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We review some known results and open problems related to the growth of groups. For
a finitely generated group Γ, given whenever necessary together with a finite generating
set, we discuss the notions of

(A) uniformly exponential growth,
(B) growth tightness,
(C) regularity of growth series,
(D) classical growth series (with respect to word lengths),
(E) growth series with respect to weights,
(F) complete growth series,
(G) spectral radius of simple random walks on Cayley graphs.

From the modern point of view a dynamical system is a pair (G, X) where G is a
group (or a semi-group) and X is a set on which G acts; introducing different structures
on G and X we get different directions for the Theory of Dynamical Systems. Many of the
dynamical properties of the pair (G, X) depend on appropriate properties of the group G.

In this paper we discuss such notions for a group G as growth, entropy, amenability
and spectral radius of random walks, which are closely related to the notions of growth of
manifolds and foliations, entropy of geodesic flows and of symbolic systems, spectral theory
of Laplace operators and the theory of harmonic functions on Riemannian manifolds.

It is a great pleasure for the first author to mention that one of the results that is
discussed in this paper, namely the cogrowth criterion for amenability, was firstly reported
at the seminar of Prof. D.N. Anosov on the Theory of Dynamical Systems in the Steklov
Mathematical Institute in the spring of 1975.

Growth considerations in group theory, with motivations from differential geometry,
have been introduced in the early 50 ’s ([Sch], [Efr], as well as [Fol]) and again (indepen-
dently !) in the late 60 ’s [Milnor]. Nowadays, it is part of overlapping subjects with
names such as combinatorial group theory, geometric group theory, or asymptotic group
theory (the latter name being apparently first used in [Gk6]). These theories have a rich
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history [ChM], for which milestones have been the 1966 book by Magnus, Karas and Solitar
[MKS], and the 1987 list of problems of R. Lyndon [Lyn] (see also [LyS]). For a recent state
of the art concerning infinite groups, a quasi-isometric picture of the subject has appeared
in [Gv4]; for the asymptotic group theory of finite groups, see [Kan].

For growth of other objects, see the following papers, as well as the references therein.
• [Gk8] and [ShE] for semi-groups,
• [Tro] for graphs,
• [Gk8], [Gk10], [GkN] and [RoSa] for automata and languages,
• [Ba1], [KrL], [Ufn] for algebras,
• [KiV] for C∗-algebras,
• papers by Jones, Popa and others, including [Jon] and [GHJ], for subrings of rings,
• [HeH, Chap. IX] for homogeneous spaces, pseudogroups and foliations,
• [Lu1] and [Lu2] for subgroup growth.

For applications of group growth to other mathematical subjects, see among others
• [Mi2] and [GrK] for geometry,
• [Gk12], [Kir] and [Man] for ergodic theory,
• [Gk8] and [MaM] for automata and cellular automata theory,
• [VSC] for random walks,
• [Gk9] and [GrK] for the theory of invariant means,
• [ArK] for ODE’s and [Bab], [Shu] for PDE’s. (In the paper [Bab], the only groups which

appear with their growth properties are free groups; in private comments to the first
author, A.V. Babin has added that all knot groups are also relevant.)

(A) Uniformly exponential growth

Let Γ be a finitely generated group and let S be a finite set of generators of Γ. For
γ ∈ Γ, the word length `S(γ) is the minimum of the integers m ≥ 0 for which there exist
s1, . . . , sm ∈ S ∪ S−1 with γ = s1 . . . sm. The growth function of the pair (Γ, S) associates
to an integer n ≥ 0 the number β(Γ, S;n) of elements γ ∈ Γ such that `S(γ) ≤ n. The
exponential growth rate of the pair (Γ, S) is the limit

ω(Γ, S) = lim
n→∞

n
√

β(Γ, S;n).

(As β is clearly submultiplicative, i.e. as β(m + n) ≤ β(m)β(n) for all m,n ≥ 0, it is a
classical fact that the limit exists; see [PoSz], Problem 98 of Part I, page 23.) Some authors
introduce the logarithm of ω(Γ, S), and call it the entropy of the pair (Γ, S) [GLP]; the
reason is that, if Γ is the fundamental group of a compact Riemannian manifold of unit
diameter, and if S is an appropriate generating set (given by the geometry), then log ω(Γ, S)
is a lower bound for the topological entropy of the geodesic flow of the manifold [Man].

For example one has

Z ⊃ S = {1} =⇒ β(n) = 2n + 1 =⇒ ω(Z, S) = 1

Fk ⊃ Sk = free basis =⇒ β(n) =
k(2k − 1)n − 1

k − 1
=⇒ ω(Fk, Sk) = 2k − 1
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where, for an integer k ≥ 2, we denote by Fk the free group on k generators.
The group Γ is said to be of exponential growth if ω(Γ, S) > 1 (it is easy to check that

this condition holds for one particular S if and only if it holds for all S as above). It is
said to be of uniformly exponential growth if infS ω(Γ, S) > 1.

The minimal growth rate of Γ is

ω(Γ) = inf ω(Γ, S)

where the infimum is taken over all S as above. The main open problem on minimal growth
rates is to know whether one may have ω(Γ, S) > 1 for all S and ω(Γ) = 1 (see [GLP],
remarque 5.12). It could be easier to settle this problem first for restricted classes of groups,
such as solvable groups of exponential growth, Coxeter groups of exponential growth,
lattices in semi-simple Lie groups, or infinite groups with Kazhdan’s Property (T). One
should also consider particular constructions, such as free products with amalgamation,
HNN-extensions or semi-direct products.

One possible approach for constructing groups of exponential growth but not of uni-
formly exponential growth is suggested in [GrM].

The following summarizes some known facts on ω(.). Recall that a group is by definition
equally as large as F2 if it has a subgroup of finite index which has a quotient isomorphic
to F2.

Theorem. Let Γ′ be a subgroup of finite index in Γ and let Γ′′ be a quotient of Γ′.
(i) One has ω(Fk) = 2k − 1.
(ii) If ω(Γ′′) > 1, then ω(Γ′) > 1.
(iii) If ω(Γ′) > 1, then ω(Γ) > 1.
(iv) If Γ is equally as large as F2, then ω(Γ) > 1.
(v) If Γ has a presentation with k generators and l ≤ k − 2 relations, then ω(Γ) > 1.
(vi) If Γ has a presentation with k generators and k − 1 relations r1, . . . , rk−1

where r1 = (r0)m for some non empty word r0 and some m ≥ 2, then ω(Γ) > 1.
(vii) If Γ is a Gromov hyperbolic group which is torsion free and non elementary,

then ω(Γ) > 1.
(viii) If Γ is a Coxeter group which is isomorphic to a lattice (possibly not uniform) in

the group of isometries of the hyperbolic space Hn for some n ≥ 2, then ω(Γ) > 1.

On proofs. (i) If Sk is a free generating set of Fk, we have already observed that ω(Fk, Sk) =
2k − 1. Let now S be any finite generating set of Fk. The canonical image S of S in the
abelianized group (Fk)ab = Zk generates Zk. Thus S contains a subset R of k elements
generating a subgroup of finite index in Zk. Let R be a subset of S projecting onto R. The
subgroup 〈R〉 of Fk generated by R is free (as subgroup of a free group), of rank at most
k (because |R| = k) and of rank at least k (because (〈R〉)ab ≈ Zk). Hence R is a free basis
of 〈R〉 ≈ Fk, and it follows that ω(Γ, S) ≥ ω(〈R〉, R) = ω(Fk, Sk). (This argument appears
already in exemple 5.13 of [GLP].)

Claim (ii) is straightforward. Claim (iii) follows from the elementary (and smart!)
Proposition 3.3 of [ShW], showing more precisely that ω(Γ)2[Γ:Γ′]−1 ≥ ω(Γ′). Claim (iv)
follows from Claims (i) to (iii).
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Digression from the proof: if two finitely generated groups Γ1 and Γ2 are quasi-
isometric, we do not know how to show that ω(Γ1) > 1 implies ω(Γ2) > 1.

Claim (v) is due to B. Baumslag and Pride [BP1]; see also [Gv2, pages 82-83] and [Bau,
Ch. IV, Th. 8]. For (vi), see [Stö], as well as [BP2] and the same reference of Gromov.

