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Stable Ergodicity

Let f : M → M be a Cr diffeomorphism, r ≥ 1

of a compact smooth connected Riemannian

manifold M preserving a Borel probability mea-

sure µ. It is called stably ergodic if there exists

a neighborhood U ⊂ Diffk(M,µ) (the space of

Ck diffeomorphisms, k ≤ r, preserving the mea-

sure µ) of f such that any Cr diffeomorphism

g ∈ U is ergodic.

Similarly, one can define the notions of systems

being stably mixing, stably Kolmogorov and

stably Bernoulli.
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The Conservative Case

f is a partially hyperbolic diffeomorphism pre-

serving a smooth measure µ. f possesses an

invariant decomposition of the tangent bundle:

TM = Es ⊕ Ec ⊕ Eu, dfEs,c,u(x) = Es,c,u(f(x))

and uniform expansion and contraction rates

along these subspaces:

λ1 < ν1 ≤ ν2 < λ2, λ1 < 1 < λ2.

The distributions Es and Eu are integrable to

invariant transversal continuous foliations with

smooth leaves W s and Wu. These foliations

possess absolute continuity property, i.e., the

conditional measures µs and µu generated by

µ on local stable and unstable manifolds are

equivalent to leaf volumes ms and mu.

The central distribution may or may not be in-

tegrable and even if it does the central foliation

my not be absolutely continuous.
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Two points x and y are accessible if there is a
path connecting them and consisting of pieces
of stable and unstable manifolds. f is acces-
sible if any two points are accessible and is
essentially accessible if the partition by acces-
sibility classes is trivial. f is center-bunched if
λ1 < ν1ν

−1
2 and λ2 > ν2ν

−1
1 .

Theorem (Burns-Wilkinson). Assume that f
is C2, essentially accessible and center-bunched.
Then f is ergodic. If in addition, f is stably
essentially accessible then it is stably ergodic
in Diff1(M,µ).

This result provides a partial solution of the
Pugh-Shub stable ergodicity conjecture for par-
tially hyperbolic diffeomorphisms. When the
center direction is one-dimensional the center-
bunched condition can be dropped leading to
a complete solution of the conjecture: stable
essential accessibility implies stable ergodicity
(Burns-Wilkinson, Hertz-Hertz-Ures).
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Accessibility

The first result on genericity of accessibility
was obtained by Dolgopyat and Wilkinson.

Theorem. Let f ∈ Diffq(M) ( f ∈ Diffq(M,µ)),
q ≥ 1, be partially hyperbolic. Then for every
neighborhood U ⊂ Diff1(M) (U ⊂ Diff1(M,µ))
of f there is a Cq diffeomorphism g ∈ U which
is stably accessible.

The proof uses Brin’s quadrilateral argument.
Given a point p ∈ M , let [z0, z1, z2, z3, z4] be
a 4-legged path originating at z0 = p. Con-
necting zi−1 with zi by a geodesic γi lying in
the corresponding stable or unstable manifold,
we obtain the curve Γp = ∪1≤i≤4 γi. We pa-
rameterize it by t ∈ [0,1] with Γp(0) = p. If
the distribution Es ⊕ Eu were integrable (and
hence, the accessibility property would fail) the
endpoint z4 = Γp(1) would lie on the leaf of the
corresponding foliation passing through p.
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Therefore, one can hope to achieve accessi-

bility by arranging a 4-legged path in such a

way that Γp(1) ∈W c(p) and Γp(1) 6= p. In this

case the path Γp can be homotoped through 4-

legged paths originating at p to the trivial path

so that the endpoints stay in W c(p) during the

homotopy and form a continuous curve. Such

a situation is usually persistent under small

perturbations of f and hence leads to stable

accessibility.

In the special case of 1-dimensional center bun-

dle, Didier has shown that accessibility is an

open dense property in the space of diffeomor-

phisms of class C2.
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Negative (positive) central exponents

A partially hyperbolic diffeomorphism f has neg-

ative (respectively, positive) central exponents

if there is a set A ⊂ M of positive ν-measure

such that for every x ∈ A and every v ∈ Ec(x)

the Lyapunov exponent χ(x, v) < 0 (respec-

tively, χ(x, v) > 0).

