sphere repre-
senting those points.
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Figure 1.14. Determining distances in RP 2 via central angles.

be the same point, we obtain the quotient space S2/I, which is again
the projective plane, or the elliptic plane when we are interested in
the geometry.

In the elliptic plane, there is no such notion as the sign of an angle;
we cannot consistently determine which angles are positive and which
are negative. All the other geometric notions carry over, however; the
distance between two points can still be found as the magnitude of
the (acute) central angle they make (Figure 1.14), and the notions of
angle between geodesics and length of geodesics are still well-defined.

Exercise 1.10. Write at least five propositions from Euclidean ge-
ometry which are true in the elliptic plane and at least three propo-
sitions which are true in Euclidean geometry and are not true in the
elliptic plane. Each proposition must include statements about con-
figurations of lines and/or isometries, and no two should be trivial
reformulations of each other.

b. A first glance at geodesics. Informally, as mentioned above,
a geodesic is the curve of shortest length between two points; more
precisely, it is a curve γ with the property that given any two points
γ(a) and γ(b) whose parameter values a and b are sufficiently close
together, any other curve from one point to the other will have length
at least as great as the portion of γ between the two. Later in the
course (Lecture 25), we will consider the question of whether such a
curve always exists between two points, and whether it is unique.

The two most basic examples are the Euclidean spaces Rn, where
geodesics are straight lines, and the round sphere S2, where geodesics
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p q

Figure 1.15. Decomposing tangent vectors to show that a
straight line is the shortest smooth curve between two points.

are great circles. While the first fact is an article of faith in elementary
geometry, it requires a proof using a certain amount of calculus. We
will sketch the proof, but for a reader not familiar with calculations
involving arbitrary curves, we recommend carrying out the argument
in detail as an exercise.

Consider an arbitrary parametrised curve with endpoints p and
q, and project it to the straight line pq. As a parametrised curve,
the projection is no longer than the original one—in fact, it is strictly
shorter if the original curve does not lie entirely on the line.

If the curve is smooth, this follows from the formula for the length
of the curve as the integral of the length of its tangent vector, which
decomposes into two components, one parallel to the line pq, and
one perpendicular (Figure 1.15). For an arbitrary curve, one can
use an approximation by a polygonal curve—in either case, having
established that the length of the original curve is greater than or
equal to the length of the projected curve, one uses integration to
show that the length of the projected curve is greater than or equal to
the length of the interval pq, with equality if and only if the parameter
is monotone (so that the curve is a reparametrised interval).

A very similar argument can be carried out on the sphere, using
geographic coordinates around the point p and projection along par-
allels to the meridian (great circle) passing through p and q. In fact,
once it is understood just what is needed for this argument, it can be
adapted in many cases to find geodesics.

It is sometimes the case that one can find geodesics on other
surfaces by reducing the question to a known situation. For example,
the following exercise can be solved by reducing the question to the
case of the Euclidean plane.
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Figure 1.16. Three curves in R3.

Exercise 1.11. Find all geodesics on the round cylinder

{ (x, y, z) ∈ R3 | x2 + y2 = 1 }

and the upper half of the round cone

{ (x, y, z) ∈ R3 | x2 + y2 − z2 = 0, z ≥ 0 }.

c. Parametric representations of curves. We often write a curve
in R2 as the solution of a particular equation; the unit circle, for ex-
ample, is the set of points satisfying x2 + y2 = 1. This implicit
representation becomes more difficult in higher dimensions; in gen-
eral, each equation we require the coordinates to satisfy will remove
a degree of freedom (assuming independence) and hence a dimension,
so to determine a curve in R3 we require not one, but two equations.
Geometrically, we are obtaining a curve as the intersection of two sur-
faces, each specified by one of the equations. For example, the unit
circle lying in the xy-plane is the solution set of

x2 + y2 = 1

z = 0

which is the intersection of this plane with a cylinder of unit radius.
This is a simple example, for which these equations and the visuali-
sation of the surfaces pose no real difficulty; there are many examples
which are more difficult to deal with in this manner, but which can
be easily written down using a parametric representation. That is, we
define the curve in question as the set of all points given by

(x, y, z) = (f1(t), f2(t), f3(t))
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(x, y) = (t2, t3) (x, y) = (t3, t3)

Figure 1.17. Two curves with a vanishing tangent vector at
t = 0.

where t lies in the interval [a, b], whose endpoints a and b may be ±∞.
In this representation, the circle discussed above would be written

(x, y, z) = (cos t, sin t, 0)

with 0 ≤ t ≤ 2π. If we replace the equation z = 0 with z = t, we
obtain not a circle, but a helix; it takes a little more imagination to
picture this as the intersection of two surfaces. We could also multiply
the expressions for x and y by t to describe a spiral on the cone, whose
implicit representation is again not immediate.

Exercise 1.12. Find two equations whose common solution set is
the helix.

If we expect our curve to be smooth, we must impose certain
conditions on the coordinate functions fi. The first condition is that
each fi be continuously differentiable; this will guarantee the existence
of a continuously varying tangent vector at every point along the
curve. However, if we do not impose the further requirement that this
tangent vector be nonvanishing, that is, that (f ′

1)
2 +(f ′

2)
2 +(f ′

3)
2 != 0

holds everywhere on the curve, then the curve may still fail to be
smooth.

As a simple but important example of what may happen when
this condition is violated, consider the curve (x, y) = (t2, t3). The
tangent vector (2t, 3t2) vanishes at t = 0, which appears as a cusp at
the origin in Figure 1.17. So in this case, even though f1 and f2 are
perfectly smooth functions, the curve itself is not smooth.
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The nonvanishing condition is sufficient, but not necessary, to
have a smooth curve; to see the latter, consider the curve x = t3,
y = t3. The tangent vector vanishes when t = 0, but the curve
itself is just the line x = y, which is as smooth as we could possibly
ask for. In this case we could reparametrise the curve to obtain a
parametric representation in which the tangent vector is everywhere
nonvanishing.

d. Difficulties with representation by embedding. Parametric
representations of curves (and surfaces as well), along with repre-
sentations as level sets of functions (the implicit representations we
saw before) all embed the curve or surface into an ambient Euclidean
space, which so far has usually been R3. Our subsequent dealings
have sometimes relied on properties of this ambient space; for exam-
ple, the usual definition of the length of a curve relies on a broken
line approach, in which the curve is approximated by a piecewise lin-
ear ‘curve’, whose length we can compute using the usual notion of
Euclidean distance.

