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lies on the boundary, then it is determined up to the identifications
—% +it ~ 1+t on the vertical boundary and z ~ —1/z on the
circular part.

Notice that since z — z+1 and z — —1/z are holomorphic func-
tions, the domain M with the given identifications possesses a natural
complex structure, with the exception of the two ‘conic’ points 7 and
il%\/‘g’i, where the total angle after making identifications collapses
to 7 and 27 /3, respectively. This can be relieved by introducing the
coordinates w = (z —4)? and w = (2 — 1+T‘/§”)3 near those points.
However, it turns out to be more useful to keep the conic points
and consider M as a complex surface with two conical singularities
somewhat similar to the standard cone (1.3). It is called the modular
surface, and plays an extraordinarily important role in number theory

and the theory of group representations.

We have thus encountered a very interesting phenomenon: the
collection of classes of Riemann surfaces on the torus (up to holo-
morphic equivalence), is itself naturally endowed with the structure
of a Riemann surface! The presence of a complex structure on this
collection of equivalence classes, called Teichmailler space, is a sim-
ple, albeit highly non-trivial, manifestation of a general phenomenon
seen throughout different areas of mathematics, wherein the set of
invariants of a structure of a certain kind itself possesses a similar
structure.

Lecture 20.

a. Differentiable functions on real surfaces. In various aspects
of the study of surfaces, an important role is played by the class of
‘nice’ functions on a given surface. For complex (Riemann) surfaces,
the natural class to consider is the set of compex-valued holomorphic
functions, while for real smooth surfaces, one considers differentiable
real-valued functions. There is an important difference here; in the
complex case, we deal with functions of one (complex) variable, and
so the dimensions of the domain and the range are same, while in
the real case, we consider functions of two (real) variables. In the
complex case, then, the level set of a given value z, that is, the set
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of points on the surface at which f takes the value z, is generally a
discrete set of points, while in the real case, the level set is usually
a smooth curve. In particular, this allows the possibility of ‘building
up’ a real smooth surface by considering the level sets of a sufficiently
nice function; this procedure, which we will do later on in this lecture,
is one of the basic constructions of Morse theory.

Definition 3.13. Given a function f: .S — R on a smooth surface,
we say that f is differentiable if its coordinate representation f o
¢~ !: R? — R is differentiable for every chart ¢: U — R2.

We first note that if f is differentiable in one coordinate chart on
a neighbourhood, then it is differentiable in any other chart on that
same neighbourhood. Indeed, if we have two charts ¢: U — D? and
Y: V — D2, the coordinate representation of f using ¢ is given by

fu=fo¢p ':D?* >R
and the representation using 1) is

fv="rfoy™!
=(fog¢ ")o(pov™)
= foo(¢oyp™)
The transition map ¢ o1~! is smooth and has smooth inverse, so fy

is differentiable on (U NV) iff fy is differentiable on ¢(U NV).

Definition 3.14. Given a chart ¢: U — D? and a function f: S —
R, the point p € U is a critical point for f if the gradient V(f o ¢~1)
vanishes at p. If the gradient is nonzero at p, we say that p is a reqular
point.

Differentiating the above formula relating fy and fy, we have
Viv=D(@oy ")V fy

where D(¢ o ¢~1) is the Jacobian of the transition map. By the
axioms of a smooth manifold, this has nonzero determinant and hence
is invertible, so V fyy = 0 if and only if V fiy = 0. We have proved the
following:
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Lemma 3.15. The critical points of a differentiable function are in-
dependent of the particular choice of coordinate chart.

We now show that away from its critical points, any function
can be made to assume a standard form by choosing an appropriate
coordinate chart.

Lemma 3.16. Given a differentiable function f: S — R and a reg-
ular point p € S, there exists a chart ¢p: U — D? around p in which

fo(z,y) = flo~ (z,y)) = f(p) + .

Proof. Take any coordinates (u,v) around p; because p is not a crit-
ical point, we may assume without loss of generality that % # 0.
(Here we are abusing notation by using f to stand for both the func-
tion S — R and its coordinate representation D? — R).

Then by the Implicit Function Theorem, we may write v as a
function of f and wu, and hence we can use these as our coordinates.
O

The next exercise establishes a similar result in the complex case.

Exercise 3.10. Given a holomorphic function f on a Riemann sur-
face and a point p such that f’(p) # 0 for some choice of local coor-
dinate, show that one can find a holomorphic chart ¢ around p such

that f(w) = f(p) + ¢(w).