Observe that Statements (v) and (vi) include the following: if Γ is a one-relator group,
then ω(Γ) > 1 as soon as Γ has rank ≥ 3, or has torsion; for other sufficient conditions,
see [CeG].

Claim (vii) follows from the following theorem. (Though its proof, due to Delzant,
is unpublished, see [Del].) In case Γ is moreover the fundamental group of a compact
hyperbolic 3-manifold, it is in [ShW].

Claim (viii) follows from [Lu3], where it is shown that the hypothesis of Claim (iv)
does hold. Does Claim (viii) carry over to any Coxeter group of exponential growth ? (It
is known that any infinite Coxeter group has a subgroup of finite index which maps onto
Z; see [Gon] and [CLV].)

Observe that Claim (viii) holds for Coxeter groups which are hyperbolic, and that
Moussong’s thesis [Mou] provides a simple criterion for this. �

There are “exotic groups” to which similar arguments apply. For example, V.S. Guba
[Gub] has shown that there exists a finitely generated simple group in which all the two-
generator subgroups are free non abelian; one has clearly ω(Guba group) ≥ 3.

Theorem (M. Gromov, T. Delzant). For a torsion-free non elementary hyperbolic
group Γ, there exists an integer nΓ with the following properties :

(i) for all x, y ∈ Γ such that xy 6= yx and n ≥ nΓ, the elements xn and yxny−1

generate freely a free subgroup of rank 2 in Γ.
(ii) ω(Γ) ≥ nΓ

√
3.

On proofs. Observe that (ii) is a straightforward consequence of (i) and of the previous
Theorem. As for (i), it is a consequence of a theorem, first stated by Gromov (Section 5.3
in [Gv3]), later made precise and proved by Delzant, which can be stated as follows. For
any hyperbolic group Γ, there exists an integer nΓ such that, for all x ∈ Γ, the normal
subgroup generated by xnΓ is free. �

Here is an open question on minimal growth rates, which generalizes the “main open
problem” recalled above. Does there exist a finitely generated group Γ such that ω(Γ) <
ω(Γ, S) for all S ? What about the Baumslag-Solitar group Γ =

〈
a, b | ab2a−1 = b3

〉
?

Let Γg denote the fundamental group of a closed orientable surface of genus g ≥ 2.
What is the exact value of ω(Γg) ? Here is an argument showing that ω(Γg) ≥ 4g − 3.

Let S be an arbitrary system of generators of Γg. Observe that S contains some subset
R of 2g elements which generates a subgroup of finite index in the abelianized group
Z2g of Γg. If R0 is the complement of one (arbitrary) element in R, then R0 generates a
subgroup 〈R0〉 of infinite index in Γg. Such a group is free (being the fundamental group
of a noncompact surface) of rank exactly 2g − 1 (because its abelianisation is isomorphic
to Z2g−1). Hence ω(Γg, S) ≥ ω(〈R0〉 , R0) = 4g − 3.
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On the other hand, one has for example 5 ≤ ω(Γ2) ≤ ω(Γ2, canonical) ≈ 6.9798; for the
upper numerical value, see the beginning of Section (D) below. More generally, numerical
computations show that ω(Γg, canonical) ≈ 4g − 1− εg with εg quite small, for all g ≥ 2.
It is an open problem to show that ω(Γg) = ω(Γg, canonical).

It is conjectured in [GLP, 5.14] that, for a group Γ which has a presentation with k
generators and ` ≤ k−1 relations and for the corresponding set S of k generators, one has
ω(Γ, S) ≥ 2(k − `)− 1.

What are other values of ω(Γ) ? For example for Coxeter groups ? for one-relator
groups ? (progress on this in [CeG]).

Let ( Γn = 〈S | Rn〉 )n≥1 be a sequence of one relator groups, with the generating sets
being identified with each other. Let k denote the number of generators in S; assume that
the relations Rn ’s are cyclically reduced and that their lengths tend to infinity with n.
Under what conditions does one have limn→∞ ω(Γn, S) = 2k − 1 and limn→∞ ω(Γn) =
2k − 1 ? The computations of [CEG] show such a family with limn→∞ ω(Γn, {x, y}) 6= 3.

Given an irreducible word w in the elements and their inverses of a free basis S2 = {a, b},
representing an element c = w(a, b) in the free group F2 over S2, what is in terms of w the
value of the growth rate ω(F2, {a, b, c}) ?

Let Γ be a finitely generated group and let k0 be its rank (namely here the minimal
cardinality of its generating sets). For each k ≥ k0 set

ω(k)(Γ) = inf ω(Γ, S) and ω(k)(Γ) = supω(Γ, S)

where the extrema are taken over all finite generating sets S with exactly k distinct ele-
ments, and such that s, t ∈ S, s 6= t ⇒ s 6= t−1. How do these quantities depend on k ?
What are those G and S for which the infima and maxima are realized ? For a free group
F of rank k0, one has ω(k0)(F ) = ω(k0)(F ) = 2k0− 1; what are the exact values of ω(k)(F )
and ω(k)(F ) for k > k0 ? (Partial results have been obtained by Koubi [Koub], for example
on ω(k0+1)(F ).)

Compare with the following question in differential geometry: given a compact manifold
M, what are the Riemannian structures g (normalised by diameter(M, g) = 1) for which the
entropy limR→∞R−1 log Vol BallM̃,g(x0, R) is minimum ? see e.g. [BCG]. (The volume
is computed in the universal cover M̃ of M , for the metric lifted from M, around a point
x0 ∈ M̃, and the limit does not depend on the choice of the point x0.) See also [Rob] for
a generalization to more general measured metric spaces, and [Guil].

There are several other types of constants, depending on pairs (Γ, S), with related
extrema over the S ’s, depending only on Γ, which give rise to interesting problems. One
of these types is spectral radius (see (F) below), another one is Kazhdan constants [NeS].

(B) Growth tightness

Define a pair (Γ, S) to be growth tight if ω(Γ, S) > ω(Γ/N, S) for all normal subgroups
N of Γ not reduced to {1}, with S denoting the canonical image of S in Γ/N.
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Proposition. For a free group Fk of rank k ≥ 2 and for a free basis Sk of Fk, the pair
(Fk, Sk) is growth tight.

On the proof. For any proper quotient Fk → Fk/N, choose a non empty reduced word w
representing an element of N. Let L denote the language of all reduced words in Sk ∪S−1

k

and let Lw denote the sublanguage of those words which do not contain w as a subword.
For each n ≥ 0, let β(Lw, n) denote the number of words of length at most n in Lw, and
let ω(Lw) = lim supn→∞

n
√

β(Lw, n) be the corresponding growth rate.
On one hand ω(Lw) is strictly smaller than the growth rate 2k − 1 of L. On the other

hand there is a natural map from Lw onto Fk/N and one has ω(Lw) ≥ ω(Fk/N, S). The
proposition follows. �

Observation. Let Γ be a finitely generated group. If there exists a finite generating set S
such that ω(Γ, S) = ω(Γ) and if (Γ, S) is growth tight, then Γ is Hopfian.

Proof. This is a straightforward consequence of the definitions. �

In particular, it follows that free groups are Hopfian.

Does the previous proposition extend to the following: let Γ be a Gromov hyperbolic
group, let N be an infinite normal subgroup of Γ, let S be a system of generators in Γ and
denote by S its canonical image in Γ/N ; then ω(Γ, S) > ω(Γ/N, S) ? A natural programme
is to extend as much as possible the proof above, expressing ω(L) as the spectral radius of
the adjacency matrix of an appropriate finite state automaton, and using Perron-Frobenius
theory to show an inequality of the form ω(Lw) < ω(L). (See e.g. Wielandt’s Lemma in
Section 2.3 of Chapter XIII of [Gan].)

Z. Sela has announced a proof that every Gromov hyperbolic group is Hopfian [RiSe,
Section 2], as much as we guess with quite different arguments.