What happens, though, if our surface does not live in R3? We
already touched upon this problem in Lecture 1(b), and now return
to it in more depth, as R3 is not the proper setting for several of the
surfaces we have seen so far. For example, RP 2 cannot be embedded
in R3, so if we are to compute the length of curves in the elliptic plane,
we must either embed it in R4 or some higher dimensional space, or
else come up with a new definition of length, an issue to which we
shall return in Lecture 23.

Our discussion of factor spaces in Lecture 1 was motivated by the
example of the Klein bottle, which was defined as a factor space of
the square, or rectangle, where the left and right edges are identified
with direction reversed (as with the Möbius strip), but in addition,
the top and bottom edges are identified (without reversing direction).
We mentioned then that the Klein bottle cannot be embedded into
R3, and that the closest one can come is to imagine rolling the square
into a cylinder, then attaching the ends of the cylinder after passing
one end through the wall of the cylinder into the interior.
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Figure 1.18. Life on a dodecahedron.

Of course, this results in the surface intersecting itself in a circle;
in order to avoid this self-intersection, we could add a dimension and
embed the surface in R4. Given the extra dimension to work with,
we could begin with the immersion described above and perform the
four-dimensional analogue of taking a string which is lying in a figure
eight on a table, and lifting part of it off the surface of a table in order
to avoid having it touch itself. No such manoeuvre is possible for the
Klein bottle in three dimensions, but the immersion of the Klein bot-
tle into R3 is still a popular shape, and some enterprising craftsman
has been selling both ‘Klein bottles’ and beer mugs in the shape of
Klein bottles at the yearly meetings of the American Mathematical
Society. We had two such glass models of Klein bottles in the class,
which were bought there: one is a conventional inverted bottle very
similar to the image in Figure 1.6; the other is a “Klein beer mug”,
very close to a usual one in its outside shape and usable as a drinking
vessel.

Even when an embedding exists, it is possible for the choice of
embedding to obscure certain geometric properties of an object. Con-
sider the surface of a dodecahedron (or any solid, for that matter).
From the point of view of the embedding in R3, there are three sorts
of points on the surface; a given point can lie either at a vertex, along
an edge, or on a face. Being three-dimensional creatures, we see these
as three distinct classes of points.

Now imagine that we are two-dimensional creatures living on the
surface of the dodecahedron. We can tell whether or not we are at
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a vertex; at a vertex, the angles add up to less than 2π, whereas
everywhere else, they add up to exactly 2π. However, we cannot
tell whether or not we are at an edge; this has to do with the fact
that given two points on adjacent faces, the way to find the shortest
path between them is to unfold the two faces and place them flat
on the plane (at which stage points on an edge look just like points
on a face), draw a straight line between the two points in question,
and then fold the surface back up (Figure 1.18). As far as our two-
dimensional selves are concerned, points on an edge and points on a
face are indistinguishable, since the unfolding process does not change
any distances along the surface.

It is also possible that a surface which can be embedded in R3 will
lose some of its nicer properties in the process. For example, the usual
embedding of the torus destroys the symmetry between meridians and
parallels; all of the meridians are the same length, but the length of
the parallels varies. We can retain this symmetry by embedding in
R4, the so-called flat torus. Parametrically, this is given by

x = r cos t y = r sin t

z = r cos s w = r sin s

where s, t ∈ [0, 2π]. As we already mentioned, we can also obtain
the flat torus as a factor space, using the same method as in the
definition of the projective plane or Klein bottle. Beginning with a
rectangle, we identify opposite sides (with no reversal of direction);
alternately, we can consider the family of isometries of R2 given by
Tm,n : (x, y) '→ (x + m, y + n), where m,n ∈ Z, and mod out by
orbits. This construction of T2 as R2/Z2 is exactly analogous to the
construction of the circle S1 as R/Z.

We have seen that surfaces can be considered from different view-
points: sometimes we treat them as geometric objects, with intrinsi-
cally defined distances, angles, and areas, while other times we treat
them as ‘stretchable’ objects which can be bent and deformed, but
not torn or broken. In mathematical language, this corresponds to
considering different structures on surfaces, and this is the central
theme of this course, which we will take up in earnest in the next
lecture.
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Before doing so, we would like to fix a linguistic ambiguity; for
example, what should the word ‘sphere’ mean? How will we indicate
whether we are treating a particular surface as a geometric object,
or as a topological one (that is, one which may be deformed without
changing the nature of the surface)? Our convention will be as follows:
an indefinite article in front of the name, as in ‘a sphere’, ‘a torus’ or
‘a projective plane’, will mean that we consider the object in the topo-
logical sense, up to a homeomorphism. The use of an adjective or the
definite article will generally signify a smaller class of objects, as in ‘a
sphere given by an equation’. Then ‘a round sphere’ would mean any
sphere which has ‘spherical geometry’, that is, which is isometric to
the actual sphere in Euclidean space. Similarly, ‘a flat torus’ signifies
any torus with locally Euclidean geometry, while ‘the flat torus’ or
‘the torus’ will indicate the unit square with opposite sides identified,
endowed with the appropriate geometry inherited from R2; sometimes
we will call this object ‘the standard flat torus’. ‘The elliptic plane’
indicates the factor space of the unit sphere in which antipodal points
are identified, with geometry inherited from the sphere, and so on for
various other examples which will arise.

Exercise 1.13. Write parametric representations for a projective
plane in each of the following:

(1) R3 (with self-intersections).

