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Now f(R) = R, so f has real coefficients and is in fact an isometry
of H2. !

In order to obtain Proposition 4.14, we need only extend the re-
sult of this proposition to take into account the position of the third
point, which determines whether the isometry preserves or reverses
orientation. To this end, note that the condition d(w1, w3) = d(z1, z3)
implies that w3 lies on a circle of radius d(z1, z3) centred at w1; sim-
ilarly, it also lies on a circle of radius d(z2, z3) centred at w3.

Assuming z1, z2, z3 do not all lie on the same geodesic, there are
exactly two points which lie on both circles, each an equal distance
from the geodesic connecting z1 and z2. One of these will necessarily
be the image of z3 under the fractional linear transformation f found
above; the other one is (r ◦ f)(z3) where r denotes reflection in the
geodesic η.

To better describe r, pick any point z ∈ H2 and consider the
geodesic ζ which passes through z and meets η orthogonally. De-
note by d(z, η) the distance from z to the point of intersection; then
the reflection r(z) is the point on ζ a distance d(z, η) beyond this
point. Alternatively, we may recall that the map R : z #→ −z̄ is reflec-
tion in the imaginary axis, which is an orientation reversing isometry.
There exists a unique fractional linear transformation g taking η to
the imaginary axis; then r is simply the conjugation g−1 ◦ R ◦ g.

Exercise 4.15. Prove that the group of orientation preserving isome-
tries of H2 in the unit disc model is the group of all fractional linear
transformations of the form

z #→ az + c̄

cz + ā

where a, c ∈ C satisfy aā − cc̄ = 1.

Lecture 29.

a. Classification of isometries. Now we turn to the task of clas-
sifying these isometries and understanding what they look like geo-
metrically.
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a.1. Fixed points in the extended plane. For the time being we restrict
ourselves to orientation preserving isometries. We begin by consider-
ing the fractional linear transformation f as a map on all of C, (or,
more precisely, on the Riemann sphere C ∪ {∞}) and look for fixed
points, given by

f(z) =
az + b

cz + d
= z

Clearing the denominator and simplifying gives the quadratic equa-
tion

cz2 + (d − a)z − b = 0

whose roots are

z =
1

2c

(

a − d ±
√

(a − d)2 + 4bc
)

=
1

2c

(

a − d ±
√

(a + d)2 − 4(ad − bc)
)

=
1

2c

(

a − d ±
√

(a + d)2 − 4
)

.

Note that the quantity a + d is just the trace of the matrix of coeffi-
cients X =

(

a b
c d

)

, which we already know has unit determinant. Let
λ and µ be the eigenvalues of X; then λµ = detX = 1, so µ = 1/λ,
and we have

a + d = TrX = λ+ µ = λ+
1

λ

There are three possibilities to consider regarding the nature of
the fixed point or points z = f(z):

(E): |a + d| < 2, corresponding to λ = eiα for some α ∈ R. In
this case there are two fixed points z and z̄, with Im z > 0
and hence z ∈ H2.

(P): |a + d| = 2, corresponding to λ = 1 (since X and −X
give the same transformation). In this case there is exactly
one fixed point z ∈ R.

(H): |a + d| > 2, corresponding to µ < 1 < λ. In this case,
there are two fixed points z1, z2 ∈ R.
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Figure 4.13. Geodesics passing through i and hyperbolic cir-
cles centred at i.

a.2. Elliptic isometries. Let us examine each of these in turn, begin-
ning with (E), where f fixes a unique point z ∈ H2. Consider a
geodesic γ passing through z. Then f(γ) will also be a geodesic pass-
ing through z; let α be the angle it makes with γ at z. Then because f
preserves angles, it must take any geodesic η passing through z to the
unique geodesic which passes through z and makes an angle of α with
η. Thus f is analogous to what we term rotation in the Euclidean
context; since f preserves lengths, we can determine its action on any
point in H2 based solely on knowledge of the angle of rotation α. As
our choice of notation suggests, this angle turns out to be equal to
the argument of the eigenvalue λ.