The previous question is related to the following one. Let us call a finite state automaton
ergodic if any state distinct from the initial state can be reached from any other state.
The question is: does there exist an ergodic finite state automaton which recognises the
language of geodesical normal forms for the elements of a hyperbolic group ? A va-
riant of this was asked by D.B.A. Epstein in connection with the first term of asymptotic
developpements for the growth functions of hyperbolic groups (see Section (C)).

Let us end this section with an example of a pair which is not growth tight. Let Γ
be a direct product Fk × Fk, let S = (Sk × {1}) ∪ ({1} × Sk) where Sk is a free basis
of Fk, and let Γ → Γ/N = Fk be the first projection. An easy computation shows that
ω(Γ, S) = 2k − 1 = ω(Γ/N, S) so that (Γ, S) is indeed not growth tight. (Observe that
this group is nevertheless Hopfian !)

Does there exist any S for which the pair (Fk ×Fk, S) is growth tight ? Is it clear that
ω(Fk × Fk) = ω(2k)(Fk × Fk) = 2k − 1 ? what is ω(2k)(Fk × Fk) ?
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(C) Regularity of growth functions

For a pair (Γ, S) as in Section (A), it is convenient to consider both the growth function
n 7→ β(n) = β(Γ, S;n) and the spherical growth function n 7→ σ(n) = β(n) − β(n − 1). If
Γ is infinite, one has

(*) ω(Γ, S) = lim
n→∞

n
√

β(n) = lim
n→∞

n
√

σ(n)

Indeed ω(Γ, S) is by definition the inverse of the radius of convergence of the series B(z) =∑∞
n=0 β(n)zn. As σ is a submultiplicative function, the inverse of the radius of convergence

of Σ(z) =
∑∞

n=0 σ(n)zn is given similarly by the limit limn→∞
n
√

σ(n), and this limit is at
least 1 because σ(n) ≥ 1 for all n ≥ 0. As one has Σ(z) = (1− z)B(z) it follows that Σ(z)
and B(z) have the same radius of convergence, and (∗) follows.

A few easy examples may avoid rash conjectures about the functions β and σ. The first
is the pair

Γ =
〈

s, t | s3 = t3 = (st)3 = 1
〉

⊃ S = {s, t},

for which Γ is a discrete group of orientation preserving isometries of the Euclidean plane,
with fundamental domain the union of two isometric equilateral triangles glued along a
common side. A computation shows that σ(2k − 1) = 8k − 2 and σ(2k) = 10k − 2 for
k ≥ 2. In particular σ(10) = 48 > σ(11) = 46, showing that spherical growth functions
need not be increasing. Also

σ(2k) is not always ≤ σ(2k − 1) + σ(2k + 1)
2

and this disproves a conjecture formulated in 1976 by V.V. Beliayev and N.F. Sesekin (see
Problem 5.2 in [Kour]).

The modular group provides a second example, due to A. Machi [Mac]; in particular,
it shows that the limit limn→∞ β(n+1)β(n)−1 may exist for one set of generators and not
for another one. More precisely, let Γ be the free product of a group {1, s} of order 2 and
of a group {1, t, t2} of order 3. For S = {s, t}, a computation shows that β(2k) = 7.2k − 6
and β(2k + 1) = 10.2k − 6 for k ≥ 1; in particular one has

lim
k→∞

β(2k)
β(2k − 1)

=
7
5

< lim
n→∞

n
√

β(n) =
√

2 < lim
k→∞

β(2k + 1)
β(2k)

=
10
7

.

In this case the series

∞∑
n=0

β(n)zn =
1 + 3z + 2z2

(1− 2z2)(1− z)

defines a rational function with two poles on its circle of convergence. (The relation between
the formula of the rational function and the formula for the coefficients β(n) ’s is described
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for example in Section 7.3 of [GKP].) For the other generating set S′ = {s, st} of the same
group and for the resulting growth function β′, another computation shows that

lim
n→∞

β′(n + 1)
β′(n)

=
√

5 + 1
2

= lim
n→∞

n
√

β′(n).

In this case the series
∞∑

n=0

β′(n)zn =
1 + 2z + 2z2 + z3

(1− z − z2)(1− z)

has a unique pole on its circle of convergence.
To investigate (ir)regularities of the growth functions, maybe one should think again

about the relation between exponential growth and paradoxical behaviour in the sense of
[DSS].

In general, for a pair (Γ, S), little is known about when the quotients β(n + 1)/(β(n)
converge towards the exponential growth rate ω, or when the quotients ω−nβ(n) converge
towards some constant, for n →∞.

If Γ is hyperbolic, Coornaert [Coo] has shown that there exist constants c1, c2 > 0 such
that c1ω

n ≤ β(n) ≤ c2ω
n for all n ≥ 0. Machi’s example with the modular group described

above shows that one cannot expect c1 = c2 in general.

Say that γ ∈ Γ is a dead end with respect to S if one has

`S(γs) ≤ `S(γ) for all s ∈ S

namely if a geodesic segment from 1 to γ cannot be extended beyond γ. The investigation of
these dead ends was started independently by several workers (including O.V. Bogopolski,
C. Champetier and A. Valette - see also [Harp]).

As a first example, consider the direct product Z×{ε, j} of the integers with the group
of order 2, and the generating set {(1, ε), (1, j)}; then (0, j) is a dead end. Consider then
the one-relator presentation 〈s, t|ststs〉 and the generating set {s, t} (the group is Z and
one may take s = 2, t = −3); then st is a dead end. (These examples have been shown
to us by A. Valette and C. Champetier.) In the other direction, it is for example known
that a group with presentation 〈S|R〉 satisfying a small cancellation hypothesis C ′(1/6)
has no dead end (lemme 4.19 in [Cha]).

Given a pair (Γ, S), denote by DS(Γ) the corresponding subset of dead ends and by
δ(n) the number of dead end elements of S-length at most n. Bogopolski has asked the
following questions [Bog].

• Given Γ, does there exist S with DS(Γ) = ∅ ?
• Same question for Γ hyperbolic.
• Is it always true that limn→∞

δ(n)
β(n) = 0 ?

• Given (Γ, S), does there exist an integer L > 0 such that, for any γ ∈ Γ, there exists
t ∈ Γ with `S(t) ≤ L and `S(γt) = `S(γ)+1 ? (The answer is “yes” in case Γ is hyperbolic,
or more generally in case (Γ, S) has finitely many cone-types.)
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Let (Γ, S) be a pair with Γ of polynomial growth, namely such that the growth function
n 7→ β(n) = β(Γ, S;n) satisfies

β(n) ≤ cnd

for some constants c, d > 0 and for all n ≥ 0 (it is easy to check that this depends on
Γ only, and not on S). By one of Gromov’s famous theorems [Gv1], Γ is then virtually
nilpotent and the polynomial growth rate

d = lim sup
n→∞

log β(n)
log n

is an integer; the latter is given by a formula of Wolf-Bass [Bas] and Guivarc’h [Guiv],
also found by B. Hartley (independently, in a work which has not been published). This
theorem of Gromov has been extended to appropriate classes of semi-groups [Gk8] and
graphs [Tro].

For a pair (Γ, S) and constants c > 0, d ≥ 1, the property β(n) ≥ cnd for all n ≥ 0 is
equivalent to the isoperimetric estimate

|Ω|1/d ≤ c|∂Ω|1/(d−1)

for all finite subset Ω of Γ, where the boundary of Ω is by definition

∂Ω =
{

x ∈ Ω | there exists s ∈ S ∪ S−1 such that xs /∈ Ω|
}

(see [CoS]).

Pansu has shown that the limit

c1 = lim
n→∞

β(n)
nd

exists for every virtually nilpotent group [Pan]. Grunewald has claimed that

β(n) ???= c1n
d + O

(
nd− 1

2

)
but proofs are not known to us. Recently, for Γ a 2-step nilpotent group (this means that
any commutator in Γ is central), Stoll [St2] has shown that β(n) = c1n

d + O
(
nd−1

)
. It is

an open problem to know whether or when the limit

c2
???= lim

n→∞

β(n)− c1n
d

nd−1

exists and is finite.

One should clearly investigate further the asymptotics of the growth functions β(n) for
nilpotent groups.
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Other references on groups of polynomial growth include [DW1], [DW2], [Tit], [VSC],
[Wol].