Theorem (Burns-Dolgopyat-Pesin). Assume

that f is C2, essentially accessible and has neg-

ative (or positive) central exponents. Then f

is stably ergodic in Diff1(M,µ).
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The Dissipative Case

f : M → M is a C2 diffeomorphism of a com-

pact manifold M .

Λ is an attractor if it is compact invariant and

there exists an open neighborhood U of Λ s.t.

f(U) ⊂ U and Λ =
⋂
n≥0 f

n(U). U is the basin

of attraction.

Λ is a partially hyperbolic attractor if it is an

attractor for f and f |Λ is partially hyperbolic,

i.e., the tangent bundle TΛ admits an invariant

splitting TΛ = Es⊕Ec⊕Eu into stable, center,

and unstable subbundles.

Eu is integrable; Λ is the union of the global

strongly unstable manifolds of its points, i.e.,

Wu(x) ⊂ Λ for every x ∈ Λ.
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A measure µ on Λ is called a u-measure if for

a.e. x ∈ Λ the conditional measure µu(x) gen-

erated by µ on Wu(x) is equivalent to the leaf

volume mu(x) on Wu(x).

Problems

1. Existence of u-measures.

2. Relations between u-measures and SRB-

measures; in particular, between the basins of

u-measures and the basin of attraction.

3. (non)uniqueness of u-measures.

4. u-measures with negative central exponents;

ergodic properties and examples. Uniqueness

of u-measures with negative central exponents.

5. Stability of u-measures under small pertur-

bations of the map.
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Existence of u-measures

Starting with a measure κ in a neighborhood U
of Λ, which is absolutely continuous w.r.t. the
Riemannian volume m, consider its evolution,

µn =
1

n

n−1∑
i=0

f i∗κ. (1)

Any limit measure µ is concentrated on Λ.

Theorem (Pesin-Sinai, Bonatti-Diaz-Viana).
Any limit measure µ is a u-measure.

Fix x ∈ Λ and consider a local unstable leaf
V u(x) through x. We can view the leaf volume
mu(x) on V u(x) as a measure on the whole of
Λ. Consider its evolution

νn =
1

n

n−1∑
i=0

f i∗m
u(x). (2)

Any limit measure ν is concentrated on Λ.

Theorem (Pesin-Sinai). Any limit measure of
the sequence (2) is a u-measure.
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The basin of the measure

Given an invariant measure µ on Λ, define its
basin B(µ) as the set of points x ∈ M for
which the Birkhoff averages Sn(ϕ)(x) converge
to

∫
M ϕdµ as n → ∞ for all continuous func-

tions ϕ.

If Λ is a hyperbolic attractor then µ is an SRB
measure iff its basin has positive measure.

Theorem (Bonatti-Diaz-Viana). Any measure
with basin of positive volume is a u-measure.

While any partially hyperbolic attractor has a
u-measure, measures with basins of positive
volume need not exist (just consider the prod-
uct of the identity map and a diffeomorphism
with a hyperbolic attractor).

Theorem (Dolgopyat). If there is a unique
u-measure for f in Λ, then its basin has full
volume in the topological basin of Λ.
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u-measures with negative central exponents

µ is a u-measure for f . We say that f has

negative central exponents if there is A ⊂ Λ

with µ(A) > 0 s.t. the Lyapunov exponents

χ(x, v) < 0 for any x ∈ A and v ∈ Ec(x).

Theorem (Burns-Dolgopyat-Pesin-Pollicott). As-

sume that: 1) there exists a u-measure µ for f

with negative central exponents; 2) for every

x ∈ Λ the global unstable manifold Wu(x) is

dense in Λ. Then

(1) µ is the only u-measure for f and hence,

the unique SRB measure;

(2) f has negative central exponents at µ-a.e.

x ∈ Λ; (f, µ) is ergodic and indeed, is Bernoulli;

(3) the basin of µ has full volume in the topo-

logical basin of Λ.
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Constructing negative central exponents

There are partially hyperbolic attractors for

which any u-measure has zero central expo-

nents (the product of an Anosov map and the

identity map of any manifolds).