As an example of a map of this form, consider

f : z #→ (cosα)z + sinα

(− sinα)z + cosα

which is rotation by α around the point i; the geodesics passing
through i are the dark curves in Figure 4.13. The lighter curves
are the circles whose (hyperbolic) centre lies at i; each of these curves
intersects all of the geodesics orthogonally, and is left invariant by f .

This map does not seem terribly symmetric when viewed as a
transformation of the upper half-plane; however, if we look at f in the
unit disc model, we see that i is taken to the origin, and f corresponds
to the rotation by α around the origin in the usual sense. Thus we
associate with a rotation (as well as with the family of all rotations
around a given point p) two families of curves:
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t

Figure 4.14. Parallel geodesics and horocycles for parabolic isometries.

(1) The pencil of all geodesics passing through p; each element
of this family maps to another, and rotations around p act
transitively on this family.

(2) The family of circles around p which are orthogonal to the
geodesics from the first family. Each circle is invariant under
rotations, and rotations around p act transitively on each
circle.

We will discover similar pictures for the remaining two cases.

a.3. Parabolic isometries. Case (P) can be considered as a limiting
case of the previous situation where the fixed point p goes to infinity.
Let t ∈ R ∪ {∞} be the unique fixed point in the Riemann sphere,
which lies on the ideal boundary. As with the family of rotations
around p, we can consider the family of all orientation preserving
isometries preserving t; notice that as in that case, this family is a

one-parameter group whose members we will denote by p(t)
s , where

s ∈ R. As above, one can see two invariant families of curves:

(1) The pencil of all geodesics passing through t (dark curves in
Figure 4.14)—each element of this family maps to another,

and the group {p(t)
s } acts transitively on this family.

(2) The family of limit circles, more commonly called horocycles
(light curves in Figure 4.14), which are orthogonal to the
geodesics from the first family. They are represented by
circles tangent to R at t, or by horizontal lines if t = ∞.



210 4. Riemannian Metrics

w1 w2

Figure 4.15. Orthogonal geodesics and equidistant curves for
the geodesic connecting w1 and w2.

Each horocycle is invariant under p(t)
s , and the group acts

transitively on each horocycle.

A useful (but visually somewhat misleading) example is given by the
case t = ∞ with

p(∞)
s z = z + s.

We will see later in the lecture that for the parabolic case, the ‘angle’ s
does not have properties similar to the rotation angle α. In particular,
it is not an invariant of the isometry.

Exercise 4.16. Show that given two points z1, z2 ∈ H2, there are
exactly two different horocycles which pass through z1 and z2.

a.4. Hyperbolic isometries. Finally, consider the case (H), in which
we have two real fixed points w1 < w2. Since f takes geodesics to
geodesics and fixes w1 and w2, the half-circle γ which intersects R at
w1 and w2 is mapped to itself by f , and so f acts as translation along
this curve by a fixed distance. The geodesic γ is the only geodesic
invariant under the transformation; in a sense, it plays the same role
as the centre of rotation in the elliptic case, a role for which there is
no counterpart in the parabolic case.

To see what the action of f is on the rest of H2, consider as above
two invariant families of curves:
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Figure 4.16. Orthogonal geodesics and equidistant curves for
the imaginary axis.

(1) The family of geodesics which intersect γ orthogonally (the
dark curves in Figure 4.15). If η is a member of this family,
then f will carry η to another member of the family; which
member is determined by the effect of f on the point where
η intersects γ.

(2) The family of curves orthogonal to these geodesics (the light
curves in Figure 4.15)—these are the equidistant curves (or
hypercircles). Such a curve ζ is defined as the locus of points
which lie a fixed distance from the geodesic γ; in Euclidean
geometry this condition defines a geodesic, but this is no
longer the case in the hyperbolic plane. Each equidistant
curve ζ is carried into itself by the action of f .

A good example of maps f falling into the case (H) are the maps
which fix 0 and ∞:

f : z #→ λ2z

In this case the geodesic γ connecting the fixed points is the imaginary
axis (the vertical line in Figure 4.16), the geodesics intersecting γ
orthogonally are the (Euclidean) circles centred at the origin (the
dark curves), and the equidistant curves are the (Euclidean) lines
emanating from the origin (the lighter curves).