Groups of subexponential growth (and groups of polynomial growth in particular) are
known to have various interesting properties. For example, they are amenable, a fact first
observed in [AdV]. Also, they give rise to combinatorial Laplacians on their Cayley graphs,
and thus to bounded operators on `p spaces, and these have spectra which are independent
on p ∈ [1,∞] [Shu].

There are also basic problems which are still open about groups of intermediate growth,
namely about finitely generated groups which are neither of polynomial nor of exponential
growth. After Milnor [Mi1] asked in 1968 whether these groups exist at all, examples have
been discovered in the early 1980 ’s; for this, we refer to [Gk9]. Let us however repeat
that the following most important question is still open: does there exist finitely presented
groups of intermediate growth ?

It is appropriate to quote here Problem 12 of [Lyn]: There is clearly much to be done
in determining the possible growth functions of groups and in relating them to properties
of groups.

(D) Classical growth series

The usual growth series of (Γ, S) is the formal power series

Σ(Γ, S; z) =
∞∑

n=0

σ(n)zn =
∑
γ∈Γ

z`S(γ) ∈ Z[[z]]

and is denoted by Σ(z) when the pair (Γ, S) is clear from the context. Its radius of
convergence is ω(Γ, S)−1 when Γ is infinite. One has also

Σ(Γ, S; z)
1− z

=
∞∑

n=0

β(n)zn

because β(n) = σ(0) + . . . + σ(n) for all n ≥ 0 (as already observed in Section (C) above).
For example, one has

Z ⊃ S = {1} =⇒ Σ(z) =
1 + z

1− z

Z ⊃ S = {2, 3} =⇒ Σ(z) = −5− 2z + 2z2 +
6

1− z

Zk ⊃ S = usual basis =⇒ Σ(z) =
(

1 + z

1− z

)k

Fk ⊃ Sk = free basis =⇒ Σ(z) =
1 + z

1 − (2k − 1)z
.
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As one more example, the fundamental group Γg of a compact closed orientable surface of
genus g ≥ 2 and its usual set Sg of 2g generators provide the growth series

Σ(Γg, Sg; z) = 1 + 2z + . . . + 2z2g−1 + z2g1− (4g − 2)z − . . .− (4g − 2)z2g−1 + z2g

[Ca1]. This rational function has exactly two poles outside the unit circle, which are
positive real numbers, say ω > 1 and ω−1 < 1; see [CaW] and [Py3]. With the notations of
Section (A), one has of course ω = ω(Γg, Sg). Other generating sets provide dramatically
different functions; for example

Σ(Γg, S
Alo
g ; z) = 1 + 2z + z21− (8g − 6)z + z2

for the interesting set SAlo
g of Alonso [Alo].

It is remarkable that many of these series are rational functions: besides the examples
above, this is also known to be the case for

• Coxeter groups with standard S
(see [Bou, p. 45, exerc. 26] and [Pa1], the argument being that of [Sol, § 3]),

• free abelian groups with arbitrary S (see [Kl1], [Kl2]),
• virtually abelian groups with arbitrary S [Be1],
• the Heisenberg group

〈
x, y | xyx−1y−1 central

〉
with S = {x, y}

(see [Be2], [Sh1] and [St4]),
• Gromov hyperbolic groups with arbitrary S

([Gv3] - see also [Ca1], [Ca2] and [GhH, chap. 9]),
• appropriate kinds of automatic groups ([Ep+, Section 2.5.] and [NSh]),
• solvable Baumslag-Solitar groups

〈
x, y|x−1yx = yb

〉
with S = {x, y} [CEG],

• two-step nilpotent groups Γ with [Γ,Γ] ≈ Z, with appropriate S [St4] (sic
!),

• fundamental groups of those quotients of triangular buildings studied by Barré
(see [Bar1] and [Bar2, § 3.1]),

and many other cases ([Alo], [Be2], [Bra], [Joh], [JS1], [JS2], [St3], [Wag], ........). The
zeros, poles, symmetries, and some special values of these rational functions have been
investigated in several cases ([CaW], [Fl1], [Fl2], [FP1], [FP2], [Py3]). Observe that, for
the growth series attached to a pair (Γ, S) to be rational, it is sufficient that the pair has
“finitely many cone types” (in the sense of [GhH, chap. 9]), but this is not necessary as
the Heisenberg group demonstrates (see [Sh1], as well as [St1]).

It is curious that the rationality of the growth series of finitely generated abelian
groups, stated and proved by Klarner in 1981, has been “implicitly known” much before.
On one hand, it follows immediately from the rationality of the Hilbert-Poincaré series of
a finitely generated commutative graded alebra (see for example Theorem 11.9 in Chapter
3 of [KoM]); this has been observed by several people, e.g. [Bi1]. On the other hand, it
is a straightforward consequence of structure results for the so-called rational subsets of
abelian monoids, due to Eilenberg and Schützenberg and going back to 1969 [EiS], as F.
Liardet has observed to us.
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Pairs (Γ, S) providing growth series which are not rational are more difficult to find.
They include

• finitely presented groups with non-solvable word problem
(see [Can], quoting an observation of Thurston),

• groups of intermediate growth [Gk4], [Gk6], [Gk7],
• two-step nilpotent groups Γ with [Γ,Γ] ≈ Z and with Heisenberg rank at least two,

with appropriate S [St4] (sic !!),
• examples of W. Parry which are restricted wreath products [Py2].

(About the first of these classes, it is easy to extend the proof to the case of recursively
presented groups.) Of the four classes of growth series above, the first three are even
transcendental, while examples of Parry may be non-rational and algebraic.

For a finitely generated group of subexponential growth, observe that growth series are
either rational, or not algebraic (see [PoSz], Part VIII, no 167, or [Fat], page 368).

Computations of growth series are often interesting challenges, and we list some open
cases:
• the Richard Thompson’s group 〈s, t | [st−1, s−1ts] = [st−1, s−2ts2] = 1〉 [CFP],
• the Baumslag-Solitar group Γ =

〈
a, b | ab2a−1 = b3

〉
[BaS],

• the Burnside groups.

Other related references include [Smy] and [Wag].

We would like to single out the following particular case of results of M. Stoll. Let

H2 =

〈
x1, x2, y1, y2

∣∣∣∣∣
[xi, xj ] = [yi, yj ] = 1 for all i, j

[xi, yj ] = 1 for i 6= j

[x1, y1] = [x2, y2] is central

〉

=




1 Z Z Z
0 1 0 Z
0 0 1 Z
0 0 0 1




be the second Heisenberg group and set

Sstandard = {x1, x
−1
1 , x2, x

−1
2 , y1, y

−1
1 , y2, y

−1
2 }

SStoll = Sstandard ∪
{

ab

∣∣∣∣ a ∈ {x1, x
−1
1 , y1, y

−1
1 } and b ∈ {x2, x

−1
2 , y2, y

−1
2 }

}
.

One has the following result; see [St4], in particular Corollary 5.11 and Theorem 6.1.

Theorem (Stoll). (i) The growth series of H2 with respect to Sstandard is transcendental.
(ii) The growth series of H2 with respect to SStoll is rational.

Remark. The growth series for

H1 = 〈x, y | [x, y] is central 〉
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with respect to {x, x−1, y, y−1} is

Σ(z) =
1 + z + 4z2 + 11z3 + 8z4 + 21z5 + 6z6 + 9z7 + z8

(1− z)4 (1 + z + z2) (1 + z2)

(see [Be2] (beware of a mistake in the formula for Σ !) and [Sh1]).
Open problem: does there exist a generating set of H1 for which the corresponding

growth series is NOT rational ?

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

There are several other kinds of growth-like notions for groups Γ or for pairs (Γ, S)
that we have not mentionned so far. Let us quote a few of these.

• The growth of the number of subgroups of finite index. About this, let us mention
the remarkable result of Lubotzky, Mann and Segal [LMS]: for a finitely generated and
residually finite group Γ, the growth of the number of subgroups of finite index is polyno-
mial if and only if the group is virtually solvable of finite rank (a group is of finite rank
if there is a bound on the numbers of generators of its finitely generated subgroups). See
also [LuM], [Lu1] and [Lu2].

