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DYNAMICS AND INTERVAL-EXCHANGE TRANSFORMATIONS

GIOVANNI FORNI
(Communicated by Anatole Katok)

ABSTRACT. We review the Brin prize work of Artur Avila on Teichmüller dy-
namics and Interval Exchange Transformations. The paper is a nontechnical
self-contained summary that intends to shed some light on Avila’s early ap-
proach to the subject and on the significance of his achievements.
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1. INTRODUCTION

The Brin prize work of Artur Avila includes two papers related to Teichmüller
dynamics and interval-exchange transformations. In the paper [4], Avila and
the author solve a long standing open problem in ergodic theory by proving
that almost all irreducible interval-exchange transformations (that are not rota-
tions) are weakly mixing. In [8], Avila and M. Viana prove the simplicity of the
so-called Kontsevich–Zorich spectrum, that is, the Lyapunov spectrum of the
Kontsevich–Zorich cocycle, thereby finishing off the proof of the Kontsevich–
Zorich conjecture, partially achieved by the author of this paper [21]. It should
be noted that the approach of Avila–Viana’s paper [8] is different from that of
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[21] and provides a completely independent proof of the full Kontsevich–Zorich
conjecture (or at least its spectral part). Avila’s early work on the subject includes
two other papers, namely [6] and [3], which are closely related to the Prize work.
In [6], Avila, S. Gouëzel and J.-C. Yoccoz prove that the Teichmüller flow has
exponential decay of correlations (for observables in the Ratner class) and the
SL(2,R) action on the moduli space of Abelian differentials has a spectral gap
(in the sense of analysis or representation theory). This result answers a nat-
ural question in Teichmüller dynamics asked by several authors after Veech’s
proof of the mixing property [52]. In the paper [3], Avila and A. Bufetov prove
exponential decay of correlations for a certain return map of the Teichmüller
flow to a noncompact section of infinite transverse volume, called the Rauzy–
Veech–Zorich induction. This work is a spin-off of [6] and of Bufetov’s thesis
work (which contains a weaker result for the same system) and will not be ex-
amined in this paper.

Among the more recent contributions of Avila on the subject, his joint paper
with M. J. Resende generalizes the result of [6] on exponential decay of corre-
lations of the Teichmüller flow to strata of quadratic differentials and his joint
paper with S. Gouëzel goes further to prove a precise spectral gap result for all
algebraic SL(2,R) measures on the moduli space of Abelian differentials. The
latter paper, quite remarkable, represents a departure from previous work of
Avila on the subject. In fact, as we will outline in this paper, Avila’s approach to
Teichmüller flow in his early work is via a well-known symbolic model based
on the Rauzy–Veech induction map and the techniques are often combinatorial.
The paper [5] does not rely on the aforementioned symbolic model and applies
analytic techniques developed in the study of mixing for Anosov flows together
with geometric estimates. It is beyond the scope of our paper. Avila’s work on
Teichmüller dynamics is tied to his work on one-dimensional dynamics and
Schrödinger operators by the emphasis on renormalization methods in dynam-
ical systems. In fact, the Rauzy–Veech–Zorich induction and the Teichmüller
flow are renormalization dynamics for interval exchange transformations and
their suspensions, that is, for translation flows. They respectively generalize the
Gauss map and the hyperbolic geodesic flow on the modular surface, classical
examples of renormalization systems (for rotations of the circle and for linear
flows on tori).

The two Brin prize papers [4] and [8] and the related paper [6] will be the
focus of our review. We will describe the main results and ideas in these papers
emphasizing common threads with the goal of giving an account of Avila’s early
point of view on the subject. It should be noted that, because of publishing
delays, the above three papers were published in reverse chronological order
with respect to the order in which they were written between 2004 and 2005.

The plan of this this paper is as follows. In Section 2 we review the fundamen-
tal definitions and results of the theory of interval-exchange transformations, of
the Rauzy–Veech–Zorich cocycle, of the zippered rectangles and of the Teichmül-
ler flow and state the main results of Avila in this subject. In Section 3 we give
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a nontechnical outline of the main ideas in Avila’s approach to the dynamics of
the Rauzy–Veech–Zorich cocycle and of the proofs of his main theorems.

2. MAIN RESULTS

In this section we review basic notions and results on the dynamics interval-
exchange transformations and of the associated renormalization schemes, the
Rauzy–Veech–Zorich induction and the Teichmüller flow, and state Avila’s main
results on the subject. There are several excellent surveys on interval-exchange
transformations and Teichmüller dynamics (see for instance [62, 53, 55]) and
we refer the reader to those for a complete introduction to the subject.

2.1. Interval Exchange Transformations. Interval Exchange Transformations
can be briefly defined as piecewise continuous isometries (translations) of a
finite interval with finitely many discontinuities. They were introduced by Os-
eledets [44] motivated by a question of Arnold [1]. An important source of moti-
vation for their study also came in the ’80s from work of Novikov and its school
on Hamiltonians with multivalued first integrals (locally Hamiltonian vector
fields), in particular semiclassical models of the motion of an electron on the
Fermi surface of an atom and related questions (see [61] and references therein).
From the point of view of dynamical systems, interval-exchange transformations
and their suspensions are the simplest generalization of circle rotations and lin-
ear flows on two-dimensional tori.

Let d ≥ 2 be a natural number and let π be an irreducible permutation of
{1, . . . ,d}, that is, π{1, . . . ,k} 6= {1, . . . ,k}, 1 ≤ k < d . Given λ ∈ Rd+, the interval-
exchange transformation f := f (λ,π) is the map defined as follows (see [44, 16,
32]): we consider the interval

I := I (λ) =
[

0,
d∑

i=1
λi

)
,

break it into subintervals

Ii := Ii (λ,π) =
(∑

j<i
λ j ,

∑
j≤i

λ j

)
, 1 ≤ i ≤ d ,

and rearrange the Ii according to π (in the sense that the i -th interval is mapped
onto the π(i )-th interval). In other words, f : I → I is given by the formula

x 7→ x + ∑
π( j )<π(i )

λ j −
∑
j<i

λ j , x ∈ Ii .

Interval-exchange transformations on two subintervals (d = 2) are isomor-
phic to circle rotations, interval-exchange transformations on three subintervals
can all be obtained as return maps of a circle rotation to a subinterval. Thus the
minimum number of subintervals for genuinely new dynamical phenomena is
four. Most results on the dynamics of interval-exchange transformations hold
for almost all λ ∈Rd+. A condition, due to Keane, called the Keane condition [32],

JOURNAL OF MODERN DYNAMICS VOLUME 6, NO. 2 (2012), 139–182



142 GIOVANNI FORNI

which holds everywhere but for a countable union of subspaces of the param-
eter space implies minimality of interval-exchange transformations (see also
[44]).

One of the reasons interval-exchange transformations are interesting from
a dynamical systems point of view is the fact that not all minimal interval-
exchange transformations on at least four intervals are uniquely ergodic, in con-
trast with the case of rotations. Nevertheless, by the Keane conjecture, eventually
proved independently by H. Masur [41] and W. Veech [50] using different renor-
malization methods, almost all (irreducible) interval-exchange transformations
are uniquely ergodic. A. Katok [30] had proved earlier that interval-exchange
transformations are never mixing. It is thus fair to say that after the proof of the
Keane conjecture the question whether almost all interval-exchange transfor-
mations are weakly mixing became the main open problem on the dynamics of
interval-exchange transformations.

2.1.1. Weak mixing. We recall that the weak mixing property of a measurable
map f on a probability space (X ,µ) is intermediate between ergodicity and mix-
ing and has several equivalent formulations. For instance, the map f is weakly
mixing if and only if, for all pairs of measurable sets A, B ⊂ X ,

lim
N→+∞

1

N

N∑
n=0

|µ( f −n(A)∩B)−µ(A)µ(B)| = 0.(1)

Another equivalent formulation is the existence of mixing sequences of density
one, that is, of subsets I ⊂N of upper density one such that

lim
n∈I

µ( f −n(A)∩B) =µ(A)µ(B) .(2)

Weak mixing is an important spectral property, equivalent to the statement that
the unitary action of f on L2(X ,dµ) has no nonconstant eigenfunctions (that is,
the spectrum is continuous). It is the latter characterization that is applied in
most proofs of weak mixing, including Avila’s work [4] as we shall see below.

Avila’s main result on interval-exchange transformations [4] establishes weak
mixing for almost all interval-exchange transformations that are not rotations.

THEOREM 1 ([4]). Let π be any irreducible permutation of {1, . . . ,d} that is not a
rotation. For almost every λ ∈Rd+, the map f (λ,π) is weakly mixing.

Katok and Stepin [31] had proven much earlier that interval-exchange trans-
formations on three subintervals are indeed almost always weakly mixing, so
it was natural to conjecture that the same conclusion should hold for interval-
exchange transformations on at least four subintervals that are not rotations.
The first important partial result was obtained by Veech [51] who proved weak
mixing for almost all parameter values and for infinitely many special permuta-
tions. The Veech criterion for weak mixing (see below) will also be the starting
point of Avila’s work [4] (although the authors did not know Veech’s work, it
did not take long for Avila to rederive the Veech criterion). Later Nogueira and
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Rudolph [43] were able to prove topological weak mixing for general permu-
tations. It is interesting to note that interval-exchange transformations can be
topologically mixing as proved recently by Jon Chaika [15].

2.1.2. The Kontsevich–Zorich conjecture. After the proof of the Keane conjecture,
another crucial development in the theory of interval-exchange transformations
came in the ’90s with A. Zorich’s work (in collaboration with M. Kontsevich). It
is interesting to note that the Kontsevich–Zorich work led to advances that also
turned out to play a key role in the weak-mixing result stated above. Zorich
became interested in deviations of ergodic averages from the mean, which he
discovered numerically, after his work on Novikov’s problem on the semiclassi-
cal motion of an electron in a homogeneous magnetic field [56, 61].

We briefly summarize below the main aspects of the Kontsevich–Zorich work
on deviations of ergodic averages. Let π be any irreducible permutation of
{1, . . . ,d}, let λ ∈Rd+ and let f := f (π,λ) be the corresponding interval-exchange
transformation. Let Ii = Ii (λ) denote as above the subintervals of continuity of
f on the interval I := I (λ). For all i ∈ {1, . . . ,d} and for all n ∈N, let

Ni (x,n) := #{k ∈ {0, . . . ,n −1}| f k (x) ∈ Ii } .(3)

By unique ergodicity (the Keane conjecture, proved by Masur [41] and Veech
[50]), it follows that, for almost all λ ∈ Rd+, for all i ∈ {1, . . . ,d} and for all x ∈ I
with infinite orbit

lim
n→+∞

Ni (x,n)

n
= lim

n→+∞
1

n

n−1∑
k=0

χIi ◦ f k (x) =
∫

I
χIi (x)d x =λi .

Zorich (see [59, 61]) proved the following result on the deviation of ergodic
averages of interval-exchange transformations. Let g := g (π) ≥ 1 be the genus
of the surface obtained by suspension of an interval-exchange transformation
(see Section 2.3.2 below). The genus only depends on the number of subinter-
vals and on the permutation. It is one for interval-exchange transformations on
two or three subintervals and higher than one for interval-exchange transforma-
tions on at least four intervals for most permutations. For all (x,n) ∈ I ×N, let
N (x,n) := (N1(x,n), . . . , Nd (x,n)). There exist deviation exponents

ν1 = 1 > ν2 ≥ ·· · ≥ νg ≥ νg+1 = 0(4)

and, for almost all λ ∈Rd+, there exists a filtration of subspaces

V1(λ) =Rλ⊂V2(λ) ⊂ ·· · ⊂Vg (λ) ⊂Vg+1 ⊂Rd

such that whenever Φ ∈Vs(λ)⊥àVs+1(λ)⊥, for all x ∈ I with infinite orbit,

limsup
n→+∞

log |〈Φ, N (x,n)〉|
logn

= νs+1 .

In addition, whenever Φ ∈V (λ)⊥g+1, then

|〈Φ, N (x,n)〉| ≤ Constant, for all n ∈N .
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Motivated by numerical experiments, Zorich conjectured that

ν1 = 1 > ν2 > ·· · > νg > 0.(5)

The Zorich conjecture was reformulated by Kontsevich [35] for the equivalent
case of flows on surfaces of higher genus. It became known as the Kontsevich–
Zorich (or Zorich–Kontsevich) conjecture. The author of this paper was able
to prove that the numbers ν1 ≥ ·· · ≥ νg are all nonzero (see [21, 22, 24]). Avila
and Viana were later able to give an independent complete proof of the full
Kontsevich–Zorich conjecture.

THEOREM 2 ([8, 9]). The Kontsevich–Zorich conjecture on the deviation expo-
nents holds for all irreducible permutations.

In Zorich’s work [58] the numbers in formula (4) arise as Lyapunov expo-
nents of the so-called Zorich acceleration of the Rauzy–Veech cocycle, which will
be introduced in the next section. Kontsevich [35] introduced an essentially
equivalent continuous-time cocycle over the Teichmüller geodesic flow, now
called the Kontsevich–Zorich cocycle. The Kontsevich–Zorich conjecture there-
fore affirms that the Lyapunov spectrum of the Rauzy–Veech–Zorich cocycle (or,
equivalently, of the Kontsevich–Zorich cocycle) is nonuniformly hyperbolic and
simple (that is, all the exponents are nonzero and distinct).

The Kontsevich–Zorich conjecture has several implications for the deviation
of ergodic averages of interval-exchange transformations. In fact, if the expo-
nents are strictly positive, then polynomial deviations are really taking place
and the Denjoy–Koksma inequality fails; Zorich had proved several conditional
results which can be summarized by the statement that the filtration V1(λ) ⊂
·· · ⊂ Vg (λ) is a Lagrangian flag (in the sense that Vi+1(λ)/Vi (λ) is a line for
all i ∈ {1, . . . , g −1}, and Vg (λ) = Vg+1(λ) is Lagrangian with respect to a natural
symplectic structure. Although the nonvanishing of exponents is the crucial in-
formation for many applications, the additional information provided by the
full conjecture is often relevant (see for instance [14]). There are other impor-
tant consequences of the Kontsevich–Zorich conjecture, in particular for the
fine properties of the cohomological equation for interval-exchange transforma-
tions and translation flows (see [20, 38, 23]) and for the related local smooth
conjugacy problem (see [39]).

2.2. The Rauzy–Veech–Zorich cocycle. The Rauzy–Veech–Zorich cocycle is the
Rauzy–Veech cocycle over the Zorich acceleration of the Rauzy–Veech map. The
Rauzy–Veech map is based on an induction procedure for interval-exchange
transformations [45, 49, 50]. It is a key elementary fact that the return map of
any interval-exchange transformation on d subintervals to any subinterval (not
necessarily to a subinterval of continuity) is an interval-exchange transforma-
tion on at most d + 1 subintervals. If the end-points of a subinterval are dis-
continuities (or end-points) of an interval-exchange transformation on d subin-
tervals, then the induced interval-exchange transformation is again on exactly
d subintervals. Inducing therefore defines a map on the space of all interval-
exchange transformations on d subintervals, which acts (after rescaling) as a
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‘renormalization’. For the case of two subintervals the above construction yields
the Farey map, which appears in the theory of continued-fraction expansions
of real numbers.