(2) R4 (without self-intersections).

e. Regularity conditions for parametrically defined surfaces.
A parametrisation of a surface in R3 is given by a region U ⊂ R2

with coordinates (t, s) ∈ U and a set of three maps f1, f2, f3; the
surface is then the image of F = (f1, f2, f3), the set of all points
(x, y, z) = (f1(t, s), f2(t, s), f3(t, s)).

As with parametric representations of curves, we need a regular-
ity condition to ensure that our surface is in fact smooth, without
cusps or singularities. We once again require that the functions fi be
continuously differentiable, but now it is insufficient to simply require
that the matrix of derivatives Df be nonzero. Rather, we require that
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it have maximal rank; the matrix is given by

Df =





∂sf1 ∂tf1

∂sf2 ∂tf2

∂sf3 ∂tf3





and so our requirement is that the two tangent vectors to the surface,
given by the columns of Df , be linearly independent. Under this con-
dition, the Implicit Function Theorem guarantees that the parametric
representation is locally bijective and that its inverse is differentiable.

Parametric representations may of course have singularities. A
good example is the representation of the sphere given by the inverse
map to the geographic coordinates, which maps an open disc regularly
onto the sphere with a point removed, and collapses the boundary of
the disc into this single point.

Lecture 4.

a. Remarks on metric spaces and topology. Geometry in its
most immediate form deals with measuring distances.8 For this rea-
son, metric spaces are fundamental objects in the study of geometry.
In the geometric context, the distance function itself is the object of
interest; this stands in contrast to the situation in analysis, where
metric spaces are still fundamental (as spaces of functions, for exam-
ple), but where the metric is introduced primarily in order to have a
notion of convergence, and so the topology induced by the metric is
the primary object of interest, while the metric itself stands somewhat
in the background.

A metric space is a set X, together with a metric, or distance
function, d : X ×X → R+

0 , which satisfies the following axioms for all
values of the arguments:

(1) Positivity: d(x, y) ≥ 0, with equality iff x = y

(2) Symmetry: d(x, y) = d(y, x)

(3) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

8The reader should be aware, however, that in modern mathematical terminology,
the word ‘geometry’ may appear with adjectives like ‘affine’ or ‘projective’. Those
branches of geometry study structures which do not involve distances directly.
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The last of these is generally the most interesting, and is sometimes
useful in the following equivalent form:

d(x, y) ≥ |d(x, z) − d(y, z)|

Once we have defined a metric on a space X, we immediately
have a topology on X induced by that metric. The ball in X with
centre x and radius r is given by

B(x, r) = { y ∈ X | d(x, y) < r }

Then a set A ⊂ X is said to be open if for every x ∈ A, there exists
r > 0 such that B(x, r) ⊂ A, and A is closed if its complement X \A
is open. We now have two equivalent notions of convergence: in the
metric sense, xn → x if d(xn, x) → 0, while the topological definition
requires that for every open set U containing x, there exist some N
such that for every n > N , we have xn ∈ U . It is not hard to see that
these are equivalent.

Similarly for the definition of continuity; we say that a function
f : X → Y is continuous if xn → x implies f(xn) → f(x). The
equivalent definition in more topological language is that continuity
requires f−1(U) ⊂ X to be open whenever U ⊂ Y is open. We say
that f is a homeomorphism if it is a bijection and if both f and f−1

are continuous.

Exercise 1.14. Show that the two sets of definitions (metric and
topological) in the previous two paragraphs are equivalent.

Within mathematics, there are two broad categories of concepts
and definitions with which we are concerned. In the first instance, we
seek to fully describe and understand a particular sort of structure.
We make a particular definition or construction, and then seek to
either show that there is only one object (up to some appropriate
notion of isomorphism) which fits our definition, or to give some sort
of classification which exhausts all the possibilities. Examples of this
approach include Euclidean space, which is unique once we specify
dimension, or Jordan normal form, which is unique for a given matrix
up to a permutation of the basis vectors, as well as finite simple
groups, or semi-simple Lie algebras, for which we can (eventually)
obtain a complete classification.
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No such uniqueness or classification result is possible with metric
spaces and topological spaces in general; these definitions are exam-
ples of the second sort of mathematical object, and are generalities
rather than specifics. In and of themselves, they are far too general
to allow any sort of complete classification or universal understand-
ing, but they have enough properties to allow us to eliminate much
of the tedious case by case analysis which would otherwise be nec-
essary when proving facts about the objects in which we are really
interested. The general notion of a group, or of a Banach space, also
falls into this category of generalities.

Before moving on, there are three definitions of which we ought
to remind ourselves. First, recall that a metric space is complete if
every Cauchy sequence converges. This is not a purely topological
property, since we need a metric in order to define Cauchy sequences;
to illustrate this fact, notice that the open interval (0, 1) and the real
line R are homeomorphic, but that the former is not complete, while
the latter is.

Secondly, we say that a metric space (or subset thereof) is com-
pact if every sequence has a convergent subsequence. In the context of
general topological spaces, this property is known as sequential com-
pactness, and the definition of compactness is given as the require-
ment that every open cover have a finite subcover; for our purposes,
since we will be dealing with metric spaces, the two definitions are
equivalent. There is also a notion of precompactness, which requires
every sequence to have a Cauchy subsequence.

The knowledge that X is compact allows us to draw a number
of conclusions; the most commonly used one is that every continuous
function f : X → R is bounded, and in fact achieves its maximum
and minimum. In particular, the product space X × X is compact,
and so the distance function is bounded.

Finally, we say that X is connected if it cannot be written as
the union of non-empty disjoint open sets; that is, X = A ∪ B, A
and B open, A ∩ B = ∅ implies either A = X or B = X. There is
also a notion of path connectedness, which requires for any two points
x, y ∈ X the existence of a continuous function f : [0, 1] → X such
that f(0) = x and f(1) = y. As is the case with the two forms of
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compactness above, these are not equivalent for arbitrary topological
spaces (or even for arbitrary metric spaces—the usual counterexample
is the union of the graph of sin(1/x) with the vertical axis), but will
be equivalent on the class of spaces with which we are concerned.

b. Homeomorphisms and isometries. In the topological context,
the natural notion of equivalence between two spaces is that of home-
omorphism, which we defined above as a continuous bijection with
continuous inverse. Two topological spaces are homeomorphic if there
exists a homeomorphism between them. Any property common to all
homeomorphic spaces is called a topological invariant ; this naturally
includes any property defined in purely topological terms, such as
connectedness, path-connectedness, and compactness.