To be precise, given any geodesic γ in the hyperbolic plane, we
define an r-equidistant curve as one of the two connected components
of the locus of points at a distance r from γ.
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Exercise 4.17. For any given r > 0, show that there are exactly two
different r-equidistant curves (for some geodesics) which pass through
two given points in the hyperbolic plane.

Thus we have answered the question about the significance of
(Euclidean) circles tangent to the real lines and arcs which intersect it.
The former (along with horizontal lines) are horocycles, and the latter
(along with rays intersecting the real line) are equidistant curves.
Notice that all horocycles are isometric to each other (they can be
viewed as circles of infinite radius), whereas for equidistant curves
there is an isometry invariant, namely the angle between the curve
and the real line. One can see that this angle uniquely determines
the distance r between an equidistant curve and its geodesic, and vice
versa. The correspondence between the two can be easily calculated
in the particular case shown in Figure 4.16.

Exercise 4.18. The arc of the circle |z − 2i|2 = 8 in the upper half-
plane represents an r-equidistant curve. Find r.

a.5. Canonical form for elliptic, parabolic, and hyperbolic isometries.
The technique of understanding an isometry by showing that it is
conjugate to a particular standard transformation has great utility in
our classification of isometries of H2. Recall that we have a one-to-one
correspondence between 2×2 real matrices with unit determinant (up
to a choice of sign) and fractional linear transformations preserving
R, which are the isometries of H2 that preserves orientation.

PSL(2, R) = SL(2, R)/ ± Id ←→ Isom+(H2)

A =

(

a b
c d

)

←→ fA : z #→ az + b

cz + d

Composition of isometries corresponds to matrix multiplication:

fA ◦ fB = fAB

We may easily verify that two maps fA and fB corresponding to
conjugate matrices are themselves conjugate; that is, if A = CBC−1

for some C ∈ GL(2, R), we may assume without loss of generality
that C ∈ SL(2, R) by scaling C by its determinant. Then we have

fA = fC ◦ fB ◦ f−1
C
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It follows that fA and fB have the same geometric properties; fixed
points, actions on geodesics, etc. Conjugation by fC has the effect of
changing coordinates by an isometry, and so the intrinsic geometric
properties of an isometry are conjugacy invariants. For example, in
the Euclidean plane, any two rotations by an angle α around different
fixed points x and y are conjugated by the translation taking x to y,
and any two translations by vectors of equal length are conjugated
by any rotation by the angle between those vectors. Thus, in the
Euclidean plane, the conjugacy invariants are the angle of rotation
and the length of the translation.

In order to classify orientation preserving isometries of H2, it suf-
fices to understand certain canonical examples. We begin by recalling
the following result from linear algebra:

Proposition 4.16. Every matrix in SL(2, R) is conjugate to one of
the following (up to sign):

(E): An elliptic matrix of the form
(

cosα sinα
− sinα cosα

)

for some α ∈ R.

(P): The parabolic matrix
(

1 1
0 1

)

(H): The hyperbolic matrix
(

et 0
0 e−t

)

for some t ∈ (0,∞).

The three cases (E), (P), and (H) for the matrix A correspond to
the three cases discussed above for the fractional linear transformation
fA. Recall that the isometries corresponding to the elliptic case (E)
have one fixed point in H2, those corresponding to the parabolic case
(P) have one fixed point on the ideal boundary R ∪ {∞}, and those
corresponding to the hyperbolic case (H) have two fixed points on
the ideal boundary.
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The only invariants under conjugation are the parameters α (up
to a sign) and t, which correspond to the angle of rotation and the
distance of translation, respectively. Thus two orientation preserving
isometries of H2 are conjugate in the full isometry group of H2 iff
they fall into the same category (E), (P), or (H) and have the same
value of the invariant α or t, if applicable.

Notice that if we consider only conjugacy by orientation preserv-
ing isometries, then α itself (rather than its absolute value) is an
invariant in the elliptic case, and the two parabolic matrices ( 1 1

0 1 )
and

(

1 −1
0 1

)

are not conjugate. In contrast, the conjugacy classes in
the hyperbolic case do not change.