The combinatorial structure of the Rauzy–Veech induction is easier to ana-
lyze by writing the combinatorial data of interval-exchange transformations in a
more efficient and flexible way, which avoids computing the inverse of a permu-
tation at each step of the induction. We recall that notation before proceeding
to give the definition of the induction.

Let A be a set with d ≥ 2 letters, called the alphabet and let (πt ,πb) be a pair
of bijections πt ,πb : A → {1, . . . ,d}. For any λ ∈RA+ , the interval-exchange trans-
formation f := f (λ,πt ,πb) is described as follows: arrange d intervals labeled by
the letters of the alphabet A and of corresponding lengths given by the vector
λ ∈RA+ according to the map πt (top arrangement) and according to the map πb

(bottom arrangement), then translate every subinterval of the top arrangement
into the subinterval of the bottom arrangement of the same label.

The above setup is related to the more traditional definition as follows. The
map f (λ,πt ,πb) is the interval-exchange transformation with permutation πb ◦
π−1

t and length vector λ◦π−1
t . In particular, for each α ∈A , we define the subin-

tervals

I t
α(λ,πt ) =

( ∑
πt (β)<πt (α)

λα,
∑

πt (β)≤πt (α)

λα

)
,

I b
α(λ,πb) =

( ∑
πb (β)<πb (α)

λα,
∑

πb (β)≤πb (α)

λα

)
.

The interval-exchange transformation f := f (λ,πt ,πb) is defined on the interval

I (λ) = [0,
∑
α∈A

λα) ,

as the piecewise translation which maps I t
α(λ,πt ) onto I b

α(λ,πt ), for all α ∈ A ,
given by the formula

x 7→ x + ∑
πb (β)<πb (α)

λβ−
∑

πt (β)<πt (α)
λβ , x ∈ I t

α(λ,πt ) .

The irreducibility condition on the pair (πt ,πb) is by definition equivalent to the
irreducibility condition on the permutation πb ◦π−1

t , that is,

π−1
t {1, . . . ,k} 6=π−1

b {1, . . . ,k}, for all k ∈ {1, . . . ,d} .

2.2.1. The Rauzy–Veech map. Let us now introduce the Rauzy induction. Let
us consider irreducible combinatorial data and let us denote by αt , αb the let-
ters of the alphabet such that πt (αt ) = d and πb(αb) = d , that is, the labels of
the last intervals to the right on the top and bottom arrangements. If λαt 6=λαb

(hence by irreducibility αt 6=αb), we consider the first-return map to the com-
plement of the shortest of the rightmost interval in the top arrangement and
the rightmost interval in the bottom arrangement. If λαt = λαb , we let the in-
duction be undefined. In case λαt >λαb the procedure is called a top operation;
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in case λαt < λαb it is called a bottom operation. In case of a top/bottom op-
eration the labeling on the top/bottom is left unchanged. For a top operation
all intervals in the top arrangement return after a single iteration except for
the subinterval I t

αb
, which returns after two iterations to the bottom subinter-

val I b
αt

, which is thus split into two subintervals, labeled by αb and αt . Thus,
while the map πt is unchanged, the map πb is modified by composition with
a cycle on (πb(αt )+1, . . . ,d). The letter αt is called the winner, the letter αb is
called the loser. Similarly, for a bottom operation all subintervals in the top ar-
rangement return after a single iteration with the exception of the portion of
the top interval I t

αb
, which is mapped onto the top subinterval I t

αt
. Thus while

the map πb is unchanged, the map πt is modified by composition with a cycle
on (πt (αb)+1, . . . ,d). The letter αb is called the winner, the letter αt is called the
loser. The bottom operation is equivalent to the top operation for the inverse
interval-exchange transformation and vice versa.

According to the above description, the induced map is an interval-exchange
transformation f (λ′,π′

t ,π′
b) that is uniquely determined by the following data

(λ′,π′
t ,π′

b). For a top Rauzy operation, the combinatorial data transform as

π′
t =πt and π′

b = (πb(αt )+1, . . . ,d)◦πb ,(6)

while the length data transform according to the formulas

λ′
α =

{
λαt −λαb , for α=αt ;

λα , for α 6=αt .
(7)

For a bottom Rauzy operation, the combinatorial data transform as

π′
t = (πt (αb)+1, . . . ,d)◦πt and π′

b =πb ,(8)

while the length data transform according to the formulas

λ′
α =

{
λαb −λαt , for α=αb ;

λα , for α 6=αb .
(9)

The above formulas for the transformation of the length data can be sum-
marized as follows. For all α 6= β ∈ A , let Eαβ denote the elementary matrix
with a single nonzero entry, in the position αβ, equal to 1. For any well-defined
Rauzy–Veech induction step starting at (λ,πt ,πb) with winner α and loser β, let
C (λ,πt ,πb) = I +Eαβ. The length data transform according to the formula

λ=C (λ,πt ,πb)λ′ = (I +Eαβ)λ′ .(10)

It is crucial for the theory of the Rauzy–Veech induction that all the matrices
C (λ,πt ,πb) and their products are nonnegative with integer entries.

Let ΣA = {(πt ,πb)|πt ,πb : A → {1, . . . ,d}} be the set of all (irreducible) combi-
natorial data. The Rauzy–Veech induction yields a map on the space RA ×ΣA ,
defined on the complement of finitely many hyperplanes. The Rauzy–Veech map
is the projectivization R on PA+ ×ΣA of the Rauzy–Veech induction, that is, the
map defined as

R([λ],πt ,πb) = ([λ′],π′
t ,π′

b) , for all ([λ], (πt ,πb)) ∈PA
+ ×ΣA .
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The dynamics of the Rauzy–Veech map is thus defined almost everywhere with
respect to the Lebesgue measure. In fact, every interval-exchange transforma-
tion satisfying the Keane condition has an infinite forward orbit under the Rauzy–
Veech map. It should be noted that the Rauzy–Veech map is weakly expanding,
in the sense that, since

R{([λ],πt ,πb)|λαt >λαb } = R{([λ],πt ,πb)|λαt <λαb } =PA
+ × {(π′

t ,π′
b)} ,

the simplex PA+ × {(πt ,πb)} is mapped 2-to-1 onto the simplex PA+ × {(π′
t ,π′

b)}.

Under the action of the Rauzy–Veech map the space PA+ ×ΣA splits into the
union of finitely many invariant components. A Rauzy class C (πt ,πb) of a pair
(πt ,πb) ∈ ΣA is the subset of all combinatorial data (π′

t ,π′
b), which can be ob-

tained from (πt ,πb) after finitely many top/bottom operations (given in formu-
las (6) and (8)). By construction, for every Rauzy class C ⊂ΣA , the Rauzy–Veech
map restricts to a map RC on PA+ ×C . By a theorem of Masur [41] and Veech
[50], for every Rauzy class, the Rauzy–Veech map admits an ergodic, conserva-
tive, absolutely continuous invariant measure of infinite total mass, unique up
to scalar multiples, with a positive analytic density. The refined combinatorial
structure of the Rauzy–Veech induction is encoded in the so-called Rauzy graph,
which contains the information about exactly which paths in the Rauzy classes
are admissible, that is, do appear under the action of the Rauzy–Veech map. The
vertices of the Rauzy graph are elements of the set ΣA . Every vertex has exactly
two incoming and two outgoing arrows corresponding to top/bottom Rauzy–
Veech operations. Each arrow can also be labeled by the letters of the alphabet
that are the winner and the loser of the corresponding Rauzy–Veech operation.
A Rauzy diagram is a connected component of the Rauzy graph; hence, it corre-
sponds to a unique Rauzy class.

2.2.2. The Rauzy–Veech–Zorich cocyle. The Rauzy–Veech cocycle CR is a cocy-
cle over the Rauzy–Veech map R generated by the transpose C∗ of the matrix-
valued function C : PA+ ×ΣA → SL(d ,Z) of formula (10). The cocycle is defined
as follows: for all ([λ],πt ,πb , v) ∈PA+ ×ΣA ×RA , let

CR ([λ],πt ,πb , v) = (
R([λ],πt ,πb),C∗(λ,πt ,πb)v

)
.(11)

The significance of this cocycle for the dynamics of interval-exchange transfor-
mations is as follows. For all n ∈N, let ([λ(n)],π(n)

t ,π(n)
b ) = Rn([λ],πt ,πb) and let

C∗
n (λ,πt ,πb) =

n−1∏
j=1

C∗(λ( j ),π( j )
t ,π( j )

b ) .

Let f := f (λ,πt ,πb) and, for all n ∈N, let f (n) = f (λ(n),π(n)
t ,π(n)

b ). For all α ∈ A

and all x ∈ I t
α(λ(n),π(n)

t ), let N (n)
αβ

(λ,πt ,πb) be the number of visits of the orbit of

x under f to the subinterval I t
β

(λ,πt ) up to the first return time to I (λ(n)). For

all n ∈N and for every α, β ∈A , we have

C∗
n (λ,πt ,πb)αβ = N (n)

αβ
(λ,πt ,πb) .(12)
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This property is easily verified for n = 1 since by construction the top interval
I t
β

(λ′,π′
t ,π′

b) labeled by the loser β ∈ A visits the top subinterval I t
α(λ,πt ,πb)

labeled by the winner α ∈A exactly once (at the first iteration) before returning
(at the second iteration), while all other subintervals return at the first iteration.
By the cocycle property the identity is preserved under iteration of the Rauzy–
Veech induction procedure.

In view of the above discussion, it becomes clear that the Rauzy–Veech cocy-
cle is designed exactly to keep track of the frequency of the visits of orbits of an
interval-exchange transformation to the subintervals. The Lyapunov structure
of the Rauzy–Veech cocycle is therefore relevant to the question of deviations
of ergodic averages for interval-exchange transformations. Unfortunately, Os-
eledets Theorem cannot be applied directly to the Rauzy–Veech cocycle to prove
existence of Lyapunov exponents.

Zorich [58] solved this problem by considering a suitable acceleration of the
Rauzy–Veech induction step. For every ([λ],πt ,πb) ∈ PA+ ×ΣA , let n(λ,πt ,πb)
be the maximal number of successive Rauzy–Veech induction steps starting at
([λ],πt ,πb) that are of the same top/bottom type. The Zorich acceleration is the
map Z on PA+ ×ΣA defined as follows: for almost all ([λ],πt ,πb) ∈PA+ ×ΣA ,

Z ([λ],πt ,πb) = Rn(λ,πt ,πb )([λ],πt ,πb) .(13)

The Rauzy–Veech cocycle induces a cocycle ZB , called the Rauzy–Veech–Zorich
cocycle, over the Zorich acceleration map, generated by the matrix-valued func-
tion CZ : PA+ ×ΣA → GL(d ,Z) defined by formula: for all ([λ],πt ,πb) ∈PA+ ×ΣA ,

CZ (λ,πt ,πb) =
n(λ,πt ,πb )−1∏

n=0
(C∗ ◦Rn)(λ,πt ,πb) .(14)

Zorich’s key contribution was to prove that the Zorich acceleration map has, for
every Rauzy class R, a finite absolutely continuous ergodic invariant measure
µR (unique up to normalization) and that the Rauzy–Veech–Zorich cocycle is
log integrable, that is, it satisfies the hypotheses of the Oseledets Theorem [58].
The Rauzy–Veech and the Zorich cocycle preserve the antisymmetric bilinear
form Ω(πt ,πb) on RA given by the matrix

Ωαβ(πt ,πb) =


1 if πb(β) <πb(α) ,πt (β) >πt (α) ;

−1 if πb(β) >πb(α) ,πt (β) <πt (α) ;

0 otherwise.

The bilinear form Ω(πt ,πb) is nondegenerate, hence symplectic, on the range
H(πt ,πb) ⊂ RA of the matrix Ω(πt ,πb). For any Rauzy class R, the invariant
symplectic bundle

HR :=⋃
{H(πt ,πb)|(λ,πt ,πb) ∈PA

+ ×ΣA }

has even dimension, which only depends on the Rauzy class of the combina-
torial data. We write dimHR = 2g (R) and the integer g (R) is the genus of the
surfaces that arise in the suspension of interval-exchange transformations with
combinatorial data in the given Rauzy class (see Section 2.3.2 below). Zorich
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proved that all the Lyapunov exponents on the quotient RA /HR are zero and
that the restriction of the cocycle to HR (called the restricted Rauzy–Veech–
Zorich cocycle) has a Lyapunov spectrum of the form

θ1 > θ2 ≥ . . .θg ≥−θg ≥ ·· · ≥−θ2 >−θ1 .(15)

(In fact, Zorich derived the strict ‘spectral gap’ inequality θ1 > θ2 from Veech’s
theorem on the nonuniform hyperbolicity of the Teichmüller flow [52]). By the
above interpretation (12) of the Rauzy–Veech cocycle, it is not hard to derive
the relation between the deviation exponents in formula (4) and the Lyapunov
exponents (15) of the Rauzy–Veech–Zorich cocycle:

ν1 = θ1/θ1 > ν2 = θ2/θ1 ≥ ·· · ≥ νg = θg /θ1 .

Kontsevich–Zorich conjecture states that the Rauzy–Veech–Zorich cocycle has
simple Lyapunov spectrum, that is, the exponents in formula (15) are all dis-
tinct (hence they are all nonzero). This conjecture implies the Zorich picture on
deviations of ergodic averages for interval-exchange transformations and the
related conjecture discussed above. The author of this paper proved in [21] that
the cocycle is nonuniformly hyperbolic, that is, the exponents are all nonzero (in
fact, he proved the corresponding equivalent statement for the continuous-time
version of the Rauzy–Veech–Zorich cocycle, which is known as the Kontsevich–
Zorich cocycle [35]). Avila and Viana proved the full conjecture:

THEOREM 3 ([8, 9]). For any Rauzy class R, the restricted Rauzy–Veech–Zorich
cocycle on the bundle HR is simple. Hence, in particular,

θ1 > θ2 > ·· · > θg > 0.

As we have outlined above, by Zorich’s work, Theorem 3 implies Theorem 2
on deviations of ergodic averages (see [59] and for smooth functions [21, 14]).
In fact, Avila and Viana prove Theorem 3.

It should be noted that Avila–Viana’s approach is completely different, and
more general, than the method developed in [21, 24] by the author of this paper.
In fact, their proof of the Kontsevich–Zorich conjecture is based on a criterion
for the simplicity of a class of cocycles over strongly expanding transformations,
which we will outline below in Section 3.3. This criterion is an extension of
previous work by Bonatti, Gomez-Mont and Viana [11, 12] on simplicity of the
Lyapunov spectrum of deterministic cocycles of results quite well-known for
random cocycles (see [27, 26, 37, 29, 28]).