Some invariants require a little more work; for example, we would
like to believe that dimension is a topological invariant, and this is
in fact true,9 but proving that Rm and Rn are not homeomorphic for
m != n requires non-trivial tools.

A considerable part of this course deals with topological invari-
ants of compact surfaces, and in particular, the task of classifying
such surfaces up to a homeomorphism. We will almost succeed in
solving this problem completely; the only assumption we will have
to make is that the surfaces in question admit one of several natural
additional structures. In fact this assumption turns out to be true for
any surface, but we do not prove this in this course.

The natural equivalence relation in the geometric setting is isom-
etry; a map f : X → Y between metric spaces is isometric if

dY (f(x1), f(x2)) = dX(x1, x2)

for every x1, x2 ∈ X. If in addition f is a bijection, we say f is an
isometry. We are particularly interested in the set of isometries from
X to itself,

Isom(X, d) = { f : X → X | f is an isometry }

which we can think of as the symmetries of X. In general, the more
symmetric X is, the larger this set.

9At least for the usual definition of dimension; we mention an alternate definition
in the next section.
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Figure 1.19. A planar model on a hexagon.

In fact, Isom(X, d) is not just a set; it has a natural binary op-
eration given by composition, under which is becomes a group. This
is an example of a very natural and general sort of group which is
often of interest; all the bijections from some fixed set to itself, with
composition as the group operation. On a finite set, this gives the
symmetric group Sn, the group of permutations. On an infinite set,
the group of all bijections becomes somewhat unwieldy, and it is more
natural to consider the subgroup of bijections which preserve a partic-
ular structure, in this case the metric structure of the space. Another
common example of this is the general linear group GL(n, R), which
is the group of all bijections from Rn to itself preserving the linear
structure of the space.

In the next lecture, we will discuss the isometry groups of Eu-
clidean space and of the sphere.

Exercise 1.15. Consider a regular hexagon with pairs of opposite
sides identified by the corresponding translations, as in Figure 1.19.

(1) Prove that it is a torus.

(2) Prove that locally, it is isometric to Euclidean plane.

(3) Prove that it is not isometric to the standard flat torus.

c. Other notions of dimension. As mentioned above, we usually
think of dimension as a topological invariant. However, for general
compact metric spaces there is another notion of dimension which is
a metric invariant, rather than a topological one. The main idea is
to capture the rate at which volume (or some other sort of measure)
scales with the metric; for example, a cube in Rn with side length r
has volume rn, and the exponent n is the dimension of the space.
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In general, given a compact metric space X, for any ε > 0, let
N(ε) be the minimum number of ε-balls required to cover X; that
is, the minimum number of points x1, . . . , xN(ε) in X such that every
point in X lies within ε of some xi. This may be thought of as
measuring the average ‘volume’ of an ε-ball, in some sense; the upper
box dimension of X is defined to be

d̄box(X) = lim sup
ε→0

log N(ε)

log 1/ε
.

We take the upper limit because the limit itself may not exist. The
lower box dimension is defined similarly, taking the lower limit in-
stead. These notions of dimension do not behave quite as nicely as
we would like in all situations; for example, the set of rational num-
bers, which is countable, has upper and lower box dimension equal to
one.

There is a more effective notion of Hausdorff dimension, which
eliminates the need to distinguish between upper and lower limits,
and which is equal to zero for any countable set; because its definition
requires an understanding of measure theory, we will not discuss it
here. For ‘good’ sets all three definitions coincide, and are central
to the study of fractal geometry; however, they are not topological
invariants, so our claim in the last section must be understood to
apply only to a strictly topological notion of dimension.

d. Geodesics. When we are interested in a metric space as a geo-
metric object, rather than as something in analysis or topology, it is
of particular interest to examine those triples (x, y, z) for which the
triangle inequality becomes degenerate, that is, for which d(x, z) =
d(x, y) + d(y, z).

For example, if our space X is just the Euclidean plane R2 with
distance function given by Pythagoras’ formula,

d((x1, x2), (y1, y2)) =
√

(y1 − x1)2 + (y2 − x2)2

then the triangle inequality is a consequence of the Cauchy-Schwarz
inequality, and we have equality in the one iff we have equality in the
other; this occurs iff y lies in the line segment [x, z], so that the three
points x, y, z are in fact collinear.
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Figure 1.20. Images of three points determine an isometry.

A similar observation holds on the sphere, where the triangle
inequality becomes degenerate for the triple (x, y, z) iff y lies along
the shorter arc of the great circle connecting x and z. So in both
these cases, degeneracy occurs when the points lie along a geodesic;
this suggests that in general, a characteristic property of a geodesic
is the relation d(x, z) = d(x, y) + d(y, z) whenever y lies between two
points x and z which are sufficiently close along the curve.

Lecture 5.

a. Isometries of the Euclidean plane. There are three ways to
describe and study isometries of the Euclidean plane: synthetic; as
affine maps in two real dimensions; and as affine maps in one complex
dimension. The last two methods are closely related. We begin with
observations using the traditional synthetic approach.

If we fix three noncollinear points in R2 and want to describe the
location of a fourth, it is enough to know its distance from each of the
first three. This may readily be seen from the fact that three circles
whose centres are not collinear intersect in at most one point.