There are partially hyperbolic attractors which

allow u-measures with negative central expo-

nents but not every global manifold Wu(x) is

dense in the attractor (the product of an Anosov

map and the map of the circle leaving north

and south poles fixed).
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Small perturbations of systems with zero cen-

tral exponents.

(1) Shub and Wilkinson considered small per-

turbations F of the direct product F0 = f × Id,

where f is a linear Anosov diffeo and the iden-

tity acts on the circle. They constructed F in

such a way that it preserves volume, has nega-

tive central exponents on the whole of M and

its central foliation is not absolutely continu-

ous ( “Fubini’s nightmare”).

(2) Ruelle extended this result by showing that

for an open set of one-parameter families of

(not necessarily volume preserving) maps Fε

through F0, each map Fε possesses a u-measure

with negative central exponent.
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(3) Dolgopyat showed that, in the class of
skew products, negative central exponents ap-
pear for generic perturbations and that there is
an open set of one-parameter families of skew
products near F0 = f × Id (f is an Anosov
diffeomorphism and Id is the identity map of
any manifold) where the central exponents are
negative with respect to any u-measure.

(4) Dolgopyat also considered a one-parameter
family fε where f0 is the time-1 map of the
geodesic flow on the unit tangent bundle over
a negatively curved surface. It is shown that
in the volume-preserving case, generically, ei-
ther fε or f−1

ε has negative central exponent for
small ε and that there is an open set of non
conservative families where the central expo-
nent is negative for any u-measure.

(6) Barraveira and Bonatti proved that if all
the Lyapunov exponents in the central direc-
tions are zero then by an arbitrary small per-
turbation one can obtain that their sum can be
made negative on a set of positive measure.
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Systems with zero central exponents subjected

to rare kicks.

Given diffeomorphisms f and g, let Fn = fn ◦g.

Dolgopyat has shown that if f is either a T1-

extension of an Anosov diffeomorphism or the

time-1 map of an Anosov flow and g is close

to Id, then, for typical g and any sufficiently

large n, either Fn or F−1
n has negative central

exponent with respect to any u-measure.
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Stable ergodicity for dissipative systems

Any C1 diffeomorphism g sufficiently close to f

in the C1 topology has a hyperbolic attractor

Λg which lies in a small neighborhood of Λf .

Theorem (Burns-Dolgopyat-Pesin-Pollicott). Let

f be a C2 diffeo with a partially hyperbolic

attractor Λf . Assume that 1) there is a u-

measure µ for f with negative central expo-

nents on a subset A ⊂ Λf of positive measure;

and 2) for every x ∈ Λf the global strongly un-

stable manifold Wu(x) is dense in Λf . Then

any C2 diffeomorphism g sufficiently close to

f in the C1+α-topology (for some α > 0) has

negative central exponents on a set of positive

measure with respect to a u-measure µg. This

measure is the unique u-measure (and SRB

measure) for g, g|Λg is ergodic with respect to

µg (indeed is Bernoulli), and the basin B(µg)

has full volume in the topological basin of Λg.
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Attractors with positive central exponents

Alves, Bonatti and Viana obtained an ergodic-

ity result under the stronger assumption that

there is a set of positive volume in a neigh-

borhood of the attractor with positive central

exponents.

Vasquez proved a stable ergodicity result.

Theorem. Let f be a C2 diffeo with a partially

hyperbolic attractor Λf . Assume that:

1) there is a unique u-measure µ for f with

positive central exponents on a subset A ⊂ Λf
of full measure;

2) for every x ∈ Λf the global strongly unstable

manifold Wu(x) is dense in Λf .

Then f is stably ergodic.
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Presence of nonuniformly hyperbolic

dynamical systems on any manifold

Theorem (Dolgopyat-Pesin). Given a com-

pact smooth Riemannian manifold K 6= S1

there exists a C∞ diffeomorphism f of K such

that

1. f preserves the Riemannian volume m;

2. f has nonzero Lyapunov exponents a.e. ;

3. f is a Bernoulli diffeomorphism.
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Katok’s Example

There exists an area-preserving C∞ diffeo of

the disk D2 s.t.