2.3. The Teichmüller flow. In this section, we briefly introduce the Teichmül-
ler geodesic flow, review its main ergodic properties, and state the theorem of
Avila, Gouëzel and Yoccoz [6] that the Teichmüller geodesic flow is exponentially
mixing. We briefly introduce Veech’s ‘zippered rectangles’ flow, an almost every-
where finite-to-one cover of the Teichmüller flow, related to the Rauzy–Veech
induction by a suspension construction, which provides a symbolic model cru-
cial for the approach of Avila, Gouëzel and Yoccoz to the dynamics of the Teich-
müller flow.
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2.3.1. Exponential Mixing. The Teichmüller flow can be defined as the geodesic
flow on the cotangent bundle of the moduli space of Riemann surfaces endowed
with the Teichmüller metric, a Finsler metric that measures the minimal confor-
mal distortion of a quasiconformal map between two conformal structures. The
cotangent bundle of the moduli space of surfaces can be canonically identified
with the bundle of holomorphic quadratic differentials. A quadratic differential
on a Riemann surface is a section of the square of its cotangent bundle. The
squares of holomorphic 1-forms, called Abelian differentials, are a particular
case. The Teichmüller geodesic flow, therefore, induces a flow on the moduli
space of Abelian differentials. In this section we will be interested in the dynam-
ical properties of this flow. Thanks to the uniformization theorem, the moduli
space of Riemann surfaces is often understood as a moduli space of Riemannian
metrics of constant negative curvature. A fruitful point of view on the moduli
space of Abelian differentials comes from a natural identification between the
notions of an Abelian differential and a translation structure on a Riemann sur-
face. A translation structure is given by an atlas whose change of coordinate
maps are translations. In other terms, a translation structure is equivalent to
a flat metric with trivial holonomy (that is, the parallel transport of unit vector
along any closed loop is equal to the identity). From this point of view, a trans-
lation surface is the union of finitely many planar polygons with edges glued
in pairs by translations. It becomes clear that the group GL(2,R) acts on the
moduli space of Abelian differentials. The action can be defined on translation
atlases by postcomposition of elements of GL(2,R) with coordinate maps. In
other terms, the group GL(2,R) acts on the complex plane. Hence, it acts on
polygons and respects the gluing rules for translation surfaces (since the sub-
group of all translations is a normal subgroup of the linear group).

It is natural to restrict the Teichmüller flow to the unit cotangent bundle, that
is, to the moduli space of Abelian differentials of unit total area. The group
SL(2,R) is the largest subgroup of GL(2,R) that preserves the area of translation
surfaces, hence its acts on the level sets of the area function. The Teichmüller
flow is given by the action of the diagonal subgroup of SL(2,R). For instance, in
the case of elliptic curves, the moduli space of Abelian differentials of unit total
area can be identified with the homogeneous space SL(2,Z)\SL(2,R) and the
Teichmüller flow, which is just the geodesic flow for the Poincaré metric on the
modular surface, can be identified to the flow given by the action of diagonal
subgroup of SL(2,R) on SL(2,Z)\SL(2,R) by multiplication on the right. It is
well-known that the modular geodesic flow is mixing with exponential decay of
correlations for observables in the Ratner’s class and, equivalently, the action
of SL(2,R) on the space of square integrable functions on SL(2,Z)\SL(2,R) has
a spectral gap in the sense of harmonic analysis (or representation theory). It
is has been a central goal in the theory to generalize these results to higher
genera. We recall that a flow {g t } on a probability space (X ,µ) has exponential
decay of correlations for a class F of square-integrable functions if there exists
a constant α > 0 and for any pair functions φ, ψ ∈ F there exists a constant
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C (φ,ψ) > 0 such that the following bound on correlations holds for all t > 0:∣∣∣∣〈φ◦ g t ,ψ〉−
(∫

φdµ
)(∫

ψdµ
)∣∣∣∣≤C (φ,ψ)e−αt .(16)

In the case of higher-genus surfaces, the moduli space of Abelian differentials
is stratified according to the pattern of multiplicities of zeros of the differen-
tials. The strata are not connected (connected components are completely clas-
sified in [36]). Veech [52] was able to prove that the Teichmüller geodesic flow
is nonuniformly hyperbolic and ergodic, hence mixing by Moore’s theorem (any
ergodic diagonal flow coming from an action of the group SL(2,R) is mixing)
with respect to canonical absolutely continuous SL(2,R)-invariant measures on
every connected component of every stratum of the moduli space of quadratic
differentials. Veech’s result greatly extended the ergodicity result of Masur [41]
for the so-called principal stratum of the space of quadratic differentials. For
many strata, Masur [41] and Veech [50] had proved the foundational result that
all canonical measures have finite mass. Veech [52] extends this finiteness result
to all strata. It was conjectured by Veech (among others) that, for all canonical
measures, the SL(2,R) action has a spectral gap and the Teichmüller flow has ex-
ponential decay of correlations. The first step in this direction was accomplished
by A. Bufetov, who proved in this thesis [13] that the Rauzy–Veech–Zorich accel-
eration has a stretched exponential decay of correlations (note that Avila and
Bufetov proved later that the decay is in fact exponential [3]). Avila, Gouëzel and
Yoccoz [6] gave a complete solution to this problem for canonical measures on
strata of the moduli space of Abelian differentials.

THEOREM 4 ([6]). The SL(2,R) action has a spectral gap and the Teichmüller
geodesic flow has exponential decay of correlations for observables in the Ratner’s
class with respect to the canonical measures on all strata of the moduli space of
Abelian differentials.

Avila and Resende [7] have later extended the theorem above to all strata of
the moduli space of quadratic differentials.

The approach of Avila to the Teichmüller flow (at least in his early work on
the subject) is not direct. In fact, Veech had constructed a symbolic model for
the Teichmüller flow on the space of Abelian differentials, based on the Rauzy–
Veech induction, often called ‘zippered rectangles’ flow. Such a flow acts on a
moduli space of ‘zippered rectangles’, which is finite-to-one cover of the moduli
space of Abelian differentials outside of a set of Lebesgue measure zero (in fact,
outside of a countable union of codimension-1 subspaces). All properties of
the measurable dynamics of the Teichmüller flow with respect to the Lebesgue
measure class are equivalent to the corresponding properties of the Veech ‘zip-
pered rectangles’ flow. In the joint work with Resende, the authors introduce
a version of the Rauzy induction for nonorientable interval-exchange transfor-
mations and prove the conditions required to apply the main abstract theorem
established in [6] (stated in below in Section 3.4).
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In the higher-genus case, there are many SL(2,R)-invariant probability mea-
sures on every stratum. It has been conjectured that such measures are all alge-
braic. Eskin and Mirzakhani [19] have recently announced a proof of this con-
jecture. For example, by a well-known (orienting double cover) construction, it
is possible to embed canonical measures on strata of quadratic differentials as
singular algebraic measures (supported on suborbifolds) on strata of Abelian
differentials. A recent result of Avila and Gouëzel [5] considerably refines the
spectral gap theorem stated above and extends the result to cover all algebraic
SL(2,R)-invariant probability measures (hence, by the Eskin–Mirzakhani result
[19], all SL(2,R)-invariant probability measures). As we have mentioned above,
the approach of this (remarkable) paper is different from that of Avila’s earlier
work, in particular it is not based on a symbolic model for the Teichmüller flow,
hence it is beyond the scope of this paper.

2.3.2. The ‘zippered rectangles’ flow. The zippered rectangles construction is a
suspension of interval-exchange transformations that produces a translation
surface with a preferred horizontal interval such that the return map of the
vertical foliation to the preferred interval is the given interval-exchange trans-
formation. We describe below the suspension construction.

Let f := f (λ,πt ,πb) be an interval-exchange transformation with length data
λ ∈Rd+ and combinatorial data πt , πb : A → {1, . . . ,d}. Let T (πt ,πb) be the set of
vectors τ ∈RA such that, for all i ∈ {1, . . . ,d −1},∑

πt (α)≤i
τα > 0 and

∑
πb (α)≤i

τα < 0.(17)

For all α ∈A , let ζα := (λα,τα) ∈R2 and let ∂P (λ,τ,πt ,πb) be the closed polygo-
nal curve formed by the concatenation of vectors

ζπ−1
t (1),ζπ−1

t (2), . . . ,ζπ−1
t (d),−ζπ−1

b (d),−ζπ−1
b (d−1), . . . ,−ζπ−1

b (1) .

In case the above concatenation starts at the origin, the above condition (17)
means that the end-points of sums ζπ−1

t (1) + ·· · + ζπ−1
t (i ) are on the upper half-

plane, while the end-points of sums ζπ−1
b (1) + ·· · + ζπ−1

b (i ) are in the lower half-
plane, for all i ∈ {1, . . . ,d −1}. By gluing by a translation each pair of edges la-
beled by the same letter (which, by definition, are parallel and have the same
length), we construct a compact translation surface M := M(λ,τ,πt ,πb), called
the suspension surface of the interval-exchange transformation f := f (λ,πt ,πb).
The interval-exchange transformation f on the interval I (λ) coincides with re-
turn map of the vertical flow to the interval I ⊂ M be the interval I (λ)× {0}. The
flat metric on the surface M (induced by the flat metric on the plane) can have
conical singularities of angle an integer multiple of 2π at any of the points com-
ing from vertices of the polygon, depending on the permutation. Equivalently,
the corresponding Abelian differential, induced by the differential d z on C≡R2,
can have zeros at those points. It can be proved that the number and the total
angle of the cone points (or, equivalently, the multiplicities of the zeros), hence
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the genus g := g (πt ,πb) of M , only depend on the Rauzy class of the combinato-
rial data. Let us then give the ‘zippered rectangles’ representation of the surface
M(λ,τ,πt ,πb). For all α ∈A , we define the height

hα := ∑
πt (β)<πt (α)

τβ−
∑

πb (β)<πb (α)
τβ =− ∑

β∈A

Ωαβ(πt ,πb)τβ .

It follows from the definition of the cone T :=T (πt ,πb) that hα > 0 for all α ∈A .
Let H+(πt ,πb) ⊂RA+ denote the cone of heights, that is,

H+(πt ,πb) =Ω(πt ,πb)(T ) ⊂ H(πt ,πb) =Ω(πt ,πb)(RA ) .

The translation surface M(λ,τ,πt ,πb) can be decomposed up to a finite set of
vertical segments as a union of open vertical rectangles {R t

α|α ∈ A } or {Rb
α|α ∈

A } defined as follows:

R t
α = I t

α(λ,πt )× [0,hα] and Rb
α = I b

α(λ,πb)× [−hα,0] .

The surface can be recovered from the above rectangles by “zipping” adjacent
rectangles along vertical segments up to certain heights and by identifying, for
all α ∈A , the top rectangle R t

α to the corresponding bottom rectangle Rb
α by the

appropriate translation (note that R t
α and Rb

α are congruent). Adjacent top and
bottom rectangles are not zippered all the way along their common boundaries,
but only along the vertical segments given as the intersections of the vertical
components of the boundaries ∂R t

α and ∂Rb
α, for all α ∈ A , with the polygon

P (λ,τ,πt ,πb) constructed above. It should be clear from the above construction
that the vertical flow on M has a piecewise constant return time function to the
horizontal interval I ⊂ M and that the return time is exactly equal to hα on the
subinterval I t

α(λ,πt ), for all α ∈A .
It can be also be proved that the space H(πt ,πb) is in canonical correspon-

dence with the the cohomology H 1(M ,R) with real coefficients of the surface
M and that the restriction of the matrix Ω(πt ,πb) to H(πt ,πb) represents the
symplectic intersection form on H 1(M ,R) with respect to an appropriate basis.

The formalism of ‘zippered rectangles’ is especially adapted to the descrip-
tion of the invertible Rauzy–Veech map, a natural extension of the Rauzy–Veech
map introduced above. Let us recall that the idea of the Rauzy–Veech induc-
tion is to remove the rightmost top or bottom interval (whichever is shorter)
and consider the return map to the remaining interval. The removed interval
is called “the loser” and the other rightmost interval ‘’the winner”. In terms of
the suspension surface this is equivalent to considering a different ‘zippered
rectangles’ decomposition of the same translation surface: for a top/bottom op-
eration, remove the rightmost subrectangle of width equal to the loser from the
rectangle of the same name as the winner and stack it on the top/bottom of the
rectangle of the same name as the loser; stack the rectangle of same name as
the loser to the bottom/top of the rectangle of the same name as the winner.
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The new heights are given by the following formulas: for a top Rauzy operation,

h′
α =

{
hαt +hαb , for α=αb ;

hα , for α 6=αb ,
(18)

and for a bottom Rauzy operation,

h′
α =

{
hαt +hαb , for α=αt ;

hα , for α 6=αt .
(19)

The above formulas can be summarized as follows: for all (λ,πt ,πb) ∈RA+ ×ΣA

and for all h ∈ H+(πt ,πb), we have

h′ =C∗(λ,πt ,πb)h.(20)

That is, the action of the invertible Rauzy–Veech induction on the heights at a
point (λ,πt ,πb) is given by the matrix of the Rauzy–Veech cocycle (restricted to
the cone H+(πt ,πb) ⊂ H(πt ,πb)). Let invertible Rauzy–Veech induction generate
an equivalence relation V on the space of all zippered rectangles, that is, on the
space Ω̂A = {(λ,h,πt ,πb) ∈RA+ ×H+(πt ,πb)×ΣA }. The moduli space of zippered
rectangles is the quotient ΩA := Ω̂A /V of the space of all zippered rectangles
with respect to the equivalence relation generated by the invertible Rauzy–Veech
induction. The ‘zippered rectangles’ flow is the flow {Φt } on the moduli space
ΩA of zippered rectangles given as follows: for all t ∈R,

Φt [λ,h,πt ,πb]V := [e tλ,e−t h,πt ,πb]V , for all [λ,h,πt ,πb]V ∈ΩA .(21)

The ‘zippered rectangles’ flow introduced above projects onto the Teichmüller
flow on a subset of full Lebesgue measure of a union of strata of the moduli
space of Abelian differentials. In fact, for any Rauzy class R ⊂ ΣA , there is a
flow invariant component ΩA (R) of the moduli space of zippered rectangles
that projects onto a full measure subset of a connected component of a stra-
tum of the moduli space of Abelian differentials. Avila, Gouëzel and Yoccoz [6]
prove exponential decay of correlations for the zippered rectangles flow and for
sufficiently smooth observables, and then deduce Theorem 4 from this result.

The ‘zippered rectangles’ flow is a suspension of the invertible Rauzy–Veech
map, a natural extension of the Rauzy–Veech map described in Section 2.2.1,
related to the invertible Rauzy–Veech induction described above. Let ŶA ⊂ Ω̂A

be the subset defined as follows:

ŶA := {(λ,h,πt ,πb) ∈ Ω̂A | ∑
α∈A

λα = 1} .