So much for the regular points. But what happens at the critical
points? We cannot hope for a single standard sort of chart around
critical points in the same manner as we just obtained for regular
points, because critical points of f have various properties which must
remain invariant under changes of coordinates. For example, some
critical points are isolated, while others are not. For the time being,
we consider only isolated critical points; that is, points p € S such
that for some neighbourhood U, p is the only critical point contained
in U.

Even so, there are various possibilities. We typically use critical
points as a tool to optimise the value of f; we may find that a partic-
ular critical point is a local maximum, a local minimum, or neither,
and this classification is independent of our choice of coordinates. In
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the one-dimensional case, we classified critical points by looking at
the second derivative; in two dimensions, the object of interest is the

) () R = ()
Dire) = (622({ (p) 6‘?}% (p)>

Hessian matriz

Note that the form of this matrix will only be meaningful if p is a
critical point, since otherwise the Hessian vanishes in the coordinate
system specified by the above lemma.

Recall from linear algebra that given a symmetric 2 x 2 matrix

4= 2)

such as the one above, we can either use A to define a linear trans-
formation R? — R? by

6 () =46) = ()

or to define a quadratic form R? — R by

C)-C) a()-¢a( D)
= ax? + 2bzy + cy?

For the Hessian, it is the latter meaning which is relevant here, rather
than the more familiar use as a linear transformation. For a linear
transformation, the matrix A transforms under a change of coordi-
nates to the matrix C~'AC, where C is the matrix specifying the
new coordinates; for a quadratic form, A becomes instead CT AC.

It is a basic property of the determinant that det C*T = det C, and
so det(CTAC) = det(C)? det A. Thus the sign of the determinant is
preserved by changes of coordinates. Assuming the matrix D?f(p) is
nondegenerate, we have three possibilities:

(1) det D%2f(p) > 0 and D?f(p) is positive definite. Then p is a
local minimum for f.

(2) det D%2f(p) > 0 and D?f(p) is negative definite. Then p is
a local maximum for f.
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Figure 3.11. Three nondegenerate critical points.

(3) det D?f(p) < 0. Then p is a saddle; neither a minimum nor
a maximum.

We can now make a linear change of coordinates which brings the
quadratic part of the function to a particularly simple form, so that
the graph is as shown in Figure 3.11. In all cases the remainder term
will be o(x? + y?).

(1) In the first case, there exists a local coordinate system in
which f(z,y) = f(0,0) + 22 + y* + o(z? + y?).

(2) In the second case, there exists a local coordinate system in
which f(z,y) = f(0,0) — (2% + y?) + o(2® + y?).

(3) In the third case, there exists a local coordinate system in
which f(z,y) = £(0,0) + 2% — y? + o(2? + y?).

Exercise 3.11. Prove that any critical point p with det D?f(p) # 0
is isolated from other critical points.

In fact, the consideration of the behavior of a function near a
non-degenerate critical point is made more convenient by a useful
technical result called the Morse lemma, which states that under an
appropriate choice of local coordinates, the error term in the above
representation can be eliminated. We present the proof in the most
interesting case, that of a saddle, as a series of exercises.

Exercise 3.12. Let p be a non-degenerate saddle point of the func-
tion f. Show that locally, the level set { (z,y) | f(z,y) = f(p)} is
a union of two smooth curves which are tangent at the origin to the
diagonals y = x and y = —=x.
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Figure 3.12. T'wo spheres with different height functions.

Exercise 3.13. Under the same assumption, show that there exist
local coordinates (z’,%’) such that locally, the set { (z,v) | f(z,y) =
f(p) } is a union of the diagonals ¢’ = 2’ and y’ = —z’ themselves.

Exercise 3.14. Show that there exists a smooth map in a neighbour-
hood of p which is the identity on the diagonals ¥ = z’ and 3/ = —2/,
and which maps the curves f = ¢ to hyperbolas z'y’ = ¢ for every

constant c.

For the other two cases, we will need only a weaker statement
which parallels that of Exercise 3.12.

Exercise 3.15. Let p be a non-degenerate minimum of the function
f. Show that there exists ¢ > 0 such that for any ¢ with f(p) < ¢ <
f(p) + €, the level set f(z,y) = c is locally a smooth curve which
intersects every ray in the (z,y) coordinates at a single point, and
which is transversal (not tangential) to those rays.

b. Morse functions. Given a compact surface S and a smooth
function f: S — R, basic topological arguments imply that f achieves
its maximum and minimum on S; since the gradient of f in any coor-
dinate representation vanishes at each of these, f must have at least
two critical points.