(1) g has nonzero Lyapunov exponents a.e.

(2) g is uniformly hyperbolic outside a small

neighborhood U of the singularity set Q =

∂D2 ∪ {p1, p2, p3}, i.e., there exists λ > 1, s.t.

‖dg|Esg(x)‖ ≤
1

λ
, ‖dg−1|Eug (x)‖ ≤

1

λ
.

(3) g has two invariant stable and unstable fo-

liations, W s
g , Wu

g of D2 \Q with smooth leaves.

The foliations are continuous and absolutely

continuous.
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Brin’s Example

1. A is a volume preserving hyperbolic auto-
morphism of the torus Tn−3.

2. T̃ t is a the suspension flow over A with a
constant roof function. The flow T̃ t is Anosov
but does not have the accessibility property.
However, one can perturb the roof function
s.t. the new flow T t (which is still Anosov)
does have the accessibility property.

The phase space Y n−2 of T t is diffeomorphic
to the product Tn−3 × [0,1], where the tori
Tn−3 × 0 and Tn−3 × 1 are identified by the
action of A.

3. The skew product R on D2 × Y n−2

R(x, y) = (g(x), Tα(x)(y)),

where α is a non-negative function on D2 which
is equal to zero in the neighborhood U of the
singularity set Q and is strictly positive other-
wise.
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Properties of the Map R

Γ = Q× Y n−2 is the singularity set for R, Ω =

(D2 \ U)× Y n−2

1. R is uniformly partially hyperbolic on Ω:

TzM = EsR(z)⊕ EcR(z)⊕ EuR(z), z ∈ Ω

and for some µ > 1

‖dg|EsR(z)‖ ≤
1

µ
, ‖dg−1|EuR(z)‖ ≤

1

µ
.

2. The distributions EsR(z) and EuR(z) generate

two C1 continuous foliations W s
R and Wu

R on

M \ Γ.

3. R has essential accessibility property.

4. m {x ∈M : Rn(x) ∈ U} = 0.
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The Embedding

There is a smooth embedding

χ1 : D2 × Y n−2 → Bn

which is a diffeo except for the boundary ∂D2×
Y n−2. There is a smooth embedding χ2 : Bn →
M which is a diffeo except for the boundary

∂Bn. Since the map R is identity on the bound-

ary ∂D2×Y n−2 the map h = (χ1◦χ2)◦R◦(χ1◦
χ2)−1 has the following properties:

1. h preserves the Riemannian volume;

2. h is a Bernoulli diffeo.;

3. h has only one zero Lyapunov exponent.
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The Perturbation

Given r > 0 and ε > 0, there is a Cr diffeo

P : M →M which preserves volume m and s.t.

(1) dCr(P,R) ≤ ε and P is gentle, i.e., P is

concentrated outside the singularity set Ω;

(2) a.e. orbit of P is dense in M ;

(3) for a.e. z ∈M there exists a decomposition

TzM = EsP (z)⊕ EcP (z)⊕ EuP (z)

s.t. dimEcP (z) = 1 and∫
M
χcP (z) dm < 0,

where χcP (z) = limn→∞ 1
n log ‖dfn|EcP (z)‖ is the

Lyapunov exponent at z ∈ M in the central

direction.
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Choose a coordinate system {x, ξ} s.t. dm =

ρ(x, ξ)dx dξ and

EcT (y0) =
∂

∂ξ1
, EsT (y0) = 〈

∂

∂ξ2
, . . . ,

∂

∂ξk
〉,

EuT (y0) = 〈 ∂
∂ξk+1

, . . . , ∂
∂ξn−2

〉

for some k, 2 ≤ k < n − 2. Let ψ(t) be a

C∞ function with compact support and τ =
1
γ2(‖x‖2 + ‖ξ‖2). Define

ϕ(x, ξ) = (x, ξ1 cos (εψ(τ)) + ξ2 sin (εψ(τ)),

−ξ1 sin (εψ(τ)) + ξ2 cos (εψ(τ)), ξ3, . . . , ξn−2).
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