The projection YA := ŶA /V ⊂ΩA is a transverse section for the ‘zippered rect-
angles’ flow. The invertible Rauzy–Veech map R̂ : YA → YA is the first-return
map of the zippered rectangle flow. By construction, the invertible Rauzy–Veech
map is an extension of the Rauzy–Veech map as we shall see below.
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For any [λ,h,πt ,πb]V ∈YA , the first return time r (λ,h,πt ,πb) of the ‘zippered
rectangles’ flow {Φt } to the transverse section YA is the positive real number

r (λ,h,πt ,πb) =− log

( ∑
α∈A

λ′
α

)
.(22)

Hence, the invertible Rauzy–Veech map is given by the following formula:

R̂(λ,h,πt ,πb) = (er (λ,h,πt ,πb )λ′,e−r (λ,h,πt ,πb )h′,π′
t ,π′

b) .

Let pA : YA → PA+ ×ΣA be the map that projectivizes the lengths vector and
forgets the heights vector, that is,

pA [λ,h,πt ,πb]V = ([λ],πt ,πb) ∈PA
+ ×ΣA .

By construction, the map pA is a fibration such that

p−1
A ([λ],πt ,πb) = H+(πt ,πb) , for any([λ],πt ,πb) ∈PA

+ ×ΣA

and the Rauzy–Veech map is the projection of the invertible Rauzy–Veech map:

R ◦pA = pA ◦ R̂ on YA .

In conclusion of the section, it should be clear enough that the Rauzy–Veech
map is a crucial tool in the study of interval-exchange transformations, of trans-
lation flows and of the Teichmüller flow. With respect to interval-exchange trans-
formations, it plays the role of a renormalization dynamics, while with respect
to the Teichmüller flow, it provides a concrete combinatorial framework to ana-
lyze the dynamics. There are two important insights in Avila’s work that we will
try to outline in the next sections. The first concerns the hyperbolic properties
of the Rauzy–Veech map. As we have observed, the map is weakly expanding but
not strongly expanding since the hyperbolicity degenerates near the boundary
of the simplex in its domain of definition. In Avila’s work the strong hyperbol-
icity properties of the Rauzy–Veech map as well as crucial distortion estimates
are captured by considering appropriate return maps. The second concerns the
dynamics of the map near the boundary. Avila is able to define a boundary dy-
namics in terms of the Rauzy–Veech map for interval-exchange transformations
on fewer intervals and to derive results on the dynamics of the map and of the
related cocycle by an induction argument on the number of intervals. The core
of Avila’s approach is thus based on combinatorial and probabilistic arguments.

3. OUTLINE OF PROOFS

In this section, we will outline some of the main ideas underlying Avila’s con-
tributions to Teichmüller dynamics and applications. We will stress once more
that Avila’s work is based on an analysis of the dynamics of an appropriate accel-
eration of the Rauzy–Veech induction and cocycle that fully captures its chaotic,
strongly mixing properties. This analysis will be outlined in Section 3.1 and
lies at the heart of all the early work of Avila on the subject. Section 3.2 will
be devoted to the proof by Avila and the author [4] of weak mixing for interval-
exchange transformations and translation flow and Section 3.3 to the proof by
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Avila and Viana [8] of the Kontsevich–Zorich conjecture on the simplicity of the
Kontsevich–Zorich spectrum. These two papers are mentioned in the Brin Prize
motivation. Finally, in Section 3.4 we will explain how Avila’s ideas are also cru-
cial in the proof by Avila, Gouëzel and Yoccoz [6] of the exponential mixing of
the Teichmüller geodesic flow (in fact, of Veech ‘zippered rectangles’ flow).

3.1. The Avila acceleration. We introduce below Avila’s notions of a strongly
expanding map and of a locally constant, uniform cocycle over a strongly ex-
panding map [4]. We then explain the proof that appropriate return maps of
the Rauzy–Veech map are strongly expanding and that the Rauzy–Veech cocycle
over such return maps is locally constant and uniform. In this paper we will call
such a procedure of passing to strongly expanding return maps the Avila accel-
eration of the Rauzy–Veech induction and of the Rauzy–Veech–Zorich cocycle. It
should be noted however that the idea of considering accelerations of the Rauzy
map corresponding to projective contractions is a cornerstone of Veech’s proof
of the Keane conjecture [49, 50] and appears in most of Veech’s work on interval-
exchange transformations and on the Teichmüller flow (see for instance [51]
and [52]). This idea also appears in the work of S. P. Kerckhoff [34] and A. Bufe-
tov [13]. In fact, Veech’s unique ergodicity condition on matrix products of the
Rauzy cocycle already appears in the general context of random matrix prod-
ucts in Furstenberg’s thesis (see [25], formula (16.13)). However, in our opinion,
the Markovian structure of the acceleration, its strongly chaotic, mixing features
and the combinatorial structure of Rauzy diagrams, were not fully grasped and
not systematically exploited prior to the work on the subject of Avila and his
collaborators. In this work, abstract definitions of dynamical systems and cocy-
cles that capture the essential properties have been introduced and all results
are derived from general theorems on the dynamics of such general abstract
systems.

3.1.1. Expanding maps. Let (∆,µ0) be a probability space. A measurable map
T : ∆→ ∆ that preserves the measure class of the measure µ0 on ∆, is said to
be weakly expanding if there exists a finite or countable measurable partition
(modulo sets of measure zero)

∆ := ⋃
l∈Λ
∆(l )

into sets of positive µ-measure such that, for every l ∈Λ, T : ∆(l ) →∆ is invertible
and the push-forward T∗(µ0|∆(l )) is equivalent to µ0 on ∆. Let Ω be the set of
all finite sequences of elements of Λ. For any l := (l1, . . . , ln) ∈Ω, let us denote

∆l := {x ∈∆|T k−1(x) ∈∆(lk ) for k = 1, . . . ,n} ,

and let T l := T m : ∆l → ∆. A weakly expanding map T is said to be strongly
expanding if the following bounded distortion condition holds: there exists a
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constant C > 0 such that

1

C
≤ 1

µ0(∆l )

dT
l
∗(µ0|∆l )

dµ0
≤C , for all l ∈Ω .(23)

3.1.2. Cocycles. We are interested in cocycles over strongly expanding maps. A
cocycle is a pair (T, A) such that T : (∆,µ) → (∆,µ) is a measure-preserving trans-
formation on a probability space (∆,µ) and A : ∆→ GL(d ,R) is a measurable
map. There is a linear skew-product associated to the pair (T, A), defined as
follows:

(T, A)(x, v) := (T (x), A(x)v) , for all (x, v) ∈∆×Rd .

The iterates {(T, A)n} of the above linear skew-product are associated to the pair
(T n , An) such that An : ∆→GL(d ,R) is the measurable map defined as

An(x) = A(T n−1(x)) · · · A(x) , for all (x,n) ∈∆×N .

Let ‖ ·‖ denote a norm on GL(d ,R) and, for any matrix A ∈GL(d ,R) let

‖A‖0 := max{‖A‖,‖A−1‖} .

Let µ be any T -invariant, ergodic probability measure. The cocycle (T, A) is said
to be measurable if ∫

∆
log‖A(x)‖dµ(x) < +∞ .

and it is said to be uniform if the following stronger condition holds:∫
∆

log‖A(x)‖0dµ(x) < +∞ .(24)

A cocycle is said to be integral if the map A takes its values in the space GL(d ,Z)
of matrices with integer coefficients. The linear skew-shift associated to an in-
tegral cocycle projects onto the skew-product of the space ∆×Rd /Zd , which is
a toral bundle over ∆. All the above properties of cocycles are well-defined for
arbitrary measurable maps T on the base space.

Finally, a cocycle (T, A) over a weakly expanding map T : (∆,µ) → (∆,µ) is said
to be locally constant if, for all l ∈Λ,

A|∆(l ) = A(l ) ∈GL(d ,R) is constant.(25)

Note that for any locally constant cocycle and for any l = (l1, . . . , ln) ∈Ω, the map
An |∆l is constant:

An |∆l = Al := A(ln ) · · · A(l1) .(26)

The supporting monoid of a locally constant cocycle is the submonoid of the
linear group GL(d ,R) generated by the set {A(l )|l ∈Λ }. It is clear from the defi-
nitions that, for any l = (l1, . . . , ln) ∈Ω, the matrix An |∆l = Al defined in formula
(26) belongs to the supporting monoid of the cocycle.
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3.1.3. Return maps. The Rauzy–Veech map is weakly expanding with respect
to the Lebesgue measure on a partition with two elements. In fact, for every
Rauzy class R, its domain of definition is a full measure subset of Pd−1+ ×R that
can be partitioned into finitely many disjoint connected components. For any
combinatorial data (πt ,πb) ∈ R, let ∆t (πt ,πb) ⊂ Pd−1+ be the simplex of length
data that correspond to a top operation (λαt >λαb ) and let ∆b(πt ,πb) ⊂Pd−1+ be
the simplex of length data that correspond to a bottom operation (λαt < λαb ).
Let {∆t (R),∆b(R)} be the partition given by the sets

∆t (R) := ⋃
(πt ,πb )∈R

∆t (πt ,πb) and ∆b(R) := ⋃
(πt ,πb )∈R

∆b(πt ,πb) .

It is clear from the explicit formulas defining the Rauzy–Veech map (7), (9) that
the restrictions of the Rauzy–Veech map R to ∆t (R) and ∆b(R) are invertible
maps onto Pd−1+ ×R. The inverse branches of the maps R|Pd−1+ × {(πt ,πb)} are
given by the projectivization of matrices with nonnegative integer coefficients,
hence the push-forward of the restrictions of the Lebesgue measure to partition
elements ∆t (R) and ∆b(R) are absolutely continuous with respect to Lebesgue.
However, the Rauzy–Veech map is not strongly expanding since its distortion
is unbounded (near the boundary of the simplex). In particular, it was proved
by Veech (see [50] and also [41]) that the Rauzy–Veech map has a conservative
absolutely continuous invariant measure; however, such a measure has infinite
total mass. Avila’s idea is to consider appropriate return maps.

For all n ∈ N and for almost all ([λ],πt ,πb) ∈ Pd−1+ ×R, let ∆n(λ,πt ,πb) de-
note the connected component of the domain of definition of the n-th iterate
Z n of the Rauzy–Veech map such that ([λ],πt ,πb) ∈ ∆n(λ,πt ,πb). It is a funda-
mental result by Veech [50], a unique ergodicity criterion in his proof of the
Keane conjecture, that for every Rauzy class R and for Lebesgue almost all
([λ],πt ,πb) ∈Pd−1+ ×R, ⋂

n∈N
∆n(λ,πt ,πb) = {([λ],πt ,πb)} .

It follows that, for n large enough, the connected component ∆n(λ,πt ,πb) is
a relatively compact subset of Pd−1+ × (πt ,πb). Let then ∆ denote any of such
relatively compact connected components of the domain of definition of any
iterate of the Rauzy–Veech map. Let T : ∆→ ∆ be the first-return map of the
Rauzy–Veech map to ∆. As we shall explain, any such map is strongly expanding
with respect to an absolutely continuous, invariant ergodic probability measure.
The key point is that by construction there exists a countable partition {∆(l )|l ∈
Λ} such that T |∆(l ) is a bijection onto ∆ with inverse map given by a matrix with
positive coefficients. Such a partition can be described in symbolic terms as
follows. For every n ∈N, every connected component of Z n |Pd−1+ × {(πt ,πb)} is
given by a word of length n in the alphabet given by strings of the form t · · · t and
b · · ·b. Let γ be the corresponding path in the Rauzy graph starting at (πt ,πb).
The elements of the partition are given in symbolic terms by all paths in the
Rauzy graph starting and ending with the path γ. By construction, the restriction
T |∆(l ) is injective and its inverse is the restriction of a projective map given
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by a matrix with nonnegative integer coefficients. In fact, since ∆ is relatively
compact, all inverse branches of T are given by matrices with positive integer
coefficients.

3.1.4. Projective contractions. Following [4], a projective contraction is a projec-
tive transformation taking the standard simplex Pd−1+ into itself. A projective
contraction is given by the projectivization of some matrix A ∈ GL(d ,R) with
strictly positive coefficients. The image of the standard simplex under a projec-
tive contraction is called a simplex. The following crucial result (see [4], Lemma
2.1) establishes that the first-return maps of the Rauzy–Veech map introduced
above are strongly expanding.

LEMMA 5. Let ∆ be a simplex relatively compact in the standard simplex Pd−1+
and let {∆(l )|l ∈Z} be a partition of ∆ (modulo sets of Lebesgue measure 0) into
sets of positive Lebesgue measure. Let T : ∆→∆ be a measurable transformation
such that, for all l ∈Z, the restriction T |∆(l ) is an invertible map onto ∆ and its
inverse is the restriction of a projective contraction. Then T is strongly expanding
with respect to an invariant probability measure µ on ∆ that is absolutely con-
tinuous with respect to Lebesgue measure and has a continuous, positive density
in ∆.

The proof of the lemma is based on the simple observation that all push-
forwards of the restriction of the Lebesgue measure under iterates of T on ∆
belong to the space of measures that are absolutely continuous with respect
to Lebesgue and have a density with d-Lipschitz logarithm with respect to the
projective distance (Hilbert metric). In fact, with respect to the Hilbert metric
the logarithm of the Jacobian of any projective contraction is d-Lipschitz and
any relatively compact simplex has finite diameter.

We will refer to the above construction, which plays a crucial role in the work
of Avila on Teichmüller dynamics, as the Avila acceleration of the Rauzy–Veech
map. More generally, an Avila acceleration of the Rauzy–Veech map is defined
to be any map induced by the Rauzy–Veech map on any finite union of rela-
tively compact connected components of the domain of any of its iterates. Let
T : ∆→ ∆ denote any Avila acceleration and let (T, A) the corresponding Avila
acceleration of the Rauzy–Veech–Zorich cocycle (Z ,CZ ) defined in formula (14).
By definition, the cocycle (T, A) is also an acceleration of the Rauzy–Veech cocy-
cle. It follows immediately from the construction that that the cocycle (T, A) is a
locally constant, integral cocycle. It is also uniform as a corollary of a key result
by Zorich [58] who proved that the Zorich acceleration of the Rauzy–Veech map
has an absolutely continuous invariant ergodic probability measure and that the
Rauzy–Veech–Zorich cocycle is uniform in the above sense (see formula (24)).

As we shall see, Avila’s Brin prize contributions to Teichmüller dynamics, de-
scribed in the previous section, are based on abstract theorems on locally con-
stant, uniform, integral cocycles.

3.2. Weak mixing for interval-exchange transformations and translation flows.
By standard ergodic theory the weak mixing property of a dynamical system is
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a spectral property equivalent to the property of having continuous spectrum
in the orthogonal complement of the subspace of constant functions. In other
terms, a dynamical system is weakly mixing if and only if the only eigenfunc-
tions are constants. For interval-exchange transformations and translation flows,
Veech (see [51], §7) proved a criterion that characterizes nonweakly mixing sys-
tems in terms of the Rauzy–Veech–Zorich cocycle.