• The growth of the number of conjugacy classes of elements, which is related to spectra
of closed geodesics in Riemannian manifolds (see §§ 5.2 and 8.5 in [Gv3], and [Ba2]).

• The growth of the ranks of the factors of the lower central series of a group [GrK].
• The growth of Dehn functions, which measure the complexity of the word problem,

and of related functions (see e.g. page 82 in [Gv4]). A recent result of Birget, Rips and
Sapir shows that Dehn functions can be “almost anything” (in a precise meaning !); see
[BRS].
• The growth of the number of orbits in product actions of appropriate permutation

groups (actions on finite sets, or more generally the so-called oligomorphic actions studied
by P. Cameron). Among other references, see [Cam].
• The growth of the minimal number of generators for direct products of a group.

There are many papers on this problem, by J. Wiegold and others, of which we quote
[ErW] and [Pol].
• Growth of particular finite subsets of a group, such as, for the automorphism group

of a shift of finite type, the doubly exponential growth of the number of automorphisms
of so-called finite range [BLR].

One can also imagine other types of generating series, such as
• exponential series of the form

∞∑
n=0

σ(Γ, S;n)
n!

zn,

• Dirichlet series of the form
∞∑

n=0

σ(Γ, S;n) n−s,
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• and Newtonian series of the form

∞∑
n=0

σ(Γ, S;n)
(

z

n

)

(see [GKP], [Sta] or [Wil]).

(E) Growth series with weights

The setting above carries over to the case of proper weights, namely to functions λ :
Γ → R+ such that

{ γ ∈ Γ |λ(γ) ≤ K } is finite for all K ≥ 0

λ(γ1γ2) ≤ λ(γ1) + λ(γ2) for all γ1, γ2 ∈ Γ

(proper subadditive functions). Each proper weight λ gives rise to a left-invariant pseudo-
metric (γ1, γ2) 7→ λ(γ−1

1 γ2) on Γ which is proper (i.e. any ball of finite radius is finite),
and conversely.

One denotes by β(Γ, λ;K) the number of elements γ in Γ of weight λ(γ) ≤ K and by

ω(Γ, λ) = lim
K→∞

K
√

β(Γ, λ;K)

the corresponding growth rate. The previous considerations correspond to the particular
case λ = `S defined by a finite generating set S of Γ, and items (E.1) to (E.6) below to
other interesting cases. More on weights on groups in [Gk11].

(E.1) A first class of examples consists of relative growth for subgroups. More precisely,
consider a finitely generated group Γ, a finite system S of generators of Γ and the corre-
sponding word length function `S , an arbitrary subgroup Γ0 of Γ (not necessarily finitely
generated), and the restriction λ : Γ0 → N of `S . We then write β(Γ0 rel Γ, S;n) instead
of β(Γ0, λ;n), and similarly for the growth rate ω(Γ0 rel Γ, S).

Here is a sample of questions which it is natural to ask in this context (from a list in
a talk of A. Lubotzky - July 1996).

• In case Γ is solvable, is the relative growth of a subgroup Γ0

either polynomial or exponential ? (Compare with [Wol] and [Mi3].)
• Same questions for Γ linear. (Compare with [Ti1]; see also [Sha].)
• In case the subgroup Γ0 is infinite cyclic, can one have intermediate growth ?
• Does there exist pairs Γ0 < Γ giving rise to growth functions β(Γ0 rel Γ, S;n) ≈ nd

with d ∈ R+ and d /∈ N, or even d /∈ Q ? (See the comments in 3.K4 of [Gv4],
about the similarity with Kolmogorov’s complexity function.)

In case the subgroup Γ0 of Γ is itself generated by some finite set S0, one may compare
the relative growth of β(Γ0 rel Γ, S;n) and the own growth β(Γ0, S0;n) of Γ0. This gives
one notion of “distortion” of Γ0 in Γ (not that discussed in Chapters 3 and 4 of [Gv4] !).
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Coming back to an arbitrary subgroup Γ0 of a group Γ generated by a finite set S, one
has a formal power series

Σ(Γ0 rel Γ, S; z) =
∞∑

n=1

σ(Γ0 rel Γ, S;n) zn =
∑
γ∈Γ0

z`S(γ) ∈ Z[[z]]

as in (D) above, where σ(. . . ;n) = β(. . . ;n) − β(. . . ;n − 1) denotes again the cardinality
of the appropriate sphere.

Observation. For an integer k ≥ 2, consider the word length ` : Fk → N defined by a free
basis Sk of the free group Fk, and its subgroup of commutators. Then the corresponding
series Σ([Fk, Fk] rel Fk, Sk; z) is not algebraic.

On the proof. Let N be a normal subgroup of Fk, set Γ = Fk/N and denote by π : Fk → Γ
the canonical projection. Consider on Γ the simple random walk with respect to the
generators π(Sk), for which the probability of walking in one step from x to xt ∈ Γ is
zero for t /∈ π(Sk ∪ S−1

k ) and is j
2k for t ∈ π(Sk ∪ S−1

k ), where j is the cardinality of
π−1(t) ∩ (Sk ∪ S−1

k ); in particular it may be that j > 1. Let first

G1(z) =
∞∑

n=0

p(n)(1, 1)zn

denote the Green function of this random walk (more on this notion in Section (G) below).
Second, write N instead of Σ(N rel Fk, Sk) the series

N(z) =
∞∑

n=0

]
(
N ∩ {sphere of radius n around 1 in Fk with respect to Sk}

)
zn

for the relative growth. And third, consider the rational function with rational coefficients
in two variables defined by

R(x, y) =
1
y

[
2k − 1

2k
− 2(k − 1)

(1− y)2(
2k−1

k

)2
x2 − (1− y)2

]
∈ Q(x, y).

The formula

G1(z) = R

(
z,

√
1− 2k − 1

k2
z2

)
N

k
1−

√
1− 2k−1

k2 z2

(2k − 1)z


has been proved in the first author’s thesis [Gk1]. Observe in particular that G1 and N
are together algebraic or not.
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Let us now particularize to k = 2 and N = [Fk, Fk]. Then Γ = Z2 and G1(z) is the
Green function of the standard simple random walk on the integer plane (drunkard’s walk).
It is well-known that

G1(z) =
∞∑

n=0

(
2n

n

)2 (z

4

)2n

= F

(
1
2
,
1
2
, 1 ; z2

)
(see for example Section 7.3 in [DoS] for the first equality, and recall that F (α, β, γ ; x)
is the usual notation for hypergeometric series). For the values 1

2 , 1
2 , 1 of the parameters

α, β, γ, the monodromy group of the corresponding hypergeometric equation is known to
be generated by the matrices (well-defined up to conjugacy)(

1 1
0 1

)
and

(
1 0
−4 1

)
in GL(2, C); see [IKSY], Formulas (1.1.5) and (4.3.4) of Chapter 2. As this group of
monodromy has no finite orbit in C2 \ {0}, the function F

(
1
2 , 1

2 , 1 ; z2
)

is not algebraic.
�

We confess here that we have not looked for a formal proof of the fact that
Σ([Fk, Fk] rel Fk, Sk; z) is not a rational function when k ≥ 3 (although we believe in this).

Similar non-rationality results have been established for the fundamental group of a
closed orientable surface of genus at least 2 and its group of commutators [PoSh], as well
as for some 2-step nilpotent group and its center [Web].

(E.2) There is a notion of growth for coset spaces. About this, let us only mention one
result due to Kazhdan (quoted on page 18 of [Gv4] - see also [Stuc]) and one due to Rosset
[Ros].

Theorem (Kazhdan, Rosset). (i) If Γ has Kazhdan’s Property (T) and if Γ0 is a
subgroup such that the growth of Γ/Γ0 is subexponential, then Γ0 is necessarily of finite
index in Γ.

(ii) If Γ is finitely generated and has non-exponential growth, and if Γ0 is a normal
subgroup such that Γ/Γ0 is solvable, then Γ0 is finitely generated.