As a consequence of this, an isometry of R2 is completely de-
termined by its action on three noncollinear points. In fact, if we
have an isometry I : R2 → R2, and three such points x, y, z, as in
Figure 1.20, the choice of Ix constrains Iy to lie on the circle with
centre Ix and radius d(x, y), and once we have chosen Iy, there are
only two possibilities for Iz; one (z1) corresponds to the case where I
preserves orientation, the other (z2) to the case where orientation is



Lecture 5. 35

x = Ix
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Rotation—one fixed point
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Translation—no fixed points

Figure 1.21. Orientation preserving isometries.

reversed. So for two pairs of distinct points a, b and a′, b′ such that
the distances between a and b and between a′ and b′ coincide, there
are exactly two isometries which map a to a′ and b to b′; one of these
will be orientation preserving, the other orientation reversing.

Passing to algebraic descriptions, notice that any isometry I must
carry lines to lines, since as we saw last time, three points in the plane
are collinear iff the triangle inequality becomes degenerate. Thus
it is an affine map—that is, a composition of a linear map and a
translation—so it may be written as I : x '→ Ax + b, where b ∈ R2

and A is a 2× 2 matrix. In fact, A must be orthogonal, which means
that we can write things in terms of the complex plane C and get (in
the orientation preserving case) I : z '→ az + b, where a, b ∈ C and
|a| = 1. In the orientation reversing case, we have I : z '→ az̄ + b.

Using the preceding discussion, we can now classify any isometry
of the Euclidean plane as belonging to one of four types, depending
on whether it preserves or reverses orientation, and whether or not it
has a fixed point.

Case 1 : An orientation preserving isometry which possesses a
fixed point is a rotation. Let x be the fixed point, Ix = x. Fix
another point y; both y and Iy lie on a circle of radius d(x, y) around
x. The rotation about x which takes y to Iy satisfies these criteria,
which are enough to uniquely determine I given that it preserves
orientation, hence I is exactly this rotation.
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a

Ia
b

Ib
c = Ic

a

Ia b

Ib

Figure 1.22. An orientation preserving isometry with no
fixed points is a translation.

Rotations are entirely determined by the centre of rotation and
the angle of rotation, so we require three parameters to specify a
rotation.

Case 2 : An orientation preserving isometry I with no fixed points
is a translation. The easiest way to see that is to use the complex
algebraic description. Writing Iz = az + b with |a| = 1, we observe
that if a != 1, we can solve az + b = z to find a fixed point for I.
Since no such point exists, we have a = 1, hence I : z '→ z + b is a
translation.

One can also make a purely synthetic argument for this case; we
show that the intervals [a, Ia] and [b, Ib] must be parallel and of equal
length for every a, b. Indeed, if they fail to be parallel for some a, b,
then their perpendicular bisectors intersect in some point c, as shown
in Figure 1.22. Since [a, Ia, c] and [b, Ib, c] are isosceles triangles, we
have d(a, c) = d(Ia, c) and d(b, c) = d(Ib, c), hence Ic = c since I
preserves orientations.

But I has no fixed point, and so [a, Ia] and [b, Ib] must be parallel;
since I is an isometry, d(Ia, Ib) = d(a, b), and hence the quadrilateral
[a, Ia, Ib, b] is a parallelogram. It follows that the intervals [a, Ia] are
all parallel and of equal length, and so I is a translation.

We only require two parameters to specify a translation; since
the space of translations is two-dimensional, almost every orientation
preserving isometry is a rotation, and hence has a fixed point.

Case 3 : An orientation reversing isometry which possesses a fixed
point is a reflection. Say Ix = x, and fix y != x. Let % be the line
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Figure 1.23. Orientation reversing isometries.

bisecting the angle formed by the points y, x, Iy. Using the same
approach as in case 1, the reflection through % takes x to Ix and y to
Iy; since it reverses orientation, I is exactly this reflection.

It takes two parameters to specify a line, and hence a reflection,
so the space of reflections is two-dimensional.

Case 4 : An orientation reversing isometry with no fixed point is
a glide reflection. Let T be the unique translation that takes x to Ix.
Then I = R◦T where R = I◦T−1 is an orientation reversing isometry
which fixes Ix. By the above, R must be a reflection through some
line %. Decompose T as T1 ◦ T2, where T1 is a translation by a vector
perpendicular to %, and T2 is a translation by a vector parallel to %.
Then I = R ◦ T1 ◦ T2, and R ◦ T1 is reflection through a line parallel
to %, hence I is the composition of a translation T2 and a reflection
R ◦ T1 which commute; that is, a glide reflection.

A glide reflection is specified by three parameters; hence the space
of glide reflections is three-dimensional, so almost every orientation
reversing isometry is a glide reflection, and hence has no fixed point.

The group Isom(R2) is a topological group with two components;
one component comprises the orientation preserving isometries, the
other the orientation reversing isometries. From the above discussions
of how many parameters are needed to specify an isometry, we see
that the group is three-dimensional; in fact, it has a nice embedding
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into the group GL(3, R) of invertible 3 × 3 matrices:

Isom(R2) =

{(

O(2) R2

0 1

)

:

(

R2

1

)

→
(

R2

1

)}

.

Here O(2) is the group of real valued orthogonal 2 × 2 matrices, and
the plane upon which Isom(R2) acts is the horizontal plane z = 1 in
R3.

Exercise 1.16. Prove that every isometry of the Euclidean plane can
be represented as a product of at most three reflections.

Exercise 1.17. Consider all possible configurations of two and three
lines in the plane: two lines may be either parallel or intersecting;
for three lines there are a few more options. Identify the product of
reflections in those lines for each case as one of four types of isometries.

Exercise 1.18. Consider an orientation reversing isometry in the
complex form z '→ az̄ + b. Find a condition on a, b ∈ C which will
determine if it is a reflection or a glide reflection, and identify the axis
in both cases.

b. Isometries of the sphere and the elliptic plane. By counting
dimensions in the isometry group of the Euclidean plane, we argued
that almost every orientation preserving isometry has a fixed point,
while almost every orientation reversing isometry has no fixed point.
In the next lecture, we will see that the picture for the sphere is
somewhat similar—now any orientation preserving isometry has a
fixed point, and most orientation reversing ones have none. For the
elliptic plane, however, it will turn out to be dramatically different:
any isometry has a fixed point, and can in fact be interpreted as a
rotation!