3.2.1. The Veech criterion. Weak mixing for an interval-exchange transformation
f is equivalent to the existence of no nonconstant measurable solutions φ : I →
C of the equation

φ◦ f (x) = e2πi tφ(x) , for any (x, t ) ∈ I ×R .

If f is ergodic, the above condition is equivalent to the following: there are no
nonzero measurable solutions φ : I →C of the equation

φ◦ f (x) = e2πi tφ(x) , for any (x, t ) ∈ I ×RàZ .

By the Keane conjecture (see [41] and [50]), almost all interval-exchange trans-
formations are uniquely ergodic, hence ergodic, and thus the latter condition is
sufficient.

It is convenient to consider the question of weak mixing for interval-exchange
transformations in the more general context of translations flows. In fact, weak
mixing of an interval-exchange transformation f can be reformulated in terms
of weak mixing for the special flow over f with constant roof function. Since the
action of the invertible Rauzy–Veech map can be viewed simply as the interval-
exchange transformation obtained from the same special flow by inducing on
the appropriate subinterval of the original interval, we are naturally led to con-
sider weak mixing for the general special flows over interval-exchange transfor-
mations with piecewise constant roof functions.

Let F := F (λ,h,πt ,πb) be the special flow over the interval-exchange transfor-
mation f := f (λ,πt ,πb) with piecewise constant roof function specified by the
vector h ∈ RA+ , that is, the roof function is constant equal to hα on the subin-
terval I t

α := I t
α(λ,πt ), for all α ∈ A . We remark that, by Veech’s ‘zippered rect-

angles’ construction (see Section 2.3.2), if F is a translation flow, then neces-
sarily h ∈ H(πt ,πb). The phase space of F is the union of disjoint rectangles
Rα := Iα× [0,hα), and the flow F is completely determined by the conditions

Fs(x,0) = (x, s) , for x ∈ I t
α and 0 ≤ s < hα,

Fhα
(x,0) = ( f (x),0) , for all α ∈A .

Weak mixing for the flow F is equivalent to the existence of no nonconstant
measurable solutions φ : D →C of the equation

Fs ◦φ(x) = e2πi t sφ(x), for any (x, t ) ∈ D ×R ,

or, in terms of the interval-exchange transformation f , it is equivalent to ergod-
icity and to the existence of no nonconstant measurable solutions φ : I →C of
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the equation

φ◦ f (x) = e2πi thαφ(x) , for any (x, t ) ∈ I t
α×R , for any α ∈A .(27)

From the above discussion, it should be clear that the above condition is invari-
ant under the action of the Rauzy–Veech cocycle; in fact, under the action of
the Rauzy–Veech cocycle, the special flow over the interval-exchange transfor-
mation f with roof function given by the vector h ∈ RA+ is unchanged, while
the transverse interval is shrank appropriately, so that the flow is represented as
a special flow over the interval-exchange transformation f ′ with roof function
given by the vector h′ ∈ RA+ . Under the Rauzy–Veech induction, the size of the
transverse interval converges to zero, so that any continuous eigenfunction is
approximately constant. For measurable eigenfunctions an argument based on
Luzin’s Theorem yields the following result.

THEOREM 6 (Veech, [51], §7). For any Rauzy class R ⊂ΣA , there exists an open
set UR ⊂ Pd−1+ ×R with the following property. Assume that, under the Rauzy
induction R, the orbit of ([λ],πt ,πb)) ∈Pd−1+ ×R visits UR infinitely many times.
If there exists a nonconstant measurable solution φ : I → C of the above equa-
tion (27), then the vector th converges to zero modulo Zd under the action of the
Rauzy–Veech–Zorich cocycle along any sequence of return times of the orbit of
([λ],πt ,πb) to UR under the Rauzy–Veech induction; that is,

lim
Rn (([λ],πt ,πb )∈UR

‖C n
R ([λ],πt ,πb , th)‖Rd /Zd = 0.(28)

Note that for a continuous eigenfunction φ : I → C, the limit in the above
formula (28) can be taken without restrictions (as n → +∞) and it is equal
to zero. In general, for a measurable eigenfunctions, the argument based on
Luzin’s Theorem requires that the surface decomposes into zippered rectangles
of comparable area. Such a restriction on the geometry of the zippered rectan-
gles decomposition is behind the restriction of the limit to appropriate visiting
times.

We recall that the quotient of the Rauzy–Veech–Zorich cocycle to the bundle
RA /HR has zero Lyapunov exponents and it is, in fact, isometric. Thus, when-
ever the vector h 6∈ H(πt ,πb) (see the definition of the Veech space H(πt ,πb) and
of the corresponding bundle HR in Section 2.2.2), the corresponding special
flow is weakly mixing for almost all λ ∈ R+. The Veech criterion, therefore, im-
plies the generic weak mixing property for an interval-exchange transformation
on 3 intervals that are not rotations (a result originally proved by A. Katok and
A. Stepin [31]) and for special combinatorial data in every number of intervals
(namely, the combinatorial data (πt ,πb) such that the vector (1, . . . ,1) 6∈ H(πt ,πb).
Note also that translation flows always correspond to the case h ∈ H(πt ,πb),
hence for this case, as well as for the case of interval-exchange transformations
with general combinatorial data, the analysis of the Lyapunov structure of the
restricted Rauzy–Veech–Zorich cocycle becomes relevant. We recall that such a
cocycle is nonuniformly hyperbolic (with respect to the canonical measures) as
proved in [21] and later by Avila and Viana in [8]. The work of Avila on the weak
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mixing for interval-exchange transformations and translation flows [4] rests on
this important advance in the theory of the Rauzy–Veech–Zorich cocycle [21];
in fact, for Avila–Forni’s proof of weak mixing for almost all interval-exchange
transformations or translation flows it is enough to know that the cocycle has a
second positive Lyapunov exponent.

3.2.2. The weak stable space. The Veech criterion motivates the following ab-
stract definition introduced in [4].

DEFINITION 7. Let (T, A) be cocycle on ∆×Rd . For any x ∈ ∆, the weak stable
space W s(x) is defined as follows:

W s(x) := {v ∈Rd |‖An(x)v‖Rd /Zd → 0} .

If the cocycle is integral, W s(x) has a natural interpretation as the stable space
at (x,0) of the zero section in ∆×Rd /Zd .

It is immediate to see that for almost all x ∈ ∆, the space W s(x) is a union
of translates of the stable Oseledets space E s(x) of the cocycle. If the cocycle is
bounded, that is, if the function A : ∆→ GL(d ,R) is essentially bounded, then
it is easy to see that the weak stable space is a countable union of translates of
the stable space; that is,

W s(x) = ⋃
c∈Zd

E s(x)+ c .

In general, the weak stable space W s(x) may be the union of uncountably many
translates of the stable space E s(x). Thus, the weak stable space is described by
its transverse structure, that is, by the its intersection W s(x)∩E cu with the cen-
tral unstable Oseledets subspace E cu(x) of the cocycle. If the cocycle is (nonuni-
formly) hyperbolic, it is not hard to bound the transverse Hausdorff dimension,
that is, the Hausdorff dimension of W s(x)∩E cu , for almost all x ∈∆. In fact, the
following result holds:

THEOREM 8 (see [4, Theorem A.1]). Let (T, A) be any measurable cocycle on the
space ∆×Rd . For almost every x ∈∆, if G ⊂Rd is any affine subspace parallel to
a linear subspace G0 ⊂Rd transverse to the central stable space E cs(x), then the
Hausdorff dimension of W s(x)∩G is equal to 0.

The proof of the above theorem is based on quite straightforward estimates
based on the assumption that, by the Oseledets Theorem, the cocycle is expan-
sive on the affine subspace G ⊂Rd and it has bounded exponential growth rate,
by the Birkhoff Ergodic Theorem.

By the Veech criterion, by the above theorem, and by nonuniform hyperbolic-
ity of the Rauzy–Veech–Zorich cocycle, we derive an estimate on the Hausdorff
dimension of the set of nonweakly mixing translation flows.

THEOREM 9 (see [4, Theorem A.2]). Let (πt ,πb) ∈ ΣA be any given combinato-
rial data. Then for almost every λ ∈ RA+ , the set of h ∈ H(πt ,πb) ⊂ Rd+ such that
the vertical flow of the zippered rectangle (λ,h,πt ,πb) is not weakly mixing has
Hausdorff dimension at most g (πt ,πb)+1. In particular, if g (πt ,πb) ≥ 2, then for
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almost every λ ∈Rd+ and almost every h ∈ H(πt ,πb) ⊂Rd+, the vertical flow of the
zippered rectangle (λ,h,πt ,πb) is weakly mixing.

Theorem 9 above is proved as follows. Let R ⊂ ΣA be any Rauzy class and
let UR ⊂Pd−1+ ×R be the open set given in the statement of the Veech criterion.
We choose any relatively compact connected component ∆ of the domain of
definition of a sufficiently high iterate of the Rauzy–Veech map such that ∆⊂UR

and let (T, A) denote the Avila acceleration of the Rauzy–Veech–Zorich cocycle
given by the first-return map to ∆ ⊂ Pd−1+ ×R. This construction is possible
since, as we have recalled by the Keane conjecture, such components generically
shrink to points. Then, by the Veech criterion, if the vertical flow of the zippered
rectangle (λ,h,πt ,πb) is not weakly mixing then the line Rh intersects the weak
stable space W s(λ,h,πt ,πb) of the Avila acceleration (T, A). However, by the
nonuniform hyperbolicity of the restricted Rauzy–Veech–Zorich cocycle (hence
of the Avila acceleration), any linear subspace G0 transverse to the central stable
space (equal to the stable space) has codimension equal to g (πt ,πb). Hence,
by Theorem 8, the weak stable space of the Avila acceleration has Hausdorff
dimension exactly equal to g (πt ,πb). Finally, the Hausdorff dimension of the
set of vector h ∈ H(πt ,πb) such that the line Rh ⊂ W s(λ,h,πt ,πb) is at most
g (πt ,πb) + 1, as stated. A similar argument proves that the set of nonweakly
mixing translation flows has measure zero under the weaker hypothesis that the
cocycle has at least two strictly positive exponents.

As we have described, the fact that almost all translation flows are weakly
mixing is a rather direct consequence of the nonuniform hyperbolicity of the
Rauzy–Veech–Zorich cocycle. It is sufficient to estimate (for almost all length
data) the dimension of the set of the nonweakly mixing height data that are to
be discarded. We call this procedure a linear parameter elimination since for
almost all length data we eliminate the nonweakly mixing height data from an
open cone in a vector space. The proof of weak mixing for interval-exchange
transformations, which is much harder, is based on a probabilistic nonlinear
parameter elimination of the nonweakly mixing length data, since in that case
the height data are fixed.

3.2.3. Weak mixing for interval-exchange transformations. By the Veech crite-
rion, the weak mixing property for almost all interval-exchange transformations
is a consequence of the following statement. For any given irreducible com-
binatorial data (πt ,πb) ∈ ΣA , and for almost all length vectors λ ∈ R, the line
R · (1, . . . ,1), spanned by the height vector (1, . . . ,1), does not intersect the weak
stable space W s(λ,πt ,πb)⊂H(πt ,πb) of the restricted Rauzy–Veech–Zorich co-
cycle at ([λ],πt ,πb) ∈ Pd−1+ ×ΣA . Since the weak stable space contains all in-
teger translations of the Oseledets stable space, it is necessary to prove the
following preliminary result. For almost all length vectors λ ∈ R, no nontriv-
ial integer translate of the line R · (1, . . . ,1) intersects the central stable space
E cs(λ,πt ,πb) ⊂ H(πt ,πb) of the Rauzy–Veech–Zorich cocycle under the assump-
tion that

dimE cs (λ,πt ,πb) < 2g (πt ,πb)−1.
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This preliminary step, called the elimination of the stable space, is enough to
establish topological weak mixing, that is, the absence of continuous eigenfunc-
tions, and was essentially established by Nogueira and Rudolph in [43] in their
proof of topological weak mixing. Note that the crucial hypothesis on the di-
mension of the central stable space holds whenever g (πt ,πb) ≥ 2 by the result
of [21] (and later [8]) on the Lyapunov spectrum of the Rauzy–Veech–Zorich co-
cycle, which established that the cocycle is nonuniformly hyperbolic, hence the
central stable space has dimension equal to the genus g (πt ,πb) of the ‘zippered
rectangles’ surface.

In [4] weak mixing for almost all interval-exchange transformations is proved
as a consequence of the Veech criterion and of an abstract theorem on locally
constant integral uniform cocycles that implies that whenever it is possible to
eliminate the stable space, then it is possible to eliminate the weak stable space
as well.

A compact set Θ⊂Pd−1 is said to be adapted to the a locally constant cocycle
(T, A) if A(l )Θ⊂Θ for all l ∈Λ and if, for almost every x ∈∆ and every v ∈Rd à{0}
such that [v] ∈Θ, we have

‖A(x) · v‖ ≥ ‖v‖ and ‖An(x) · v‖→+∞ .

Let J :=J (Θ) denote the set of lines in Rd , parallel to some element of Θ and
not passing through 0 (see [4, §3]).

THEOREM 10 ([4, Theorem 3.1]). Let (T, A) be a locally constant integral uniform
cocycle, and let Θ be adapted to (T, A). Assume that for every line J ∈J :=J (Θ),
we have that J ∩E cs(x) = ; for almost every x ∈ ∆. Then for any line L ⊂ Rd

parallel to some element of Θ, we have L∩W s(x) ⊂Zd for almost every x ∈∆.

The proof of the above theorem is a rather technical probabilistic elimination
procedure. We outline some of the main ideas below.

For any x ∈∆ and for any δ> 0, let W s
δ,n(x) be the set of vectors v ∈Rd such

that ‖Ak (x)v‖Rd /Zd ≤ δ for all k ≤ n. Let W s
δ

(x) be the intersection of the spaces
W s
δ,n(x) for all n ∈ N. It follows from the definition that W s(x) ⊂ W s

δ
(x) for all

δ> 0. The theorem then follows immediately from the following result.

LEMMA 11 ([4, Lemma 3]). There exists δ > 0 such that for all J ∈ J and for
almost all x ∈∆ we have J ∩W s

δ
(x) =;.

Under the action of the cocycle along any orbit segment, any interval J ∈J

is stretched and its intersection with union of all the balls of radius δ ∈ (0,1/10),
centered at integer points, may have several connected components. The in-
verse image of all such components “survives” at this stage along the orbit and
may still belong to the space W s

δ
(x), while of course all the other points already

do not “survive”. It is clear that in first approximation the likelihood that a seg-
ment J ∈J “survives” (that is, that it contains “surviving” points) for a long time
is inversely proportional to the distance ‖J‖ of the segment from the nearest lat-
tice point. The goal of the proof is to establish that the “survival” probability of
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any interval J , weighted by a negative power of its distance ‖J‖ from the integer
lattice, converges to zero as time goes to infinity.