We can easily construct an example where f has no other critical
points aside from these two; consider the sphere S? = {(z,y,2) €
R3 | 22 + 9% + 22 = 1} and the height function f: (z,y,2) — 2. Then
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Figure 3.13. Defining a Morse function on a sphere with one
or two handles.

f has a maximum at the north pole (0,0,1), a minimum at the south
pole (0,0, —1), and no other critical points.

If we perturb the sphere slightly, as shown in Figure 3.12, we will
introduce a new pair of local extrema; one local maximum and one
local minimum. Along with these we will create two saddle points,
so that all in all the perturbed sphere has six critical points; two
maxima, two saddles, and two minima.

Another interesting example is given by the standard torus of
revolution standing sideways as shown in Figure 3.13, again with the
height function f: (z,y,2) — z. Now f has one maximum and one
minimum, along with two saddles at (0,0,+1). A similar procedure
yields a smooth function on the sphere with m handles having one
maximum, one minimum, and 2m saddles; the case m = 2 is shown,
with critical levels drawn for the four saddle points.

Definition 3.17. Let S be a smooth surface and f: .S — R a smooth
function. f is called a Morse function if every critical point p of f is
nondegenerate; i.e. the Hessian matrix D? f(p) is invertible.

It follows from the definition that every critical point of a Morse
function is either a maximum, a minimum, or a saddle.
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Exercise 3.16. Represent the second surface shown in Figure 3.13
(or one homeomorphic to it) as a regular level set of a smooth func-
tion, and prove that the height function is indeed a Morse function
with one minimum, one maximum, and four saddles.

We will find that looking at the level sets of a Morse function
f: S — R and how they change from one level to another reveals a
great deal of information about the surface S. In fact, we can describe
a procedure to reconstruct S (up to diffeomorphism) from knowledge
of just the critical points of f.

First suppose that for a particular ¢ € R the level set f~!(c) C S
has no critical points (that is, ¢ is a regular value). Then by the same
argument used to establish that the level set F'~!(c) is a surface (2-
dimensional manifold) whenever c is a regular value of F': R? — R,
we can deduce from the Implicit Function Theorem and the Inverse
Function Theorem that f~!(c) is a 1-dimensional submanifold of S.
Since every compact 1-dimensional manifold is a disjoint union of
circles, it follows that f~'(c) has this form.

Now what happens if ¢ is a critical value? Let p € f~!(c) be a
critical point; then by the Morse lemma we may choose local coordi-
nates around p such that f takes a standard form.* There are three
possibilities:

(1) p a local minimum, f = ¢+ 22 + y2. Then for ¢ slightly
smaller than ¢, the level set f~1(¢/) does not contain any
points near p. For ¢ = ¢, it contains just one point, p, and
for ¢ slightly greater than c, £2 +y? = ¢/ — ¢ defines a circle.
Thus as we increase the value of ¢’ through c, a circle is born
around the critical point p.

(2) p a local maximum, f = ¢ — (22 + y?). The reverse of
the above process occurs; the circle which exists for ¢’ < ¢
shrinks to a point at ¢’ = ¢ and then vanishes for ¢’ > ¢. As
we increase the value of ¢’ through ¢, a circle dies around p.

4The use of the Morse lemma in our considerations is convenient, but not essential.
In the minimum and maximum cases, we only need Exercise 3.15, while Exercise 3.12
suffices for the case of a saddle.
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Figure 3.14. Level sets f~1(¢) passing through a saddle point.

(3) p asaddle, f = ¢+ 2% — y%. For ¢ < ¢, the (local) level
set is a hyperbola opening left and right; for ¢ = c it is
two lines intersecting at p, and for ¢’ > ¢ it is a hyperbola
opening up and down. At the global level, we know that
between critical points, the level sets are unions of circles,
so there are two possibilities, as illustrated in Figure 3.14;
as we pass through ¢, two circles may join and become one,
or one circle may split and become two.

With these in mind, we may reconstruct S by increasing ¢ through
the range of f; this is the central idea of Morse theory, which has
very powerful applications in a more general setting than we will con-
sider here. Although the process is much more complicated in higher
dimensions, the techniques developed from this theory are involved
in the proof of the generalization of the famous Poincaré conjecture
for manifolds of dimension > 5, one of the landmark achievements
of mathematics in the third quarter of the twentieth century.® The
very rough outline of the method is to start from a Morse function
on a given manifold which satisfies the assumptions of the Poincaré
conjecture—i.e. has certain invariants identical to those of a sphere—
and modify it to decrease the number of critical points until only one
maximum and one minimum remain.

c. The third incarnation of Euler characteristic. At a more
down-to-earth level, we will now show how to use Morse functions to
describe a third incarnation of the Euler characteristic x for surfaces.