Many of the arguments in the previous section carry over to the
sphere; the same techniques of taking intersections of circles, etc.
still apply. The classification of isometries on the sphere is somewhat
simpler, since every orientation preserving isometry has a fixed point,
while every orientation reversing isometry (other than reflection in a
great circle) has a point of period two, which becomes a fixed point
when we pass to the elliptic plane.
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We will be able to show that every orientation preserving isometry
of the sphere comes from a rotation of R3, and that the product of
two rotations is itself a rotation. This is slightly different from the
case with Isom(R2), where the product could either be a rotation, or
if the two angles of rotation summed to zero (or a multiple of 2π), a
translation. We will, in fact, be able to obtain Isom(S2) as a group of
3× 3 matrices in a much more natural way than we did for Isom(R2)
above, since any isometry of S2 extends to a linear orthogonal map
of R3, and so we will be able to use linear algebra directly.

Lecture 6.

a. Classification of isometries of the sphere and the elliptic
plane. There are two approaches we can take to investigating isome-
tries of the sphere S2; we saw this dichotomy begin to appear when
we examined Isom(R2). The first is the synthetic approach, which
treats the problem using the tools of solid geometry; this is the ap-
proach used by the Greek geometers of late antiquity in developing
spherical geometry for use in astronomy.

The second approach, which we will follow below, uses methods of
linear algebra; translating the question about geometry to a question
about matrices puts a wide range of techniques at our disposal, which
will prove enlightening, and rather more useful now than it was in the
case of the plane, when the relevant matrices were only 2 × 2.

The first important result is that there is a natural bijection
(which is in fact a group isomorphism) between Isom(S2) and O(3),
the group of real orthogonal 3 × 3 matrices. The latter is defined by

O(3) = {A ∈ M3(R) | AT A = I }

That is, O(3) comprises those matrices for which the transpose and
the inverse coincide. This has a nice geometric interpretation; we
can think of the columns of a 3 × 3 matrix as vectors in R3, so that
A = (a1|a2|a3), where ai ∈ R3. (In fact, ai is the image of the ith basis
vector ei under the action of A). Then A lies in O(3) iff {a1, a2, a3}
forms an orthonormal basis for R3, that is, if 〈ai, aj〉 = δij , where 〈·, ·〉
denotes inner product, and δij is the Kronecker delta, which takes the
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value 1 if i = j, and 0 otherwise. The same criterion applies if we
consider the rows of A, rather than the columns.

Since det(AT ) = det(A), any matrix A ∈ O(3) has determi-
nant ±1; the sign of the determinant indicates whether the map pre-
serves or reverses orientation. The group of real orthogonal matrices
with determinant equal to positive one is the special orthogonal group
SO(3).

In order to see that the members of O(3) are in fact the isometries
of S2, we could take the synthetic approach and look at the images
of three points not all lying on the same geodesic, as we did with
Isom(R2); in particular, the standard basis vectors e1, e2, e3.

An alternate approach is to extend the isometry to R3 by ho-
mogeneity. That is, given an isometry I : S2 → S2, we can define a
linear map A : R3 → R3 by

Ax = ‖x‖ · I
(

x

‖x‖

)

It follows that A preserves lengths in R3, and in fact, this is sufficient
to show that it preserves angles as well. This can be seen using a
technique called polarisation, which allows us to express the inner
product in terms of the norm, and hence show the general result that
preservation of norm implies preservation of inner product:

‖x + y‖2 = 〈x + y, x + y〉
= 〈x, x〉 + 2〈x, y〉 + 〈y, y〉

= ‖x‖2 + ‖y‖2 + 2〈x, y〉

〈x, y〉 =
1

2
(‖x + y‖2 − ‖x‖2 − ‖y‖2)

This is a useful trick to remember, and allows us to show that a
symmetric bilinear form is determined by its diagonal part. In our
particular case, it shows that the matrix A we obtained is in fact in
O(3), since it preserves both lengths and angles.

The matrix A ∈ O(3) has three eigenvalues, some of which may be
complex. Because A is orthogonal, we have |λ| = 1 for each eigenvalue
λ; further, because the determinant is the product of the eigenvalues,
we have λ1λ2λ3 = ±1. The entries of the matrix A are real, hence the
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coefficients of the characteristic polynomial are as well; this implies
that if λ is an eigenvalue, so is its complex conjugate λ̄.

There are two cases to consider. Suppose det(A) = 1. Then the
eigenvalues are λ, λ̄, and 1, where λ = eiα lies on the unit circle in
the complex plane. Let x be the eigenvector corresponding to the
eigenvalue 1, and note that A acts on the plane orthogonal to x by
rotation by α; hence A is a rotation by α around the axis through x.

The second case, det(A) = −1, can be dealt with by noting that A
can be written as a composition of −I (reflection through the origin)
with a matrix with positive determinant, which must be a rotation,
by the above discussion. Upon passing to the elliptic plane RP 2, the
reflection −I becomes the identity, so that every isometry of RP 2 is
a rotation.

This result, that every isometry of the sphere is either a rotation
or the composition of a rotation and a reflection through the origin,
shows that every isometry has either a fixed point or a point of period
two, which becomes a fixed point upon passing to the quotient space
RP 2.

As an concrete example of how all isometries become rotations in
RP 2, consider the map A given by reflection through the xy-plane,
A(x, y, z) = (x, y,−z). Let R be rotation by π about the z-axis, given
by R(x, y, z) = (−x,−y, z). Then A = R ◦ (−I), so that as maps on
RP 2, A and R coincide. Further, any point (x, y, 0) on the equator
of the sphere is fixed by this map, so that R fixes not only one point
in RP 2, but many.

Exercise 1.19. Let x and y be two points in the elliptic plane.

(1) Prove that there are at most two shortest curves connecting
x and y.