Thus we see that there are both similarities and differences be-
tween the structure of the group of orientation preserving isome-
tries in the Euclidean and hyperbolic planes. Among the similari-
ties is the possible number of fixed points: one or none. Isometries
with one point—rotations—look completely similar, but the set of
isometries with no fixed points—which in the Euclidean case is just
translations—is more complicated in the hyperbolic case, including
both parabolic and hyperbolic isometries.

An important difference in the structure of the isometry groups
comes from the following observation. Recall that a subgroup H of a
group G is normal if for any h ∈ H and g ∈ G the conjugate g−1hg
remains in H. It is not hard to show that in the group of isometries
of the Euclidean plane, translations form a normal subgroup; the
situation in the hyperbolic case is rather different.

Exercise 4.19. Prove that the group of isometries of the hyperbolic
plane has no non-trivial normal subgroups, i.e. the only normal sub-
groups are the whole group and the trivial subgroup containing only
the identity.

Another example of a difference between the two cases comes
when we consider the decomposition of orientation preserving isome-
tries into reflections—this is possible in both the Euclidean and the
hyperbolic planes, and any orientation preserving isometry can be
had as a product of two reflections. In the Euclidean plane, there
are two possibilities—either the lines of reflection intersect, and the
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product is a rotation, or the lines are parallel, and the product is
a translation. In the hyperbolic plane, there are three possibilities
for the relationship of the lines (geodesics) of reflection: once again,
they may intersect or be parallel (i.e. have a common point at infin-
ity), but now a new option arises; they may also be ultraparallel (see
Figure 4.17). We will discuss this in more detail shortly.

Exercise 4.20. Prove that the product of reflections in two geodesics
in the hyperbolic plane is elliptic, parabolic or hyperbolic, respec-
tively, depending on whether the two axes of reflection intersect, are
parallel, or are ultraparallel.

a.6. Orientation reversing isometries. Using representation (4.9) and
following the same strategy, we try to look for fixed points of orien-
tation reversing isometries. The fixed point equation takes the form

c|z|2 + dz − az̄ − b = 0.

Separating real and imaginary parts, we get two cases:

(1) d + a = 0. In this case, there is a whole geodesic of fixed
points, and the transformation is a reflection in this geo-
desic, which geometrically is represented as inversion (if the
geodesic is a half-circle) or the usual sort of reflection (if the
geodesic is a vertical ray).

(2) d+a *= 0. In this case, there are two fixed points on the (ex-
tended) real line, and the geodesic connecting these points
is preserved, so the transformation is a glide reflection, and
can be written as the composition of reflection in this ge-
odesic and a hyperbolic isometry with this geodesic as its
axis.

Thus the picture for orientation reversing isometries is somewhat
more similar to the Euclidean case.

b. Geometric interpretation of isometries. From the synthetic
point of view, the fundamental difference between Euclidean and hy-
perbolic geometry is the failure of the parallel postulate in the latter
case. To be more precise, suppose we have a geodesic (line) γ and a
point p not lying on γ, and consider the set of all geodesics (lines)
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γ

ζ
η

Figure 4.17. Parallels and ultraparallels.

through p which do not intersect γ. In the Euclidean case, there is
exactly one such geodesic, and we say that it is parallel to γ. In the
hyperbolic case, not only are there many such geodesics, but they
come in two different classes, as shown in Figure 4.17.

The curves γ, η, and ζ in Figure 4.17 are all geodesics, and neither
η nor ζ intersects γ in H2. However, η and γ both approach the same
point on the ideal boundary, while ζ and γ do not exhibit any such
asymptotic behaviour. We say that η and γ are parallel, while ζ and
γ are ultraparallel.

Each point x on the ideal boundary corresponds to a family of
parallel geodesics which are asymptotic to x, as shown in Figure 4.14.
The parallel geodesics asymptotic to ∞ are simply the vertical lines,
while the parallel geodesics asymptotic to some point x ∈ R form a
sort of bouquet of curves.

A recurrent theme in our description of isometries has been the
construction of orthogonal families of curves. Given the family of
parallel geodesics asymptotic to x, one may consider the family of
curves which are orthogonal to these geodesics at every point; such
curves are called horocycles. As shown in Figure 4.14, the horocycles
for the family of geodesics asymptotic to ∞ are horizontal lines, while
the horocycles for the family of geodesics asymptotic to x ∈ R are
Euclidean circles tangent to R at x.