5This brought a Fields Medal to Stephen Smale in 1966; the solution of the
conjecture in the two remaining dimensions—first in dimension four, and then in the
original three—resulted in two more Fields Medals later.
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If we count the various sorts of critical points on the surfaces we have
examined so far (using the height function as our Morse function each
time), we have the following;:

Surface maxima saddles minima X
sphere 1 0 1 2
(perturbed) sphere 2 2 2 2
torus 1 2 1 0

sphere with m handles 1 2m 1 2—2m

Note that in each case, the Euler characteristic x is equal to the
alternating sum of the three columns; in fact, this is true in general.

Theorem 3.18. For any Morse function f: S — R, the Euler char-
acteristic is related to the number of critical points by the formula

(3.6) X = (# of mazima) — (# of saddles)+ (# of minima)

Before proving the theorem, we describe the general method and
examine what happens in the case of the torus. We proceed by ex-
amining the sublevel sets

Se=f"((—00,d]) ={z € 5| f(x) < c}

Let m and M be the minimum and maximum values, respectively,
assumed by f on S. Then for ¢ < m, we have S. = (), and for ¢ > M,
S. = 5. The real story is what happens in between m and M. ..

The next observation to make is that nothing interesting happens
at non-critical levels. This is the content of the following lemma,
which intuitively looks quite plausible, although a rigorous proof re-
quires certain tools which we will not develop until later (see Lec-
ture 36(b)).

Lemma 3.19. Given a Morse function f: S — R and a,b € R such
that every ¢ € (a,b) is a regular value (f~'(c) contains no critical
points), then S. and So are diffeomorphic for every c,c’ € (a,b).

Thus for the torus shown in Figures 3.13 and 3.15, with inner
radius 1 and outer radius 2, all the action happens at f(z) = +1, +3.
In between those points, the boundary of S, is the level set f~(c),
which we know to be a disjoint union of circles. The four critical
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Figure 3.15. Sublevel sets on the vertical torus.

points run through the four possibilities enumerated in our earlier
discussion:

(1) At ¢ = —3, a circle is born, so the empty set is replaced by
a disc.

(2) At ¢ = —1, one circle splits into two, so the disc is replaced
by a cylinder.

(3) At ¢ = 1, the two circles rejoin and become one, so the
cylinder is replaced by a torus with a hole.

(4) At ¢ = 3, the circle dies, so the hole is filled with a cap, and
we obtain the entire torus.

Proof of Theorem 3.18. It follows from Lemma 3.19 that between
critical levels, the changes in S, are only quantitative, not qualitative,
and have no effect on the Euler characteristic; in order to prove the
theorem, therefore, it suffices to examine the change in y as we pass
through each of the various sorts of critical points. To accomplish
this, we first extend the definition of x to allow non-connected mani-
folds; this will allow examples with x > 2, which is impossible in the
connected case.

Now there are three cases to examine. If f~1(c) contains a local
minimum of f, then passing through ¢ corresponds to adding a new
disc, as we saw, and hence increases y by one. Similarly, passing
through a local maximum corresponds to filling in a hole with a disc,
which involves adding a face and leaving the number of edges and
faces unchanged, and so also increases x by one.

It remains only to show that passing through a saddle point de-
creases x by one. Figure 3.16 shows the sublevel sets S,/ (viewed from



Lecture 21. 143

Figure 3.16. Sublevel sets near a saddle.

above) for values of ¢’ near the critical value ¢. Upon passing through
the saddle, the number of edges and vertices remains the same, but
two faces which previously were separate are joined into one. Hence
the alternating sum y =V — E + F is decreased by one. O

If we carry out this construction a bit more carefully, we can actu-
ally obtain a complete classification of smooth surfaces using Morse
functions as our tool; this was in fact the inspiration for the proof
we gave of the classification theorem for compact orientable surfaces
(Theorem 2.15), and is a ‘baby version’ of the arguments used in
higher dimension, like those on which the afore-mentioned proof of
the Poincaré conjecture in dimensions five and above is based.

Exercise 3.17. Consider the function f(z,y) = sin(4wz) cos(6my)
on the standard flat torus R?/Z2.

(1) Prove that it is a Morse function, and calculate the number
of minima, saddles, and maxima.

(2) Describe the evolution of the sub-level sets f~1((—o0,c))
as c¢ varies from the lowest minimum value to the highest
maximum value.

Lecture 21.

a. Functions with degenerate critical points. Having success-
fully used the ideas of Morse theory to reconstruct the surface S and
run across our old friend, the Euler characteristic, we would now like
to extend the same ideas and techniques to the case where our func-
tion f: S — R may fail to be Morse by having degenerate critical
points.



