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~— Brownian Motion

Model: two particles in a box

Heavy disk of mass M»1 -

Light disk of mass m=1 _

Particles collide elastically

(preserving total kinetic energy and total momentum)

Particles bounce off the walls like billiard balls



Animated motion of the light particle



Questions:

Initial state (Q,V) of the heavy disk is fixed (preset)
Initial state (g,v) of the light disk is randomly chosen

Does Q(t) or V(t) behave as a Brownian trajectory?

Describe the motion of the heavy disk in the limit
M —eo



Traditional approaches:

Full phase space Q is 8-dimensional
(energy surface’ E is 7-dimensional)
Invariant measure p is Liouville measure on Q

Is the system hyperbolic?  Open question...
Is the system ergodic? Open guestion...

The measure W, hyperbolicity, and ergodicity
are all irrelevant to the goals of the project.
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Key feature is strong partial hyperbolicity:
* one strongly expanding direction (u)

e one strongly contracting direction (s)
In other directions evolution is very slow.

Key idea: Study images of measures
supported on 1-D unstable curves.
Curve + Measure is called a Standard Pair




Conclusions:

The velocity V(t) of the heavy disk
weakly converges to a Wiener-type
process described by certain
stochastic differential equations.

The position Q(t) of the heavy disk
weakly converges to the integral of
the above Wiener-type process.



Thus the Brownian motion (=Wiener process)
characterizes the velocity V(t) of the heavy disk

The position of the heavy disk (which was
originally observed by R. Brown) may be now
called “Brownian Brownian motion”



This work is published in

Brownian Brownian Motion - |

Memoirs AMS,Vol. 198, No 927 (2009)
(it is 193 pages long)






Galtam board

An upright board with a periodic array of
fixed pegs on which balls are rolling down
bouncing off the pegs

Introduced by Sir Francis Galton (1822-1911)

Resembles a modern pinball machine
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Mathematical model:

Periodic array of fixed convex domains (scatterers) on
an infinite plane

Particle moves between the scatterers subject to a
constant force (external field)

Particle bounces off the scatterers as a billiard ball



This model is also known as Lorentz gas:




Questions:

Describe asymptotic behavior of the position
and velocity of the particle as time t—-.

Physicists conjectured (based on heuristic and
empirical studies):

Position X(t) ~ t%/3 Velocity V(t) ~ t'/3

No mathematical results until now...




Difficulties:

« Particle accelerates as it moves away

 Phase space is not compact, invariant measure is
infinite

» Initial distribution is concentrated in a compact
domain (say, where 0<X(0)<1)

» Images of the initial measure escape to infinity

* Dynamics inhomogeneous in time and space



Results obtained:

Average position X(t) grows as t%3

Average velocity V(t) grows as t¥/3

Resca
Resca
Resca

e€C
e€C

e€C

position t2/3X(t) has a limit o
velocity t¥3V(t) has a limit o

Istribution
Istribution

position converges to an Ito ¢

Iffusion

process satisfying certain Stochastic Diff. Egs.

X(t) Is recurrent: the particle returns to its initial
value X(0) infinitely many times.



Self-similar billiards

Infinite channel of similar billiard cells proposed by
F. Barra, T. Gilbert, and M. Romo:

"m Size grows

. . ’ . exponentially
w (by a factor

A>1)

Particle moves in the channel and bounces off the walls.

Question: does X(t)/t converge to a limit as t—>oo?
Physicists conjectured: yes, it does...



T
Difficulties:

 Phase space 1s not compact, invariant measure is
infinite

o Initial distribution is concentrated in one cell

» Images of the initial measure escape to infinity

« Dynamics inhomogeneous in time and space



Results obtained:

X(t)/t does NOT have a limit distribution...
X(t.)/t, has a limit distribution provided

{ log(t,)/10gA)} 2 p 0Osp<l
(here A>1 is the factor of expansion of cells)

Thus, limit distributions of X(t)/t change
cyclically as t—>eo

This fact was later confirmed in a computer
experiment by physicists...



Lorentz gas with a thermostat

Electrons move subject to a force:
dq/dt=p dp/dt = E

q denotes the position

p denotes the momentum (velocity)

E denotes the electric field (external force)




Lorentz gas with a thermostat

Electrons move subject to a force:
dq/dt=p dp/dt = E



Lorentz gas with a thermostat

Electrons move subject to a force:
dq/dt=p dp/dt = E - <E,p>p

e

Gaussian thermostat
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Lorentz gas with a thermostat

Electrons move subject to a force:
dq/dt=p dp/dt = E - <E,p>p
Now <p,p>=1 at all times.
In other words, the kinetic energy is kept constant.

The extra term prevents the electrons from speeding
(heating up) or slowing down (cooling down).

[t keeps the temperature fixed. Hence its name:

thermostat.



Constant speed => Dynamics spatially periodic
=> Phase space is compact
=> Finite invariant measure

Unique Sinai-Ruelle-Bowen (SRB) measure
(singular, but abs. cont. on unstable fibers)

Electrical current J=u(p) is average momentum
of moving electrons.

General features




EXISTING RESULTS:

Assume that horizon in the Lorentz gas is finite
(free flights of the electrons are bounded)

Then the electrical current satisfies

J=CE +o0o(|E]) (Ohm’s law)
Electrical conductivity C satisfies
C="D (Einstein relation)

D is the diffusion matrix:
q(t)//t => N(0,D)

(N.Chernov, G.Eyink, J.Lebowitz, Ya.Sinai 1993)




NEW RESULTS:

Assume that horizon in the Lorentz gas is infinite
(there are infinite corridors between ions)

Then the electrical current satisfies
J=CE |log(|E|)| + O(|EJ)
Electrical super-conductivity C satisfies
C=%D (analogue of Einstein relation)
D is the super-diffusion matrix
q(t)//t log(t) => N(O,D)

(N.Chernov & D. Dolgopyat 2009)