By the bounded distortion assumptions on a strongly expanding map, the
argument goes as if the map were a shift on countably many symbols. For any
J ∈J such that ‖J‖ < δ and for any finite sequence l = (l1, . . . , ln) ∈Ω of symbols,
we let Jl ,0 = Al · J and let

Jl ,1, . . . , Jl ,φδ(l ,J )

be the connected components (taken modulo the action of the integer lattice)
of the intersection of Al · (J ∩Bδ(0)) with the union of all balls of radius δ > 0
at all lattice points different from the origin, modulo the action of the lattice.
The interval Jl ,0 may be called the “parent” and the segments Jl ,1, . . . , Jl ,φδ(l ,J )

may be called the “children”. Note that for every l ∈ Ω there are no “children”
at all if δ > 0 is sufficiently small and that the number φδ(l , J) of “children” is
bounded by the norm ‖Al‖ of the cocycle matrix. In our situation the probability
of “survival” of the “children” adds to the probability of “survival” of the “parent”.
It is therefore crucial to be able to estimate the likelihood of “survival” of the
“children”. By an elementary geometric estimate

min
k≥1

‖Jl ,k‖ ≥ 2−1‖Al‖−1
0 .(29)

It follows that, on the one hand, the likelihood of “survival” of the parent de-
creases with high probability, since any interval J ∈ J is pushed away from
the origin in the direction of the second positive exponent (as by assumption
J ∩E cs(x) = ;), and, on the other hand, under sufficiently strong integrability
conditions on the cocycle, the number of children and their likelihood of “sur-
vival” is not very large sufficiently often. Hence, the weighted probability of
“survival” of any interval J ∈J converges to zero with time.

The crucial technical step is to prove a kind of supermartingale inequality
for a sufficiently small negative power of the weight function of the “parent”
interval, that is, roughly speaking, to prove the following claim. For simplicity,
let us assume that the T is a shift on countably many symbols and let P denote
the invariant probability.

CLAIM 12 ([4, Claim 3.5]). There exists N0 ∈N such that for any N > N0 there is
a finite subset Z ⊂ΩN of large measure and number ρ0 > 0 such that for every
0 < ρ < ρ0, every J ∈J and every Y ⊂∆ with P (Y ) > 0, we have∑

l∈Z
‖Jl ,0‖−ρP (∆l | ⋃

l ′∈Z

∆l ′ ∩T −N (Y )) ≤ (1−ρ)‖J‖−ρ .

In other words the expectation of the likelihood of “survival” of the “parent”
interval decreases by a factor (< 1) after a sufficiently long time. The inequal-
ity holds since on a large measure set the interval is pushed away from the
origin uniformly in the direction of the unstable space of the cocycle. Sets of
sufficiently small measure can be neglected by the integrability of the cocycle.
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In fact, it is remarkable that the above claim holds under the quite general
assumption of uniformity (log-integrability) of the cocycle. For Avila accelera-
tions of the Rauzy–Veech–Zorich cocycle, it was later proved by Avila, Gouëzel
and Yoccoz [6] that appropriate Avila accelerations satisfy a much stronger in-
tegrability condition, namely they belong to the space Lp (∆) for all p < 1 (see
Corollary 29). Under such a stronger integrability assumption, the proof of the
above claim is much more straightforward than the proof of the general case,
given in [4]. There, the above supermartingale inequality for ‖J‖−ρ is deduced,
for sufficiently small exponents ρ > 0, by derivation with respect to the exponent
of the analogous supermartingale inequality for the function log‖J‖, which in
turn can be proved directly for all log-integrable cocycles (see [4, Claim 3.4 and
the proof of Claim 3.5]). This extremely clever argument is just one small ex-
ample of Avila’s exceptional technical abilities. It should be mentioned that a
similar argument can be found in earlier work of Eskin and Margulis (see [18,
Lemma 4.2]), but it was found independently to tackle a possible lack of inte-
grabillity of (small) powers of the norm of the cocycle in [4], while in [18] the
integrability of small powers is a key assumption (see [18, formula (2)]).

The proof of Lemma 11 is completed as follows. Let N > N0 be any fixed
integer such that the above Claim holds. For any J ∈ J , for any δ > 0, and for
all m ∈ Z, let Γm

δ
(J) := {x ∈ ∆|J ∩W s

δ,mN (x) 6= ;} be the set of points such that
the interval J “survives” (within distance δ> 0 of the integer lattice) up to time
mN ∈ N. The goal is then to prove that the probability P (Γm

δ
(J)) converges to

zero as m diverges to infinity. Let Ω̂N be the subset of all finite words of length
multiple of N ∈ N and let Ω̂N

Z be the set of all finite sequences in the in the
alphabet (ΩN àZ )∪ {Z }. There is a natural map ΦN : Ω̂N → Ω̂N

Z that maps every
subsequence l ∈ΩN àZ with the letter l ∈ Ω̂N

Z and replaces every sequence l ∈ Z
with the letter Z ∈ Ω̂N . For any d = (d1, . . . ,dm) ∈ Ω̂N

Z , let

∆̂d = ⋃
ΦN (l )=d

∆l .

The above definition means that we do not distinguish trajectories that differ
only on strings that belong to the finite set Z ⊂ΩN .

CLAIM 13 ([4, Claim 3.6]). For any d = (d1, . . . ,dm) ∈ Ω̂N
Z we have

P (Γm
δ

(J )|∆̂d )

‖J‖−ρ ≤ ∏
di=Z

(1−ρ)
∏

di 6∈Z
‖Ad i ‖ρ0 (1+ (2δ)ρ‖Ad i ‖0) .

The proof of the above claim is derived from Claim 12 for the estimate on
the weight of the “parent” interval and by straightforward bounds on the num-
ber and weight of the “children” (see for instance formula (29)). The argument
proceeds by induction on the length m ∈N of the symbolic sequence.

Finally, the result follows from the ergodic theorem and by the uniform prop-
erty (log-integrability) of the cocycle. In fact, if the finite set Z ⊂ΩN corresponds
to a set of sufficiently large measure and δ > 0 is sufficiently small (so that in
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particular strings in the finite set Z produce no “children”), the function

γ(x) :=
{
−ρ , x ∈⋃

l∈Z ∆
l ,

ρ log‖Al‖0 + log(1+ (2δ)ρ‖Al‖0) , x ∈⋃
l∈ΩNàZ ∆

l ,

has strictly negative average. It follows that

P (Γm
δ (J )) = ∑

d∈Ω̂N
Z ,|d |=m

P (Γm
δ (J )|∆̂d )P (∆̂d )

≤ ‖J‖−ρ
∫
∆

exp[
m−1∑
k=0

γ
(
T kN (x)

)
]dP (x) .

Hence, by the ergodic theorem, the “survival” probability P (Γm
δ

(J )) converges to
zero (exponentially fast) as m ∈N diverges to infinity. Our outline of the proof
of Lemma 11, hence of Avila–Forni’s proof of weak mixing for almost all interval-
exchange transformations that are not rotations, is thus complete.

3.3. The Kontsevich–Zorich conjecture. Avila and Viana’s proof of the conjec-
ture is in fact the main application of a general criterion for the simplicity of a
locally constant cocycle over a strongly expanding transformation (see [8, 9]).
In their work, they formulate fundamental notions of pinching and twisting co-
cycles. Cocycles that are both pinching and twisting are said to be simple. The
main abstract theorem states that any simple cocycle over a strongly expand-
ing transformation has a simple Lyapunov spectrum (all Lyapunov exponents
are simple). The proof of this result adapts and refines earlier work of several
authors (see [37, 11, 12] for deterministic cocycles and [27, 26, 37, 29, 28] for ran-
dom cocycles). The reader can consult Viana’s lectures on Lyapunov exponents
(see [54]) for a comprehensive treatment of the theory of Lyapunov exponents
including a refined version of the Avila–Viana simplicity theorem (see [54, Chap.
7]).

The proof that the Rauzy–Veech–Zorich cocycle is simple. Hence, it has a sim-
ple Lyapunov spectrum, is based on a combinatorial analysis of the dynamics
of the Rauzy–Veech–Zorich map near the boundary of the simplex and on an
induction argument. These ideas will be developed and refined in Avila’s joint
work on the exponential decay of correlation of the Teichmüller flow, which we
will examine in the next, final section.

We note that since the cocycle is Rauzy–Veech–Zorich cocycle symplectic, it
has a symmetric Lyapunov spectrum, and, hence, it is also nonuniformly hy-
perbolic (as by symmetry the Lyapunov exponent zero has necessarily even
multiplicity).

3.3.1. Simple cocycles. Pinching and twisting are actually properties of the lin-
ear action of the monoid generated by a cocycle. A linear action of a monoid M

is an action by linear isomorphisms of a finite-dimensional vector space H . It
naturally induces actions on the projective space P(H), on the Grassmannians
Gk (H) of k-dimensional subspaces and on the space F (H) of flags. By endow-
ing the vector space H with a euclidean structure (an inner product), we can
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associate to every element m ∈M its singular values

σ1(m) ≥ ·· · ≥σdim(H)(m) > 0,

which, by definition, are the eigenvalues of the linear self-adjoint operator m∗m
on H , as well as its Lyapunov exponents

θ1(m) ≥ ·· · ≥ θdim(H)(m) .

DEFINITION 14 (Pinching). The linear action of a monoid M on a vector space
H is said to be pinching if for every C > 0 there exists m ∈M such that

σi (m) >Cσi+1(m) , for all i = 1, . . . ,dim(H)−1.

DEFINITION 15 (Twisting). The linear action of a monoid M on a vector space
H twists a subspace F ∈ Gk (H) if for every F1, . . . ,F J ∈ Gdim(H)−k there exists
m ∈M such that

mF ∩F j = {0} , for all j = 1, . . . , J .

The action is said to be twisting if it twists all subspaces F ∈G(H) =∪Gk (H).

A linear action of a monoid M is said to be simple if it is pinching and twist-
ing. A cocycle is said to be pinching, twisting, simple if the linear action of the
monoid generated by the cocycle is respectively pinching, twisting, simple.

Pinching and twisting can be obtained more concretely as follows [12, 9]: a
cocycle (T, A) is pinching if there exists a periodic point p of period N ∈N such
that all eigenvalues of the matrix AN (p) = (A ◦T N−1)(p) · · · A(p) are distinct; a
cocycle (T, A) is twisting if there exists a homoclinic point z in the support of the
ergodic invariant measure considered such that z belongs to the local unstable
manifold W u

loc (p), T m(z) belongs to the local stable manifold W s
l oc (p) and for

all AN (p)-invariant subspaces E , F ⊂ H of complementary dimension

Am(z)E ⊕F = H .

The above twisting condition can be checked by computing that all minors of
the matrix of Am(z) with respect to a basis of eigenvectors of AN (p) are nonzero.

The following result holds:

THEOREM 16 (see [8, Theorem 2]). Let (T, A) be a locally constant measurable
cocycle over a strongly expanding transformation T : ∆→ ∆. If the supporting
monoid of the cocycle is simple, then the cocycle has simple Lyapunov spectrum.

The idea underlying the proof of the above theorem is that a strongly ex-
panding transformation is sufficiently chaotic that methods of earlier works
on simplicity of the Lyapunov spectrum in the deterministic situation (see in
particular [11, 12]) can be applied. The argument is based on the construction
of special invariant measures for the action of cocycles on the Grassmannian
bundles, called u-states, over strongly expanding transformations (the bounded
distortion property of strongly expanding transformations plays a key role). An
important step is to prove that by the pinching and twisting conditions u-states
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are delta measures on the Grassmannian fibers. Thus the support of any invari-
ant u-state is an invariant measurable section of a Grassmannian bundle that is
in “general” position in a precise sense.

A key feature of the simplicity theorem is that, thanks to chaotic nature of the
underlying dynamics, it is possible to derive the conclusion from information
gathered from a set of orbits of measure zero. In other terms, the pinching and
twisting properties can be established on the basis of a knowledge of the action
of the cocycle on special orbits (such as periodic and homoclinic orbits). In the
terminology of [8], those special orbits are able to “persuade” almost all orbits
to generate simple Lyapunov exponents. This persuasion mechanism is crucial
in particular for the application to the Rauzy–Veech–Zorich cocycle since its
dynamics are more accessible near the “boundary” of the simplex (near the
boundary of the moduli space of ‘zippered rectangles’ or translation surfaces),
as we shall see in the next subsection.

The proof of simplicity of the supporting monoid of the Rauzy–Veech–Zorich
cocycle is somewhat simplified since the the cocycle is symplectic. For symplec-
tic cocycles, Avila and Viana devise the following strategy [8]. First of all, there
is a notion of strongly pinching symplectic action:

DEFINITION 17. (Strong Pinching) The linear symplectic action of a monoid M

on a symplectic vector space H (of dimension 2g ) is said to be strongly pinching
if for every C > 0 there exists m ∈M such that

logσg (m) >C and

logσi (m) >Cσi+1(m) , for all i = 1, . . . , g −1.

In the symplectic case, under the strong pinching condition, it is possible
to restrict the twisting condition to isotropic subspaces. We say that the sym-
plectic action of a monoid twists isotropic subspaces if the twisting property of
Definition 15 holds on the Grassmannians of isotropic subspaces.

LEMMA 18 (see [8, Lemma 4.14]). Let M be a monoid that acts symplectically
on a symplectic vector space H. If the action of M on H is strongly pinching and
twists isotropic subspaces, then it is simple (pinching and twisting).

The strong pinching property is established thanks to the following result.

LEMMA 19 (see [8, Lemma 4.7]). Let M be a monoid that acts symplectically on
a symplectic vector space H of dimension 2g . Assume that for every C > 0 there
exists m ∈M for which 1 is an eigenvalue of geometric multiplicity one,

θg−1(m) > 0 and θi (m) >Cθi+1(m) , for all i = 1, . . . , g −2,

then the action of M on H is strongly pinching.

Finally, for a symplectic action the property of twisting isotropic subspaces
follows from the minimality of the action on the space of Lagrangian flags.

LEMMA 20 (see [8, Lemma 4.4]). Let M be a monoid that acts symplectically on
a symplectic vector space H. If the action of M on the space L (H) of Lagrangian
flags is minimal, then it twists isotropic subspaces.
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From the above discussion, we conclude that the Kontsevich–Zorich conjec-
ture can be derived as soon as it is proved that the action of the Rauzy–Veech–
Zorich monoid on the space of Lagrangian flags is minimal and that the strong
pinching conditions of Lemma 19 hold.

3.3.2. Simple reduction/extension. In this subsection we outline the main ideas
of the proof of the main result of Avila and Viana on the Rauzy–Veech–Zorich
cocycle: the proof of the Kontsevich–Zorich conjecture.