(E.3) An important particular case of relative growth is that of cogrowth. For a pair
(Γ, S) and a subgroup Γ0 < Γ as above, observe first that one has obviously ω(Γ, S) ≥
ω(Γ0 rel Γ, S). Assume moreover that Γ = Fk is a free group, that Sk is a free basis
in Fk, that Γ0 = N is not reduced to {1} and that N is a normal subgroup in Fk. It
is straightforward to check that 2k − 1 ≥ ω(N rel Fk, Sk) ≥

√
2k − 1. (For the second

inequality, it is enough to consider one reduced word w = avb ∈ N \ {1}, where a, b ∈
Sk∪S−1

k , and to estimate from below the growth of the numbers of conjugates uwu−1 ∈ N,
where the word u ∈ Fk does not end with the letter a−1 or with the letter b.) But one
has moreover the strict inequality in

(*) 2k − 1 ≥ ω(N rel Fk, Sk) >
√

2k − 1
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by [Gk1], [Gk3]. (Compare with [Ke1], Lemma 3.1 and Theorem 3.)
Does this generalize to hyperbolic groups ? That is, for a non elementary hyperbolic

group Γ and a finite set S of generators of Γ, does one have

ω(Γ, S) ≥ ω(N rel Γ, S) >
√

ω(Γ, S)

for any normal subgroup N of Γ which is not finite ?

One motivation for the notion of cogrowth comes from the study of random walks.
Anticipating on the notation of Section (G) below, we will now describe a relation between
spectral radius and cogrowth.

Let first (Γ, S) be a pair as above and let Γ0 be a subgroup of Γ. Recall that the
Cayley graph Cay(Γ0 \ Γ, S) is the graph with vertex set Γ0 \ Γ, and with an edge be-
tween two vertices Γ0γ1,Γ0γ2 if and only if γ−1

1 γ2 ∈ S ∪ S−1 (this is also called the
Schreier graph of Γ modulo Γ0 with respect to S). We denote by µ(Γ0 \ Γ, S) the spec-
tral radius of the self-adjoint bounded operator T defined on `2(Γ0 \ Γ) by (Tf)(Γ0γ) =∑

s∈S

(
f(Γ0γs) + f(Γ0γs−1)

)
; in case Γ0 = {1}, this definition of µ(Γ, S) coincides with

that of Section (G) below: see [Wo3].
Let now Fk be a free group on a free basis Sk of k elements, and let Γ0 be a subgroup

of Fk (not necessarily normal). Denoting by α the relative growth ω(Γ0 rel Fk, Sk), one
has the formula

µ(Γ0 \ Fk, Sk) =


√

2k − 1
k

if 1 ≤ α ≤
√

2k − 1
√

2k − 1
2k

(√
2k − 1
α

+
α√

2k − 1

)
if

√
2k − 1 < α ≤ 2k − 1

which shows a “phase transition” for the dependence of the spectral radius µ(Γ0 \ Fk, Sk)
in terms of the relative growth α [Gk3].

In the special case of a normal subgroup of Fk, we write N intead of Γ0; we denote
by Γ the quotient group of Fk by N, by S the canonical image of Sk in Γ, and we write
µ(Γ, S) instead of µ(N \ Fk, Sk). (Observe that S may be a “set with multiplicity”, but
we leave here this discussion to the reader.) The previous formula relates now the spectral
radius µ(Γ, S) and the cogrowth α. One has α = 1 if and only if N = {1}, and in this
case the computation of µ(Γ, S) = µ(Fk, Sk) is that of Kesten [Ke1]. One cannot have
1 < α ≤

√
2k − 1. One has α = 2k − 1 if and only if Γ is amenable. (Small history: this

criterion of amenability has been established in 1974, written up for publication in 1976,
published in 1978, and published in its English translation in 1980 [Gk3]!)

The previous criterion of amenability has been used in [Ols] and [Ady], where it is
shown that there exist non amenable groups without subgroups isomorphic to F2 (an
answer to a question going back to von Neumann [vNe] and Day [Day]), and in [Gk2],
where it is shown that there exist Γ-homogeneous spaces without Γ-invariant means and
without freely acting subgroups of Γ isomorphic to F2.

Do the formulas relating spectral radius and cogrowth carry over in some form to
subgroups of hyperbolic groups ?
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More on cogrowth in [Gk3], as well as in [Cha], [Coh], [CoP], [Gk5], [Ro1], [Szw] and
[Wo1].

(E.4) Consider a finitely generated group Γ, a finite set S = {s1, . . . , sk} of generators
of Γ and a sequence {α1, β1, . . . , αk, βk} of strictly positive numbers (with βj = αj in case
s−1

j = sj). Define the corresponding Bernoulli weight λ : Γ → R+ by

λ′(sj) = αj and λ′(s−1
j ) = βj for j ∈ {1, . . . , k}

λ(γ) = inf


n∑

j=1

λ′(ti) ∈ R+

∣∣∣∣ γ = t1t2 . . . tn and t1, . . . , tn ∈ S ∪ S−1

 .

Here are two examples of corresponding growth series
∑

γ∈Γ zλ(γ) : one has

Σ(Zk, λ; z) =
k∏

j=1

1− zαj+βj

(1− zαj )
(
1− zβj

)
for Γ = Zk and S a standard basis, and

1
Σ(Fk, λ; z)

− 1 =
n∑

j=1

(
(1− zαj )

(
1− zβj

)
1− zαj+βj − 1

)
.

for Γ = Fk and S a free basis. These formulas appear in [Smy, page 529 and 528]. Once the
formula is established for Γ = Z ⊃ S = {1}, the other cases follow because the series are
multiplicative for direct products, and the “reciprocal of the series minus one” are additive
over free products (as observed by [Joh]).

Consider again a pair (Γ, S) with S = {s1, . . . , sk} and a function λ′ : S∪S−1 → R∗+ as
above, and let moreover (µ(s, t))s,t∈S∪S−1 be a matrix of strictly positive numbers (with
appropriate conditions if s2 = 1 for some s ∈ S). For a finite sequence (t1, . . . , tn) of letter
in S ∪ S−1, set

λ′
(
(t1, . . . , tn)

)
= λ′(t1) +

n−1∑
j=1

µ(tj , tj+1)

and define a Markovian semi-weight λ : Γ → R+ by

λ(γ) = inf
{

λ′
(
(t1, . . . , tn)

) ∣∣ γ = t1 . . . tn and t1, . . . , tn ∈ S ∪ S−1
}

.

If µ(s, t) depends on t only, this is a Bernoulli weight. In general, λ is a semi-weight,
namely there exists a constant C > 0 such that

λ(γ1γ2) ≤ λ(γ1) + λ(γ2) + C
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for all γ1, γ2 ∈ Γ (and thus γ 7→ λ(γ) + C is a weight), but λ needs not be a weight. Such
Markovian semi-weights have been used in [Gk3] to show that the relative growth series
Σ(Γ0 rel Fk, Sk; z) is rational for a finitely generated subgroup Γ0 of a free group Fk.

(E.5) Another class of weights comes from geometry. For a group Γ acting properly and
isometrically on a metric space (X, d) with base point x0, there is a naturally associated
weight defined by

λ(γ) = d(γx0, x0)

for all γ ∈ Γ. If Γ is an irreducible lattice in a connected semi-simple real Lie group G of
rank at least 2, it is remarkable that such weights are always equivalent to word-length
weights. This is straightforward in case G/Γ is compact (Lemma 2 in [Mi2]), but it is a
deep result otherwise [LMR].

(E.6) Here is one more class of weights, associated again to a group Γ generated by a
finite set S. For each γ ∈ Γ, denote by I(γ) the number of geodesic paths from 1 to γ in
the Cayley graph of (Γ, S) and set

Σk(z) =
∑
γ∈Γ

I(γ)kz`S(γ) ∈ Z[[z]]

for all k ≥ 0. The rationality of Σ1(z) for hyperbolic groups goes back to [Gv3, Corollary
5.2.A’]; see also [NSh].

In the particular case of surface groups, with

Γg = 〈 a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg] = 1 〉 ⊃ Sg = { a1, b1, . . . , ag, bg }

as above, L. Bartholdi has recently extended a computation due to Cannon [Ca1] for k = 0
and has shown that the Σk(z) ’s are rational functions which one can write down. For
example, for k = 2,

Σ2(z) = 1 + 4g
z + z2 + . . . z2g−1

1− (4g − 2)z − . . .− (4g − 2)z2g−1 + z2g − z2g−1(1− z)(3− 2z2g−1) .