(2) Find a necessary and sufficient condition for uniqueness of
the shortest curve connecting x and y.

b. Area of a spherical triangle. In the Euclidean plane, the most
symmetric formula for determining the area of a triangle is Heron’s
formula

A =
√

s(s − a)(s − b)(s − c)
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Figure 1.24. Determining the area of a spherical triangle.

where a, b, c are the lengths of the sides, and s = 1
2 (a + b + c) is

the semiperimeter of the triangle. There are other, less symmetric,
formulas available to us if we know the lengths of two sides and the
measure of the angle between them, or two angles and a side; if all
we have are the angles, however, we cannot determine the area, since
the triangle could be scaled up or down, preserving the angles while
changing the area.

This is not the case on the surface of the sphere; given a spherical
triangle, that is, the area on the sphere enclosed by three geodesics
(great circles), we can find the area of the triangle via a wonderfully
elegant formula in terms of the angles, as follows.

Consider the ‘wedge’ lying between two lines of longitude on the
surface of a sphere, with an angle α between them. The area of
this wedge is proportional to α, and since the surface area of the
sphere with radius R is 4πR2, it follows that the area of the wedge
is α

2π 4πR2 = 2αR2. If we take this together with its mirror image
(upon reflection through the origin), which lies on the other side of
the sphere, runs between the same poles, and has the same area, then
the area of the ‘double wedge’ shown in Figure 1.24 is 4αR2.

Now consider a spherical triangle with angles α, β, and γ. Put
the vertex with angle α at the north pole, and consider the double
wedge lying between the two great circles which form the angle α.
Paint this double wedge red; as we saw above, it has area 4αR2.
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Repeat this process with the angle β, painting the new double
wedge yellow, and with γ, painting that double wedge blue. Now
every point on the sphere has been painted exactly one colour (or,
as in Figure 1.24, one particular shade of gray), with the exception
of the points lying inside our triangle, and the points diametrically
opposite them, which have been painted all three colours. (We neglect
the boundaries of the wedges, since they have area zero). Hence if we
add up the areas of the double wedges, we obtain

∑

areas of wedges = blue area + yellow area + red area

= (area of sphere) + 4 × (area of triangle)

which allows us to write an equation for the area A of the triangle:

4(α + β + γ)R2 = 4πR2 + 4A

Solving, we see that

(1.6) A = R2(α + β + γ − π).

Thus the area of the triangle is directly proportional to its angular
excess; this result has no analogue in planar geometry, due to the
flatness of the Euclidean plane. As we will see later on in the course,
it does have an analogue in the hyperbolic plane, where the angles of
a triangle add up to less than π, and the area is proportional to the
angular defect.

Exercise 1.20. Express the area of a geodesic polygon on the sphere
in terms of its angles.

Lecture 7.

a. Spaces with lots of isometries. In our discussion of the isome-
tries of R2, S2, and RP 2, we have observed a number of differences
between the various spaces, as well as a number of similarities. One of
the most important similarities is the high degree of symmetry each
of these spaces possesses, as evidenced by the size of their isometry
groups.

We can make this a little more concrete by observing that the
isometry group acts transitively on each of these spaces; given any
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two points a and b in the plane, on the sphere, or in the projective
plane, there is an isometry I of the space such that Ia = b.

In fact, we can make the stronger observation that the group acts
transitively on the set of unit tangent vectors. That is to say, if v is
a unit tangent vector at a, which can be thought of as indicating a
particular direction along the surface from the point a, and w is a
unit tangent vector at b, then not only can we find an isometry that
carries a to b, but we can find one that carries v to w.

Another example of a surface with this property is the hyper-
bolic plane, which will appear in Chapter 4, and has the remarkable
property that its isometry group allows not one but three natural
representations as a matrix group (or a factor of such a group by its
two-element centre).

In fact, these four examples are the only surfaces for which isome-
tries act transitively on unit tangent vectors. There are of course a
number of higher-dimensional spaces with this property: Euclidean
spaces, spheres, and projective spaces, which are all analogues of their
two-dimensional counterparts, immediately come to mind, and there
are many more besides.

As an example of a space for which this property fails, consider
the flat torus T2 = R2/Z2. The property holds locally, in the neigh-
bourhood of a point, but does not hold on the entire space. While
Isom(T2) acts transitively on points, it does not act transitively on
tangent vectors; some directions lie along geodesics which are closed
curves, while other directions do not. Another example is given by
the cylinder, and examples of a different nature will appear later when
we consider the hyperbolic plane and its factors.

What sorts of isometries does T2 have? We may consider trans-
lations z '→ z + z0; rotations of R2, however, will not generally lead
to isometries of T2, since they will usually fail to preserve the lattice
Z2. The rotation by π/2 about the origin is permissible, as are the
flips around the x- and y-axes, and around the line x = y.

In general, Z2 must be mapped to itself or a translation of itself,
and so the isometry group is generated by the group of translations,
along with the symmetry group of the lattice. The latter group is
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simply D4, the dihedral group on four letters, which arises as the
symmetry group of the square.

Exercise 1.21. Describe all the isometries of

(1) the ‘hexagonal’ torus of Exercise 1.15;

(2) the flat Möbius strip;

(3) the flat Klein bottle, i.e. the square with appropriately iden-
tified pairs of opposite sides.

Consider a more general class of examples, which generalise the
construction of the flat torus as R2/Z2. Let L be a lattice in R2—that
is, a set of vectors of the form {mu + nv | m,n ∈ Z }, where u and v
are two fixed linearly independent vectors. We can identify the factor
space R2/L with the parallelogram

{ su + tv | 0 ≤ s, t ≤ 1 }

with pairs of opposite sides identified by translations.

Exercise 1.22. Show that the following statements hold.

(1) The factor space R2/L is homeomorphic to a torus;

(2) R2/L has a natural metric which is locally isometric to R2;

(3) The isometry group acts transitively on R2/L.

The ‘crystallographic restriction’ property established in the fol-
lowing exercise aids in the classification of isometries of these tori.