THEOREM 21 ([8, Corollary 6.2]). For every Rauzy class R, the action of the Rauzy–
Veech–Zorich monoid on the symplectic bundle HR is simple, hence the Lyapunov
spectrum of the Rauzy–Veech–Zorich cocycle is simple.

As we have outlined in the previous subsection, the argument is reduced to
the proof that the action of the monoid is minimal on Lagrangian flags and
strongly pinching. These properties are verified by an induction procedure on
the number of intervals. The idea is that we can consider the Rauzy–Veech–
Zorich induction on interval-exchange transformations with at least one “very
short” interval. A very short interval will remain short for a relatively long time
and the orbit will ‘shadow’ an orbit of the Rauzy–Veech–Zorich induction on
the space of interval-exchange transformations with fewer subintervals. Assum-
ing the desired properties are verified for the Rauzy–Veech–Zorich induction
on interval-exchange transformations with fewer subintervals, it is possible to
derive them for the given space of interval-exchange transformations.

We outline below the main steps of the inductive argument. It is based on
operations of simple reduction and simple extension, defined as follows.

DEFINITION 22. Let A be a finite alphabet with d ≥ 3 elements, let α ∈A and
let A ′ := A à {α}. The simple reduction of any irreducible combinatorial data
(πt ,πb) ∈ ΣA is given by the combinatorial data (π′

t ,π′
b) obtained by erasing α

from the top and bottom rows whenever (π′
t ,π′

b) is irreducible. Otherwise the
simple reduction is not defined.

DEFINITION 23. Let A ′ be a finite alphabet with d ≥ 2 elements. For any irre-
ducible combinatorial data (π′

t ,π′
b) ∈ ΣA ′ , let α/β ∈ A ′ be first in top/bottom

respectively. Let γ 6∈ A ′ and let A := A ′∪ {γ}. Let R(π′
t ,π′

b) be the Rauzy class
of the combinatorial data (π′

t ,π′
b) ∈ΣA ′ . Let (δ,ε) 6= (α,β) in A ′. The operation

of simple extension on the Rauzy diagram of the Rauzy class R(π′
t ,π′

b) is de-
fined as follows: on vertices, the simple extension L is defined by adding the
letter γ to the left of δ/ε in the top/bottom to every combinatorial data; on ar-
rows, the operation of simple extension L∗ is defined as follows: let l ′ be an
arrow in the Rauzy diagram of the Rauzy class R(π′

t ,π′
b) with starting point

(π′′
t ,π′′

b) ∈R(π′
t ,π′

b),

• if δ/ε is last in top/bottom and l ′ is of type bottom/top, then L∗(l ′) is a se-
quence of 2 bottom/top arrows starting at the simple extension L(π′′

t ,π′′
b);

• otherwise, L∗(l ′) is a single arrow that starts from the simple extension
L(π′′

t ,π′′
b) and has the same type as the arrow l ′.
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The operations of simple reduction and extension are inverses of each other
in the sense that the appropriate simple reduction of a simple extension yields
the original combinatorial data. The operation of simple extension is surjective,
that is, for every irreducible pair of combinatorial data (πt ,πb) ∈ ΣA on d ≥ 3
letters there exists an irreducible pair of combinatorial data (π′

t ,π′
b) ∈ ΣA ′ on

d −1 letters such that (πt ,πb) is a simple extension of (π′
t ,π′

b). It is possible to
analyze completely the action of the operations of simple reduction and exten-
sion on the Rauzy–Veech–Zorich cocyle. We briefly summarize the main results
below.

There are two cases. Either (1) the genus g (πt ,πb) = g (π′
t ,π′

b), or (2) the genus
g (πt ,πb) = g (π′

t ,π′
b)+1. Topologically, this means the following. In case (1), the

simple reduction corresponds to collapsing two or more zeros without pinching
the associated surface; in case (2), there is exactly one cycle nonhomologous
to zero that gets pinched, so that the resulting Abelian differential on the de-
generate surface is still holomorphic (in general, the Abelian differential on the
degenerate, pinched surface has simple poles at the punctures).

Let R ⊂ΣA and R′ ⊂ΣA ′ be the Rauzy classes of the pairs of combinatorial
data (πt ,πb) and (π′

t ,π′
b), respectively. In case (1), there is no loss of dimension

and it can be proved that the Rauzy–Veech–Zorich cocycles on the symplec-
tic bundles HR and HR′ are symplectically conjugate, so that one is simple if
and only if the other is. In case (2), when the genus changes, it is necessary to
gain information to make the argument work. The strategy goes as follows. By
Lemma 18, it is sufficient to prove that the cocycle twists isotropic subspaces
and it is strongly pinching. By Lemma 20 the twisting property can be derived
from the minimality of the action on Lagrangian flags. Thus, by the induction
hypotheses, it is sufficient to establish the minimality of the action on lines. In
turn, this is a consequence of the spectral gap property (the top exponent is
simple), already proved by Veech [52] (generalized in [21]).

The core of the proof then consists of establishing the strong pinching prop-
erty. By the induction hypotheses, it is sufficient to look at the action on the
Grassmannian of Lagrangian subspaces. The conclusion can then be derived
from the nonuniform hyperbolicity of the cocycle proved in [21]. Avila and Viana
relied on this argument in a first version of the paper, then found a completely
independent argument, based on Lemma 19. Note that the argument ends up
turning around the construction of orbits for which the cocycle is not even hy-
perbolic; rather, it is parabolic. In fact, it is supposed to have a geometrically
simple eigenvalue equal to 1 corresponding to a 2×2 Jordan block. Such orbits
are obviously rather special (zero measure) and are found by a careful combina-
torial construction.

From a topological point of view, the main idea is to construct surfaces by
a combinatorial procedure of “bubbling a handle” inspired by Kontsevich and
Zorich [36]. Indeed, a zippered rectangle with a single very thin handle would
provide a long orbit segment along which the handle stays very thin and the
(nonzero) homology class of its waist curve is necessarily mapped into itself by
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the cocycle. In fact, it is the only very short curve on the surface! The Rauzy–
Veech–Zorich cocycle therefore acts on the surface by Dehn twists along the
waist curves of the thin handle. It is by no means clear by this heuristic descrip-
tion that all the assumptions of Lemma 19 can be achieved.

In conclusion, we note that it is a common procedure in Riemann surface
theory of establishing results on all Riemann surfaces by a careful analysis of
surfaces near the “boundary” of the Deligne–Mumford compactification (see
for instance [40, 42, 21]). However, to the author’s best knowledge, in all cases
only geometric conclusions are directly drawn from the boundary analysis. For
instance, in [21] formulas for partial sums of the Lyapunov exponents in terms
of the (nonnegative) eigenvalues of the curvature of the Hodge norm on the
Hodge bundle are derived. The nonvanishing of the exponents is then derived
from the nonvanishing of the Hodge eigenvalues at some point in the moduli
spaces. The boundary analysis is applied to prove that the Hodge eigenvalues
are nonzero near certain “boundary” points.

The main novelty in Avila’s approach is a machinery to analyze the dynamics
of the Rauzy–Veech–Zorich induction (hence of the ‘zippered rectangles” flow
or of the Teichmüller flow) near the boundary of its phase space. The analysis
of the dynamics near the boundary is carried out by induction combined with
combinatorial considerations. Let us recall that, by the “persuasion mechanism”
underlying the abstract simplicity criterion outlined in the previous subsection,
the proof of the simplicity of the Rauzy–Veech–Zorich monoid only requires
the construction of special orbits. In fact, somewhat paradoxically, according to
Lemma 19 the orbits that ensure the strong pinching property have a couple of
zero Lyapunov exponents.

A refinement of the simple reduction/extension and of the associated combi-
natorial analysis was later applied in the joint work of Avila, Gouëzel and Yoccoz
[6] to prove sharp bounds on the probability of long excursions of the orbits
of the ‘zippered rectangles’ flow outside a given compact set. As we will out-
line in the next, final section, such estimates are a key step in the proof of the
exponential decay of correlations for the Teichmüller geodesic flow.

3.4. Exponential Mixing for the Teichmüller flow. The proof by Avila, Gouëzel
and Yoccoz [6] of exponential decay of correlations for the geodesic flow is based
on a general abstract theorem for excellent hyperbolic semiflows. This theorem
adapts Dolgopyat’s proof [17] of exponential decay of correlations for certain
Anosov flows, following closely the version of V. Baladi and B. Vallée [10]. The
verification of the hypotheses of the abstract theorem for Veech ‘zippered rectan-
gles’ flow (or, equivalently, for the Teichmüller flow) is based on combinatorial
techniques and on an induction procedure that refines the methods of Avila and
Viana that we have outlined in the previous section. Once exponential decay of
correlations is proved for smooth observables with compact support, a reverse
Ratner’s argument, based on the theory of unitary representations of the group
SL(2,R), implies the existence of a spectral gap in the action of SL(2,R) with
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respect to all canonical absolutely continuous measures on connected compo-
nents of strata of the moduli space of Abelian differentials. By the results of
M. Ratner [46], the spectral gap property for the action of SL(2,R) in turn im-
plies exponential decay of correlations for the Teichmüller geodesic flow, as well
as a precise polynomial bound on the decay of correlations for the Teichmüller
horocycle flow, for all observables in the Ratner’s class.

3.4.1. Excellent hyperbolic semiflows. Roughly speaking an excellent hyperbolic
semiflow is a special flow over a uniformly expanding Markov map under a
good roof function having exponential tails. The notion of a uniformly expand-
ing Markov map generalizes that of strongly expanding map, which we have
recalled in Section 3.1. The reader should keep in mind, according to the defi-
nitions, the Avila acceleration of the invertible Rauzy–Veech map is uniformly
expanding, so that the Veech ‘zippered rectangles’ flow is an excellent hyper-
bolic semiflow as soon as it is verified that the corresponding roof function is
good with exponential tails.

Uniformly expanding Markov maps are defined on John domains.
A John domain (see [6, Definition 2.1]) is a finite-dimensional connected

Finsler manifold ∆ equipped with a measure Leb satisfying certain conditions.
It suffices to say that any relatively compact, open subset ∆ of a larger mani-
fold with boundary a finite union of smooth hypersurfaces in general position,
equipped with the restriction to ∆ of any smooth measure defined on ∆ is a
John domain. It is not hard to check that the domain of any Avila acceleration
of the Rauzy–Veech–Zorich cocycle, a relatively compact simplex contained in a
standard simplex, is a John domain once equipped with the restrictions of the
Hilbert metric (as a Finsler metric) and of the Lebesgue measure.

DEFINITION 24. Let {∆(l )}l∈Λ be a finite or countable partition of a full measure
subset of a John domain ∆ into open subsets. A map T : ∪∆(l ) →∆ is said to be
a uniformly expanding Markov map if

1. for each l ∈Λ, the map T is a C 1 diffeomorphism of ∆(l ) onto ∆ and there
exist constants κ > 0 (independent of l ∈ Λ and Cl > 0) such that, for all
x ∈∆(l ) and for all v ∈ Tx∆,

κ‖v‖ ≤ ‖DT (x)v‖ ≤Cl‖v‖ ;

2. let J be the inverse of the Jacobian of T with respect to the measure Leb
and denote by H the set of inverse branches of T ; the function log J is C 1

on ∆(l ) for each l ∈Λ and there exists C > 0 such that

sup
h∈H

‖D
(
(log J )◦h

)‖C 0(∆) ≤C .(30)

Note that while the Rauzy–Veech map is not a uniformly expanding Markov
map, its Avila accelerations, that is, the return maps to suitable relatively com-
pact subsets introduced in Section 3.1, indeed are. In fact, the notion of a uni-
formly expanding Markov map is a generalization of that of strongly expanding
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map (see Section 3.1.1) modeled on the Avila acceleration. For instance, the cru-
cial bounded distortion property given above in formula (30) follows from the
fact that all inverse branches of Avila accelerations are projective contractions,
hence the logarithm of the Jacobian is a Lipschitz function (see Section 3.1.4).
We proceed to state the assumption on the roof function.

DEFINITION 25 ([6, Definition 2.3]). Let T : ∪∆(l ) →∆ be a uniformly expanding
Markov map. A function r : ∪∆(l ) →R+ is said to be a good roof function if the
following properties are satisfied:

1. there exists ε> 0 such that r ≥ ε;
2. there exists C > 0 such that, for all inverse branches h ∈H ,

‖D(r ◦h)‖‖C 0 ≤C ;

3. the function r is not a coboundary; that is, it is NOT possible to write

r =ψ+φ◦T −φ on ∪∆(l )

with ψ : ∆→R constant on all sets ∆(l ) and φ : ∆→R a C 1 function.

In the application of the abstract theorem on exponential decay of correla-
tions, which we will state below, to Veech ‘zippered rectangles’ flow it is not hard
to verify that the roof function is indeed good, according to the above definition.
In fact, the roof function for the representation of the ‘zippered rectangles’ flow
as a special flow over an Avila acceleration is given by an explicit formula (which
can be derived from formula (22) in Section 2.3.2). Let J denote, as above, the
Jacobian of the map T (an Avila acceleration). For all inverse branches h ∈H ,

r ◦h = 1

d
log J ◦h .

In particular, it can be proved that property (2) in Definition 25 follows from
the fact that inverse branches of the Rauzy–Veech map are projective contrac-
tions, by exactly the same argument that proves the bounded distortion prop-
erty (30) of Definition 24. Note that in fact it is proved that the functions r ◦h
are 1-Lipschitz. Property (3) in Definition 25 follows quite easily from the mini-
mality of the action of the Rauzy–Veech–Zorich monoid on lines (proved in [8,
Corollary 3.6]), a direct consequence of the spectral gap property of the Rauzy–
Veech–Zorich cocycle (see also Section 3.3.2).

The assumptions considered so far do not take into account one of the main
technical difficulties in applying Dolgopyat’s ideas to the Teichmüller flow, that
is, the lack of compactness of the moduli space. In fact, the Teichmüller flow
has smooth globally defined foliations and it is “locally uniformly hyperbolic”
(a consequence, for instance, of the variational formulas for the Hodge norm
proved in [21]), which means in particular that all of its return maps to compact
subsets are uniformly hyperbolic. In representing the ‘zippered rectangles’ flow
as a special flow over an Avila acceleration of the invertible Rauzy–Veech map,
the Markovian, hyperbolic properties of the return map become clear, but the
roof function is unbounded. Athreya [2] had proved in his thesis (written under
the direction of A. Eskin) that exponentially long excursions of the Teichmüller
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geodesic flow outside of certain ‘large’ compact subsets of the moduli space
have exponentially small probabilities. In fact, such a result was intended as a
step in the proof of exponential decay of correlations for the Teichmüller flow;
unfortunately, the return maps to the ‘large’ compact sets of [2] do not have
good geometric properties, and so any approach to decay of correlations based
on Markov partitions is problematic. We note, however, that Athreya’s results
have the great advantage of holding for an arbitrary SL(2,R) orbit. After a first
application to the speed of convergence of ergodic averages for almost all di-
rectional flows on an arbitrary translation surface [4], they have recently been
applied by Avila and GouÂŚzel [5] to the original question of decay of correla-
tions for arbitrary ‘algebraic’ SL(2,R)-invariant ergodic measures. We note that
in the latter work, the approach based on Markov partitions is abandoned for
an analytic approach based on appropriate norms on distributional spaces.