As Σ2(z) encodes the numbers of unimodal closed paths of any given length, these
computations provide lower estimates for the corresponding spectral radius (see (G) below).

It is natural to ask for sufficient conditions of pairs (Γ, S) ensuring that all Σk ’s are
rational. For example, it is so for all S in case Γ is Gromov hyperbolic. But it is not
sufficient that (Γ, S) has finitely many cone types; indeed, for Γ = Z2 and S the standard
basis, a simple calculation shows that Σ2(z) is algebraic and not rational (L. Bartholdi).
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(F) Complete growth series

For a (not necessarily commutative) ring A with 1, let A[[z]] denote the ring of formal
power series in z with coefficients in A. Recall that an element of A[[z]] is rational if it is in
the smallest subring A[[z]]rat of A[[z]] which contains the ring A[z] of polynomials and the
inverse of any of its elements which is invertible in A[[z]]. This definition coincides with
the usual one in case A is a commutative field. For all this, see e.g. [SaS].

Consider a group Γ generated as a monoid by a finite set T, and denote by `T : Γ → N
the corresponding word-length function. (Observe that, if Γ is generated as a group by a
set S, it is generated as a monoid by S ∪ S−1.) The complete growth series of (Γ, T ) is the
formal power series

Σcom(Γ, T ; z) = Σcom(z) =
∞∑

n=0

 ∑
γ∈Γ

`T (γ)=n

γ

 zn =
∑
γ∈Γ

γz`T (γ) ∈ Z[Γ][[z]].

The augmentation map ε : Z[Γ] → Z induces a morphism of rings Z[Γ][[z]] → Z[[z]] again
denoted by ε, and one has clearly ε (Σcom(z)) = Σ(z) ∈ Z[[z]].

Complete growth series have been introduced by F. Liardet in his thesis [Lia].
Before, they have appeared implicitly in the following disguise: given a pair (Γ, S),

denote for all integer n ≥ 0 by χn the characteristic function of the sphere of radius n
centered at 1 ∈ Γ. Given a unitary representation π of Γ, the spectra of the self-adjoint
operators π(χn) enter various problems of “uniform distribution”; see e.g. [ArK].

Let us also mention the growth series in more than one variable which appear in [Ser,
Prop. 26], and in [Pa2].

The easiest example of a complete growth series is probably the following:

Z ⊃ T = {1,−1} =⇒ Σcom(z) = 1 +
∞∑

n=1

(δn + δ−n) zn =
1− z2

1− (δ1 + δ−1) z + z2

(where, here as later, we write δγ for γ viewed in Z[Γ]). Compare with the well-known
generating function

1 +
∞∑

n=1

2Tn(x)zn =
1− z2

1− 2xz + z2

for Chebyshev polynomials. (Recall that Tn(cos θ) = cos nθ for all n ≥ 0 and that
Tn+1(x) = 2xTn(x) − Tn−1(x) for n ≥ 1.) For Γ = Fk and T = Sk

∐
S−1

k , with Sk a
free basis of Fk, one has similarly

Σcom(z) =
1− z2

1−
(∑

t∈T δt

)
z + (2k − 1)z2

.

It is a result of F. Liardet [Lia] that, for any finitely generated group Γ which is virtually
abelian and for any finite set T which generates Γ as a monoid, the corresponding series
Σcom(z) ∈ Z[Γ][[z]] is rational. The precise result is too long to be quoted here; but here
is a corollary for the abelian case, formulated as in [Lia] (groups hardly appear explicitly
in Klarner’s papers).
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Theorem (Klarner, Liardet). Let Γ be an abelian group and let T be a finite subset
generating Γ as a monoid. Then the corresponding complete growth series is of the form

Σcom(z) =
P (z)∏

t∈T (1− δtz)

where P (z) is a polynomial in Z[Γ][z].

There does not seem to exist an equally simple statement in the virtually abelian case.
One crucial ingredient of the proof is the following classical result already used by

Klarner: for any integer k ≥ 1, any ideal E C Nk is finitely generated. (Recall that E is
an ideal if u ∈ Nk , v ∈ E =⇒ u + v ∈ E, and that E is finitely generated if there exists
v1, . . . , vj such that E =

⋃
1≤i≤j

(
vi + Nk

)
. This classical result is sometimes attributed to

Hilbert and to Gordan [Stur, page 10], and sometimes known as Dickson’s Lemma [BeW,
page 184].)

The result of Benson [Be1] quoted in (D) is a straightforward consequence of the
previous theorem and of its generalization to virtually abelian groups, because the image
Σ(z) = ε (Σcom(z)) by the augmentation ε is rational in Z[[z]] as soon as Σcom(z) is rational
in Z[Γ][[z]].

As already observed in a different context (Subsection (E.4) above), complete growth
series are multiplicative for direct products, and the “reciprocal of the series minus one”
are additive over free products. This provides further rational complete growth series from
known ones.

Complete growth series have also been recently computed for various other cases,
including Coxeter systems and pairs (Γg, Sg) associated to closed orientable surfaces of
genus g ≥ 2. (See [GrN]; this uses rewriting systems and a formula obtained in [Gk10]. See
also [Bart].) More precisely the series Σcom(z) for this case is rational and is

(1− z2)(1− z4g)
1 + (4g − 1)z2 + (4g − 1)z4g + z4g+2 − Az(1 + z4g) − Cz2g+1 + Dz2g(1 + z2)

where A,C, D are as follows. First A is the sum of the 4g elements in Sg∪(Sg)−1. Then, de-
noting by rg = a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g the relator of the presentation Γg = 〈Sg|rg〉, the
term C is the sum of the 8g distinct subwords of length 2g−1 which appear in cyclic conju-
gates of rg and r−1

g , and D is the sum of the 4g distinct subwords of length 2g which appear
in cyclic conjugates of rg and r−1

g , and which begin by a letter in {b1, b
−1
1 , . . . , bg, b

−1
g }.

More generally, for Γ a hyperbolic group and for S an arbitrary finite generating set, the
resulting complete growth series is rational. This has been checked in [GrN, Proposition
6] and independently by L. Bartholdi.

Does there exist a pair (Γ, S) such that the corresponding series Σcom(z) is not rational
in Z[Γ][[z]] and such that its image Σ(z) by the augmentation map is rational in Z[[z]] ?
The answer seems to be “yes”, and L. Bartholdi has good reasons to believe that the
Heisenberg group H1 generated by S = {x, y} qualifies, where

H1 =


 1 Z Z

0 1 Z
0 0 1

 x =

 1 1 0
0 1 0
0 0 1

 y =

 1 0 0
0 1 1
0 0 1

 .
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(See (D) above for the standard growth series.)
More generally, for a nilpotent group Γ and a finite set of generators S, does the

rationality of the corresponding complete growth series imply that Γ is virtually abelian ?

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

For a pair (Γ, S), one may also view the complete growth series as an operator growth
series

Σop(z) =
∑
γ∈Γ

γz`S(γ) ∈ A(Γ)[[z]]

where A(Γ) is a Banach algebra containing C[Γ] as a subalgebra. Natural candidates
are the group algebra `1(Γ) and the reduced C∗-algebra C∗r (Γ) of Γ (both are natural
completions of C[Γ]), as well as the C∗-algebra of all bounded operators on the Hilbert
space

`2(Γ) =
{

φ : Γ → C |
∑
γ∈Γ

|φ(γ)|2 < ∞
}
.

A formal power series
∑

n≥0 anzn with coefficients in a Banach algebra A has a radius
of convergence R defined by R−1 = lim supn→∞

n
√
‖an‖.

Consider in particular, for a pair (Γ, S) as above, the radius of convergence R of its
usual growth series Σ(z) ∈ C[[z]], the radius of convergence R(`1) of its operator growth
series Σop(z) ∈ `1(Γ)[[z]] and the radius of convergence R(C∗r ) of its operator growth series
Σop(z) ∈ C∗r (Γ)[[z]].