Exercise 1.23. Show that any nontrivial isometry of R2/L with a
fixed point has period 2, 3, 4, or 6.

b. Symmetric spaces. The discussion of spaces with lots of isome-
tries is related to the notion of a symmetric space, which we will now
examine more closely. In what follows, we assume certain properties
of geodesics which will be formally described (but not proved) later in
this course. In particular, we assume that there is a unique geodesic
passing through a given point in a given direction, and that there is a
unique shortest geodesic connecting any two sufficiently close points.
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Of course, all of this assumes the metric on our surface is given in a
nice way, as has been the case with all examples considered so far.10

Given a point x on a surface X, we define the geodesic flip through
x, denoted by Ix, as follows. For each geodesic γ passing through x,
each point y lying on γ is sent to the point on γ which is the same
distance along the geodesic from x as y is, but in the other direc-
tion. It is immediate that this map preserves lengths along geodesics
through x; it may happen, however, that the distances between these
geodesics vary, in which case the map would not be isometric.

If the map is indeed isometric on some neighbourhood of x, and if
this property holds for the geodesic flip Ix through any point x ∈ X,
then we say that X is locally symmetric. The classification of such
spaces (in any dimension) is one of the triumphs of Lie theory. No-
tice that the geodesic flip may not be extendable to a globally defined
isometry, so the isometry group of a locally symmetric space may be
(and sometimes is) quite small. Although we have not yet encoun-
tered any such examples, later on (Lecture 31) we will construct the
hyperbolic octagon, whose isometry group can be shown to be finite,
even though the space is locally symmetric.

Given two nearby points x, y, we can take the point z lying at the
midpoint of the geodesic segment connecting them. Then Izx = y.
If X is connected (and hence path connected) then any two points
can be connected by a finite chain of neighbourhoods where these
local isometries are defined. This implies that for any two points in
a locally symmetric space, there exists an isometry between small
enough neighbourhoods of those points. In other words, locally such
a space looks the same near every point.

If for any point x ∈ X the geodesic flip Ix can be defined not just
locally, but globally (that is, extended to the entire surface X), and
if it is in fact an isometry of X, then we say X is globally symmetric.
In this case, the group of isometries Isom(X) acts transitively on all
of X.

10These notions of direction and ‘nice’ metrics, which are rather vague at the
moment, will be made more precise when we discuss smooth manifolds and Riemannian
metrics in Chapters 3 and 4.
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In the previous lecture we discussed a related, but stronger, no-
tion, in which we require Isom(X) to act transitively not only on
points in X, but also on unit tangent vectors. If this holds, then in
particular, given any x ∈ X, there is an isometry of X taking some
tangent vector at x to its opposite; this isometry must then be the
geodesic flip, and so X is globally symmetric. It is not the case,
however, that every globally symmetric space has this property of
transitive action on tangent vectors; the flat torus is one example.

Examples of symmetric spaces are given by Rn, Sn, and RPn,
as well as by their direct products, about which we will say more
momentarily. First, notice that the flat torus is symmetric, being the
direct product of two symmetric spaces S1. However, the embedding
of the torus into R3 produces a space which is not symmetric, since
the isometry group does not act transitively on the points of the sur-
face. In fact, the isometry group of the embedded torus of revolution
(the bagel) in R3 is a finite extension of a one-dimensional group of
rotations, while the isometry group of the flat torus is, as we saw last
time, a finite extension of a two-dimensional group of translations.
Hence the two surfaces are homeomorphic but not isometric.

The flat torus R2/Z2 has no isometric embedding into R3, but it
is isometric to the embedded torus in R4 given as the zero set of the
two equations

x2
1 + x2

2 = 1

x2
3 + x2

4 = 1.

c. Remarks concerning direct products. Given any two sets X
and Y , we can define their direct product, sometimes called the Carte-
sian product, as the set of all ordered pairs (x, y):

X × Y = { (x, y) | x ∈ X, y ∈ Y }

It is very often the case that if X and Y carry an extra structure,
such as that of a group, a topological space, or a metric space, then
this structure can be carried over to the direct product in a natural
way. For example, the direct product of two groups is a group under
pointwise multiplication, and the direct product of two topological
spaces is a topological space in the product topology.
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If X and Y carry metrics dX and dY , then we can put a metric
on X × Y in the same manner as we put a metric on R2, by defining

d((x, y), (x′, y′)) =
√

dX(x, x′)2 + dY (y, y′)2

If there are geodesics on X and Y , we can define geodesics on X ×Y ,
and hence can define the geodesic flip, which can be shown to satisfy
the formula

I(x,y)(x
′, y′) = (Ix(x′), Iy(y′))

In the case R × R = R2, this corresponds to the fact that the com-
position of a flip about a vertical line with a flip about a horizontal
line is equivalent to rotation by π around the intersection of the two
lines.

With the geodesic flip defined, we can then ask whether the prod-
uct space X × Y is symmetric, and it turns out that if X and Y are
both symmetric spaces, so is their direct product X × Y . In this
manner we can obtain many higher-dimensional examples, and so if
we were to attempt to classify such spaces, we would want to focus
on those which are irreducible in that they cannot be decomposed as
the direct product of two lower-dimensional spaces, since the other
examples will be built from these.

The direct product provides a common means by which we de-
compose objects of interest into simpler examples in order to gain
a complete understanding. We find many examples of this in linear
algebra, in which context the phrase direct sum is also sometimes
used. Any finite-dimensional vector space can be written as the di-
rect product of n copies of R; this is just the statement that any
finite-dimensional vector space has a basis. A more sophisticated ap-
plication of this process is the decomposition of a linear transforma-
tion in terms of its action upon its eigenspaces, so that a symmetric
matrix can be written as the direct product of one-dimensional trans-
formations, while for a general matrix, we have the Jordan normal
form.

This process is also used in the classification of finitely generated
abelian groups, where we decompose the group of interest into a direct
sum of copies of Z and cyclic groups whose order is a power of a
prime, so that no further decomposition is possible. Thus the natural
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counterpart to the study of how a particular sort of mathematical
structure can be decomposed is the study of what instances of that
structure are, in some appropriate sense, irreducible.