Let us resume our discussion of the work of Avila, Gouëzel and Yoccoz on the
exponential mixing of the Teichmüller flow [6]. Athreya’s work [2] motivated the
following definition:

DEFINITION 26. A good roof function r : ∪∆(l ) → R+ has exponential tails if
there exists σ> 0 such that ∫

∆
eσr (x)dLeb(x) <+∞ .

An excellent hyperbolic semiflow is, roughly speaking, a special flow over a
(hyperbolic) extension T̂ of a uniformly expanding Markov map under a good
roof function with exponential tails. The precise notion, that of an hyperbolic
skew-product, is given in [6, Definition 2.5] and we will not give it here. It suffices
to point out that definition is set up so that Avila accelerations of the invertible
Rauzy–Veech map are hyperbolic skew-products over the corresponding Avila
acceleration of the Rauzy–Veech map. In the general setting, the skew-product
T̂ is defined on an open bounded subset of a connected Finsler manifold ∆̂ and
there exists a projection π : ∆̂→∆ such that T̂ ◦π=π◦T ; it is therefore possible
to define a special semiflow over T̂ under the roof function r ◦π : ∆̂→ R+. We
recall that such a semiflow {T̂t } is defined on the set ∆̂r := {(y, s)|y ∈ ∆̂,0 < s <
(r ◦π)(y)} and it is defined as follows: for any (y, s) ∈ ∆̂r , let n be the largest
integer such that

∑n
k=0(r ◦T n)(π(y)) < t + s; then

T̂t (y, s) =
(

T̂ n(y), s + t −
n∑

k=0
(r ◦T n)(π(y))

)
.

We are finally ready to state the main abstract theorem on exponential decay
of correlations:

THEOREM 27 ([6, Theorem 2.7]). Let {T̂t } be an excellent hyperbolic semiflow
(which preserves the probability measure νr on ∆̂r ). There exist constants C > 0
and δ> 0 such that for all functions U , V ∈C 1(∆̂r ) and for all t > 0,

|
∫
∆̂r

U ·V ◦ T̂t dνr −
(∫
∆̂r

Udνr

)(∫
∆̂r

V dνr

)
| ≤C‖U‖‖V ‖C 1 e−δt .
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As we have noted, the above theorem is essentially a well-written adaptation
of Dolgopyat’s ideas from [17] following in the footsteps of Baladi and Vallée
[10].

3.4.2. Exponential tails. The exponential mixing of the Teichmüller flow is de-
rived for smooth observables from the corresponding result for the ‘zippered
rectangles’ flow, since the latter is a finite cover of the former. As we have out-
lined in Section 2.3.2, the ‘zippered rectangles’ flow can be seen as a special
flow over the invertible Rauzy–Veech–Zorich induction, which in turn is an ex-
tension of the Rauzy–Veech map. By considering appropriate Avila accelerations,
the ‘zippered rectangles’ flow is seen as a special flow over a hyperbolic skew-
product (an Avila acceleration of the invertible Rauzy–Veech map) over a uni-
formly expanding Markov map (an Avila acceleration of the Rauzy–Veech map).
We have briefly outlined in the previous section the proof that the roof function,
that is, the return time function corresponding to an Avila acceleration, is good.
It appears, then, that the main step in order to apply the above abstract expo-
nential mixing theorem to the ‘zippered rectangles’ flow is to prove that the roof
function has exponential tails.

Several comments are in order. It is not necessary to establish optimal ex-
ponential tail estimates to establish exponential decay of correlations. A proof
of the exponential mixing of the Teichmüller flow can in fact be derived from
the above abstract theorem by establishing any exponential tail estimates (even
weaker than optimal). Such estimates were already contained in the work of
A. Bufetov [14], but Avila, Gouëzel and Yoccoz were not aware of all the aspects
of Bufetov’s work. After completing the proof of the nearly optimal estimates,
they independently found a much easier argument that establishes exponen-
tial tail estimates that, however far from optimal, are enough to establish ex-
ponential mixing (see [6, Appendix A]). We note that suboptimal exponential
tail estimates are relatively straightforward to prove and have been extended to
quadratic differentials by Avila and M. J. Resende [7] who derived exponential
mixing in that context. As a comparison, the simplicity of the Lyapunov spec-
trum for canonical measures on strata of nonorientable quadratic differentials
(that is, a generalization of Avila–Viana’s proof of the Kontsevich–Zorich conjec-
ture) is still an open problem. Recently R. Treviño [47] has given a proof, based
on the approach of [21, 24], that the cocycle is nonuniformly hyperbolic on all
strata of the moduli space of holomorphic quadratic differentials.

In [6] nearly optimal estimates are indeed proved. Such estimates are of in-
dependent interest and have been applied to other questions (see, for instance,
[48]). Optimal estimates greatly increase the complexity of the argument in two
ways: the combinatorial analysis needed to establish them is much more in-
volved and the combinatorial structure of the Avila acceleration for which they
can be proved is more complicated. However, in our opinion, the refined com-
binatorial analysis of the degeneration of Rauzy classes appears to be of funda-
mental importance for future applications to dynamics and geometry.

We formulate Avila, GouÂŚzel and Yoccoz nearly optimal estimates below:
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THEOREM 28 ([6, Theorem 4.10]). For every δ> 0, the Veech ‘zippered rectangles’
flow can be represented as a special flow over an Avila acceleration of the invert-
ible Rauzy–Veech map T̂ (that is, a return map to a finite union Ẑ of relatively
compact connected components of iterates of the invertible Rauzy–Veech map)
under a roof function r Ẑ : Ẑ →R+ such that∫

Ẑ
e(1−δ)r Ẑ dLeb < +∞ .

The key step in the proof of Theorem 28 above is given by bounds on the
measure of sets that undergo large distortion after some long Teichmüller time.
Nearly optimal distortion bounds are proved by an induction scheme with re-
spect to the number of subintervals carried out by a refined combinatorial anal-
ysis of the Rauzy–Veech induction. It should already be clear by the above short
description that the argument is based on a refinement of the combinatorial
ideas of the earlier paper on the Kontsevich–Zorich conjecture [8] that we have
outlined in Section 3.3.2. Such a refinement begins with a generalization of the
operation of simple reduction. The resulting operation, called reduction allows
to carry out a degeneration of a full Rauzy class. Let us a give a taste of some of
the notions involved in the combinatorial analysis.

Let A be an alphabet and let A ′ ⊂A . Intuitively the idea is to let all lengths
labeled by letters in A ′ go to zero, that is, to erase all letters from A ′ from
the top and bottom rows of every irreducible element (πt ,πb) ∈ ΣA ′ . However,
this operation may run into difficulties as the resulting pair of combinatorial
data may fail to be irreducible and the resulting Rauzy graph may be undefined.
Several technical steps are introduced to overcome this difficulty.

A notion of A ′-decorated Rauzy class R∗ ⊂R is defined as a maximal subset
of a Rauzy class R of combinatorial data that can be joined by an A ′-colored
path. An A ′-colored path is a concatenation of A ′-colored arrows, that is, of
arrows whose winner belongs to A ′. A pair of combinatorial data (πt ,πb) ∈R is
said to be A ′-essential if the last letters of both the top row πt and the bottom
row πb belong to A ′. The essential A ′-decorated Rauzy class Ress∗ ⊂R is defined
to be the subset of essential elements. A decorated Rauzy class R∗ is said to be
essential if the subset Ress∗ of essential elements is nonempty. For any essential
decorated Rauzy class Ress∗ , the Rauzy graph is defined by considering all arrows
starting and ending at elements of Ress∗ .

The notion of reduction is defined as follows. Given a pair of combinatorial
data (πt ,πb) ∈Ress∗ , we delete all the letters that do not belong to A ′ from the
top row πt and the bottom row πb . The resulting pair (π′

t ,π′
b) of combinatorial

data is not always irreducible, so we consider the irreducible end (called the
admissible end in [6]) of (π′

t ,π′
b), which is obtained by deleting as many letters

from the beginning of the top and bottom rows of (π′
t ,π′

b) as necessary to obtain

an admissible permutation. The resulting pair of combinatorial data (πr ed
t ,πr ed

b )
belongs to ΣA ′′ (the set of irreducible pairs of combinatorial data) for some al-
phabet A ′′ ⊂ A . It is called the reduction of (π′

t ,π′
b) ∈ Ress∗ . The operation of

reduction can be extended to the whole essential decorated Rauzy class R∗ by

JOURNAL OF MODERN DYNAMICS VOLUME 6, NO. 2 (2012), 139–182



178 GIOVANNI FORNI

introducing an operation that associates to any given nonessential pair of com-
binatorial data (πt ,πb) ∈R an essential pair (πess

t ,πess
b ) ∈Ress∗ . The operation of

reduction can be defined on paths in the Rauzy diagram and it is compatible
with concatenation. As we mentioned above, the core of the proof is a rather
involved induction procedure on the cardinality of the alphabet based on the
reduction operation just outlined (see [6, Section 5]).

As a conclusion of the section, we note that Theorem 28 implies a strong in-
tegrability condition for Avila accelerations of the Rauzy–Veech–Zorich cocycle.

COROLLARY 29. For any δ > 0 and any open set U ⊂ Pd−1+ ×ΣA , there exists an
Avila acceleration (T, A) of the Rauzy–Veech–Zorich cocycle, defined on a domain
∆ ⊂U , that satisfies the following strong integrability condition with respect to
the canonical T -invariant measure µ on ∆:∫

∆
‖A(x)‖1−δ

0 dµ(x) < +∞ .(31)

The above L1−δ integrability condition should be compared with the inte-
grability condition (24) that follows immediately from Zorich results [58]. The
main abstract theorem of [4], on which the proof of weak mixing for almost
all interval-exchange transformations is based, works for all uniform cocycles,
that is, for all cocycles that satisfy the log-integrability condition (24). However,
the proof becomes simpler and more transparent under an L1−δ integrability
assumption (which was not yet available when [4] was written).

3.4.3. The spectral gap theorem. From the exponential mixing of the Teichmül-
ler geodesic flow, Avila, Gouëzel and Yoccoz [6] derived, by a reverse Ratner ar-
gument, a spectral gap theorem for the natural action of the group SL(2,R) on
the moduli space of Abelian differentials with respect to any of the canonical
measures on connected components of the strata (see Section 2.3.1).

A unitary representation of the group SL(2,R) has a spectral gap if the spec-
trum of the Laplacian or of the Casimir operator (the generator of the center of
the enveloping algebra of the Lie algebra sl(2,R)) associated to the representa-
tion has a spectral gap in the sense of the spectral theory of self-adjoint opera-
tors. In terms of the theory of unitary representations of SL(2,R), the spectral
gap property can be formulated as follows.

The Casimir operator acts as a multiple of the identity on every irreducible
unitary representation of SL(2,R), and irreducible unitary representations are
classified up to unitary equivalence by the associated Casimir parameter. They
belong to three series: the principal series given by all irreducible unitary rep-
resentations with Casimir parameter larger than 1/4, the complementary series
given by all irreducible unitary representations with positive Casimir parameter
in the interval (0,1/4), and the discrete series given by a sequence of negative,
integer Casimir parameters.

Any linear unitary representation of SL(2,R) on a Hilbert space can be de-
composed as direct sum or, in general, as a direct integral of irreducible repre-
sentation. The representation is said to have a spectral gap if its direct integral
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decomposition into irreducible unitary representations does not contain rep-
resentations with nonzero Casimir parameter arbitrarily close to zero. In other
terms, the representation is a direct integral of irreducible unitary representa-
tions with respect to a (spectral) measure on the real line supported outside of
a pointed neighborhood of the origin.

THEOREM 30 ([6, Corollary 1.1]). For any canonical SL(2,R)-invariant ergodic
measure µC on a connected component C of a stratum of the moduli space of
Abelian differentials, the unitary representation of SL(2,R) on the Hilbert space
L2(C ,µC ) of square-integrable functions has a spectral gap.

It turns out that it is not hard to derive the spectral gap theorem from the
exponential mixing of the Teichmüller flow for smooth observables with com-
pact support. In fact, it is enough to prove the following abstract result by an
explicit computation in the standard unitary model for irreducible unitary repre-
sentations of the complementary series. The correlations (along the Teichmüller
geodesic flow) of an SO(2,R)-invariant vector (unique up to multiplication by
a scalar), in each irreducible representation of the complementary series, are
nonnegative and decay at an exponential rate that converges to zero with the
Casimir parameter. It follows that if a unitary representation of SL(2,R) does not
have a spectral gap, matrix elements (correlations) of SO(2,R)-invariant vectors
do not converge to zero at a uniform exponential rate long the diagonal sub-
group. For the representations on spaces of square-integrable functions on the
moduli space of Abelian differentials, it would follow that the Teichmüller flow
does not have exponential mixing, a contradiction.

By Ratner’s theorems on decay of correlations [46] the following holds.

COROLLARY 31 ([6, Appendix B]). The Teichmüller geodesic flow has exponential
decay of correlations and the Teichmüller horocycle flow has polynomial decay of
correlations for all observable in the Ratner’s class.

The Ratner’s class is roughly the class of square integrable functions that are
Hölder along SO(2,R) orbits. Note the “bootstrap” of regularity in the exponen-
tial mixing for the Teichmüller flow with respect to the main theorem.

We conclude our review of Avila’s early, prize-winning contributions to Teich-
müller dynamics by stating a far reaching generalization of the spectral gap
theorem, recently proved in a remarkable paper by Avila and Gouëzel [5].

THEOREM 32 ([5]). Let µ be any SL(2,R)-invariant “algebraic” probability mea-
sure in the moduli space of quadratic differentials. For any δ> 0, the spectrum of
the associated Laplacian or Casimir operator in the interval [0,1/4−δ] is made
of finitely many eigenvalues of finite multiplicity.

We recall that Eskin and Mirzakhani [19] have recently announced a proof
of the long-standing conjecture that all SL(2,R)-invariant measures are “alge-
braic”. By the Avila–Gouëzel Theorem, from a spectral point of view the action
of SL(2,R) on the moduli space of quadratic differentials is similar to the action
on the unit tangent bundle of a finite volume hyperbolic surface (such as the
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modular surface). Note, however, that in higher genus SL(2,R) orbits have high
codimension. Hence, the foliated Laplacian associated to the SL(2,R) action is
not subelliptic.

The Avila–Gouëzel paper represents, in many respects, a departure from the
techniques of Avila’s earlier work and it is beyond the scope of our paper.

Acknowledgments. We are grateful to Sasha Bufetov and Carlos Matheus Silva
Santos who read a preliminary version of this paper and greatly helped to im-
prove it with their comments and suggestions.
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