Theorem [GrN]. With the notations above, one has
(i) R(`1) = R,
(ii) if Γ is amenable then R(C∗r ) = R(`1),
(iii) if Γ is Gromov hyperbolic and non elementary, then

1 > R(C∗r ) =
√

R > R.

Moreover it is conjectured that R(C∗r ) > R for all pairs (Γ, S) with Γ not amenable.

(G) Spectral radius of simple random walks on Cayley graphs

The spectral radius of a locally finite connected graph X is the number

µ(X) = lim sup
n→∞

n

√
p(n)(x, y) = lim

n→∞
2n

√
p(2n)(x, x)

where, for n ≥ 0 and for vertices x, y of X, the probability p(n)(x, y) is the ratio of the
number of paths of length n from x to y by the number of all paths of length n starting
at x; this is independent of the choice of the vertices x and y. In other words, µ(X) is the
spectral radius of the simple random walk on this Cayley graph. There are many equivalent
definitions [Wo2]. For viewing µ(X) as the spectral radius of an appropriate bounded
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operator on a Hilbert space, see also [Ke1], as well as more recent works including [HRV1]
and [HRV2]. (Though we consider only simple walks here, there are good motivations to
study more general walks: see among others [Eel], [KaV] and [VSC].)

In case X is the Cayley graph of a finitely generated group Γ with respect to a finite
set S of generators, we write

µ(Γ, S)

instead of µ(X). There is the simple formula expressing µ(Γ, S) in terms of the cogrowth
of (Γ, S) recalled in (E.3) above, and a formula expressing µ(Γ, S) in terms of the critical
exponent of the Poincaré series for the action of the fundamental group of Cay(Γ, S) on
the universal cover of the same Cayley graph [CoP].

In relation with our Section (A), observe that

µ(Γ, S) ≥ 1√
ω(Γ, S)

(a very special case of inequalities due to Avez [Ave]). Indeed, denoting for each n ≥ 1 by
B(n) the ball in Γ centered at 1 of radius n, of size β(n), one has

1 =

 ∑
γ∈B(n)

p(n)(1, γ)

2

≤ β(n)
∑

γ∈B(n)

p(n)(1, γ)2 = β(n)p(2n)(1, 1)

by the Bunyakovskii-Cauchy-Schwarz inequality, and the previous inequality follows.
As a particular case of results of Kesten ([Ke1] and [Ke2]), one has the basic inequalities

√
2k − 1

k
≤ µ(Γ, S) ≤ 1

where k = |S|. Moreover, the right-hand inequality is an equality if and only if Γ is
amenable; also, if k ≥ 2, the left-hand inequality is an equality if and only if Γ is free on
S.

Very few exact values of µ(Γ, S) are known, besides cases where the group is amenable
or virtually free. In particular, one does not know the value µg = µ(Γg, Sg) for the
fundamental group of an orientable surface. Is it transcendental ? (a question of P.
Sarnak).

One should investigate the infimum of µ(Γ, S) when S varies (compare with Section
(A) above).

One may also consider the Green function

G1(z) =
∞∑

n=0

p(n)(1, 1)zn ∈ R[[z]]
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of which µ(Γ, S)−1 is precisely the radius of convergence. If Γ contains a finitely generated
free subgroup of finite index, then G1(z) is algebraic [Wo2]; it is conjectured that an
appropriate phrasing of the converse should be true (see again [Wo2]).

Short of computing µg, there has been progress on estimating µg. The group Γg being
neither free on Sg nor amenable, Kesten’s inequalities imply

√
4g − 1
2g

< µg < 1 and in particular 0.6614 ≈
√

7
4

< µ2 < 1.

We know of three methods to estimate µg from above (see [BCCH], [ChV], [Nag], [Zu1]
and [Zu2]).

One is based on the existence of a spanning forest of degree 4g− 1 in the Cayley graph
Xg of (Γg, Sg). (A spanning forest is a subgraph without circuits containing all vertices.)
It shows that

µg ≤
√

4g − 2
2g

+
1
4g

.

Another one involves restrictions, to the graph Xg appropriately embedded in the
hyperbolic plane H2, of eigenfunctions of the hyperbolic Laplacian on H2. (The idea is to
choose a number β > 0 and a function F : H2 → R∗+ such that ∆smoothF = βF, where
∆smooth is the smooth Laplacian on H2, to consider the restriction f of F to Xg, to estimate
α such that f(x)−

(
1/degree(x)

)∑
y∼x f(y) ≥ αf(x) for all x ∈ Xg, the summation being

over the deg(x) neighbours of x in Xg, and to conclude that µg ≤ 1 − α.) This provides
interesting numerical estimates for µg, and could probably be exploited further.

A third method uses the following easy fact, observed by O. Gabber. For a graph X,
we denote by X1 the set of all oriented edges of X and by e 7→ e the reversal of orientations
(one has e 6= e and e = e for all e ∈ X1); moreover X0 denotes the set of vertices of X,
and e+, e− the head and tail of an edge e ∈ X1.

Lemma (Gabber). Let X be a connected regular graph of degree k.

(i) Suppose there exists a constant c and a function ω : X1 → R∗+ such that ω(e) =
ω(e)−1 for all e ∈ X1 and such that

1
k

∑
e∈X1,e+=x

ω(e) ≤ c for all x ∈ X0.

Then µ(X) ≤ c.

(ii) There exists a function ω0 : X1 → R∗+ such that ω0(e) = ω0(e)−1 for all e ∈ X1

and such that
1
k

∑
e∈X1,e+=x

ω0(e) = µ(X) for all x ∈ X0.

On the proof. Though there is apparently no published proof of (i), there is a simple
argument which can be found in [CdV], and which is also in [BCCH].



GROWTH, ENTROPY AND SPECTRUM IN GROUP THEORY 25

For (ii), one uses the existence of a function f0 : X0 → R∗+ such that

1
k

∑
y∈X0
y∼x

f(y) = µ(X)f(x) for all x ∈ X0

(where y ∼ x indicates a summation over all neighbours y of x in X). It is then sufficient
to set

ω0(e) =
f0(e−)
f0(e+)

for all e ∈ X1.
There is a proof of the existence of f0 in terms of graphs in [DoK, Proposition 1.5]. But

there are earlier proofs in the literature on irreducible stationary discrete Markov chains;
see [Harr] and [Pru]. �

The most primitive use of this Lemma, with a function ω taking only 2 distinct values,
shows that

µg ≤
√

2g − 1
g

for all g ≥ 2 [BCCH]. More refined computations are due to A. Zuk [Zu1], who shows in
particular that

µg ≤ 1
√

g

for all g ≥ 2, and to T. Nagnibeda [Nag]. In the case g = 2, one has for example

estimate from [BCCH] : µ2 ≤ 0.7373

estimate from [Zu1] : µ2 ≤ 0.6909

estimate from [Nag] : µ2 ≤ 0.6629.

There has also been some work to estimate µg from below. Let

Σ2(z) =
∑

γ∈Γg

I(γ)2z`(γ) =
∞∑

n=0

α(n)zn

be the formal series introduced in (E.6) above. The growth rate of the α(n) ’s is a lower
bound for the growth rate of the number of all closed loops in Xg. Numerically, this gives
for example

µ2 ≥ 0.6614389

(compage with Kesten’s estimate µ2 ≥ 0.6614378 !). More precise estimates for numbers
of closed loops lead to

µ2 ≥ 0.6624.
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Both computations above are due to L. Bartholdi [Bart]. There are also lower estimates
improving Kesten’s ones and not restricted to the groups Γg ’s, due to Paschke [Pas].

The pair (Γg, Sg) is a tempting test case. But most of the considerations above carry
over in some form or another to other pairs such as those associated to one-relator presen-
tations and to small cancellation presentations of groups.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

It is a pleasure to acknowledge useful conversations and mails during the preparation
of this report with R. Bacher, L. Bartholdi, O.V. Bogopolski, M. Bridson, M. Burger, T.
Ceccherini Silberstein, T. Delzant, B. Dudez, D.B.A. Epstein, M. Kervaire, F. Liardet, A.
Lubotzky, A. Machi, T. Nagnibeda, G. Robert, M. Stoll, A. Valette and T. Vust.
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