The reason horocycles are sometimes called limit circles is illus-
trated by the following construction: fix a point p ∈ H2 and a geodesic
ray γ which starts at p. For each r > 0 consider the circle of radius
r with centre on γ which passes through p; as r → ∞, these circles
converge to the horocycle orthogonal to γ.



Lecture 29. 217

γ η

Figure 4.18. Distance between parallel geodesics.

What do we mean by this last statement? In what sense do
the circles ‘converge’ to the horocycle? For any fixed value of r,
the circle in the construction lies arbitrarily far from some points on
the horocycle (those which are ‘near’ the ideal boundary), and so
we certainly cannot expect any sort of uniform convergence in the
hyperbolic metric. Rather, convergence in the hyperbolic plane must
be understood as convergence of pieces of fixed, albeit arbitrary large,
length—that is, given R > 0, the arcs of length R lying on the circles
in the above construction with p at their midpoint do in fact converge
uniformly to a piece of the horocycle, and R may be taken as large
as we wish.

The situation is slightly different in the model, where we do have
genuine uniform convergence, as the complete (Euclidean) circles rep-
resenting (hyperbolic) circles converge to the (Euclidean) circle rep-
resenting the horocycle.

This distinction between the intrinsic and extrinsic viewpoints
raises other questions; for example, the above distinction between
parallel and ultraparallel geodesics relies on this particular model of
H2 and the fact that points at infinity are represented by real num-
bers, and so seems rooted in the extrinsic description of H2. Can we
distinguish between the two sorts of asymptotic behaviour intrinsi-
cally, without reference to the ideal boundary?

It turns out that we can; given two ultraparallel geodesics γ and
η, the distance from γ to η grows without bound; that is, given any
C ∈ R, there exists a point z ∈ γ such that no point of η is within
a distance C of z. On the other hand, given two parallel geodesics,
this distance remains bounded, and in fact goes to zero.
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To see this, let γ be the imaginary axis; then the equidistant
curves are Euclidean lines through the origin, as shown in Figure 4.18,
and η is a Euclidean circle which is tangent to γ at the origin. The
distance from γ to the equidistant curves is a function of the slope
of the lines; steeper slope corresponds to smaller distance, and the
points in between the curves are just the points which lie within that
distance of γ. But now for any slope of the lines, η will eventually lie
between the two equidistant curves, since its slope becomes vertical
as it approaches the ideal boundary, and hence the distance between
γ and η goes to zero.

One can see the same result by considering a geodesic η which is
parallel to γ not at 0, but at ∞; then η is simply a vertical Euclidean
line, which obviously lies between the equidistant curves for large
enough values of y.

To get an idea of how quickly the distance goes to 0 in Fig-
ure 4.18, recall that the hyperbolic distance between two nearby
points is roughly the Euclidean distance divided by the height y,
and that the Euclidean distance between a point on the circle η in
Figure 4.18 and the imaginary axis is roughly y2 for points near the
origin; hence

hyperbolic distance ∼ Euclidean distance

y
∼ y2

y
= y → 0

With this understanding of circles, parallels, ultraparallels, and
horocycles, we can now return to the task of giving geometric mean-
ing to the various categories of isometries. In each case, we found
two families of curves which intersect each other orthogonally; one
of these will comprise geodesics which are carried to each other by
the isometry, and the other family will comprise curves which are
invariant under the isometry.

In the elliptic case (E), the isometry f is to be thought of as
rotation around the unique fixed point p by some angle α; the two
families of curves are shown in Figure 4.13. Given v ∈ TpH2, denote
by γv the unique geodesic passing through p with γ′(p) = v. Then
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we have

f : {γv}v∈TpH2 → {γv}v∈TpH2

γv #→ γw

where w ∈ TpH2 is the image of v under rotation by α in the tangent
space. Taking the family of curves orthogonal to the curves γv at
each point of H2, we have the one-parameter family of circles

{ηr}r∈(0,∞)

each of which is left invariant by f .

In the parabolic case (P), the map f is just horizontal translation
z #→ z + 1. Note that by conjugating this map with a homothety,
and a reflection if necessary, we obtain horizontal translation by any
distance, so any horizontal translation is conjugate to the canonical
example. Given t ∈ R, let γt be the vertical line Re z = t, then the
geodesics γt are all asymptotic to the fixed point ∞ of f , and we have

f : {γt}t∈R → {γt}t∈R

γt #→ γt+1

The invariant curves for f are the horocycles, which in this case are
horizontal lines ηt, t ∈ R. For a general parabolic map, the fixed
point x may lie on R rather than at ∞; in this case, the geodesics
and horocycles asymptotic to x are as shown in the second image in
Figure 4.14. The invariant family of geodesics consists of geodesics
parallel to each other.

Finally, in the hyperbolic case (H), the standard form is fA(z) =
λ2z for λ = et, and the map is simply a homothety from the origin.
There is exactly one invariant geodesic, the imaginary axis, and the
other invariant curves are the equidistant curves, which in this case
are Euclidean lines through the origin. The curves orthogonal to these
at each point are the geodesics γr ultraparallel to each other, shown
in Figure 4.16, where γr is the unique geodesic passing through the
point ir and intersecting the imaginary axis orthogonally. The map
fA acts on this family by taking γr to γλ2r.

In the general hyperbolic case, the two fixed points will lie on
the real axis, and the situation is as shown in Figure 4.15. The
invariant geodesic η0 is the half-circle connecting the fixed points, and
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the equidistant curves are the other circles passing through those two
points. The family of orthogonal curves are the geodesics intersecting
η0 orthogonally, as shown in the picture.

Lecture 30.

a. Area of triangles in different geometries. In our earlier in-
vestigations of spherical and elliptic geometry (by the latter we mean
the geometry of the projective plane with metric inherited from the
sphere), we found that the area of a triangle was proportional to its
angular excess, the amount by which the sum of its angles exceeds
π. For a sphere of radius R, the constant of proportionality was
R2 = 1/κ, where κ is the curvature of the surface.

In Euclidean geometry, the existence of any such formula was pre-
cluded by the presence of similarity transformations, diffeomorphisms
of R2 which expand or shrink the metric by a uniform constant.

In the hyperbolic plane, we find ourselves in a situation reminis-
cent of the spherical case. We will find that the area of a hyperbolic
triangle is proportional to the angular defect, the amount by which
the sum of its angles falls short of π, and that the constant of pro-
portionality is again given by the reciprocal of the curvature.

We begin with a simple observation, which is that every hyper-
bolic triangle does in fact have angles whose sum is less than π (oth-
erwise the above claim would imply that some triangles have area
≤ 0).

For that we use the open disc model of the hyperbolic plane, and
note that given any triangle, we can use an isometry to position one
of its vertices at the origin; thus two of the sides of the triangle will be
(Euclidean) lines through the origin, as shown in Figure 4.19. Then
because the third side, which is part of a Euclidean circle, is convex
in the Euclidean sense, the sum of the angles is less than π.

This implies the remarkable ‘fourth criterion of equality of trian-
gles’ above and beyond the three criteria which are common to both
the Euclidean and hyperbolic planes.

Proposition 4.17. Two geodesic triangles with pairwise equal angles
are isometric.
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Figure 4.19. A hyperbolic triangle has angles whose sum is
less than π.

Proof. We will use the disc model. Without loss of generality, we
may assume that both triangles have one vertex at the centre O and
that two of their sides lie on the same radii. Thus we have triangles
AOB and A′OB′ where the vertices A and A′ lie on one radius, and
B and B′ on another. The angles OAB and OA′B′ are equal and so
are angles OBA and OB′A′.

Now there are two possibilities; either the arcs AB and A′B′

intersect, or they do not. Assume first that they intersect at some
point C. Then the triangle ACA′ has two angles which add to π,
which is impossible. Hence without loss of generality, we may assume
that arc AA′ lies inside the triangle OBB′. Then the sum of the
angles of the geodesic quadrangle AA′BB′ is equal to 2π, which is
again an impossibility since it can be split into two geodesic triangles,
at least one of which must therefore have angles whose sum is ≥ π.
This contradiction implies A = A′ and B = B′. !

b. Area and angular defect in hyperbolic geometry. Our proof
of the area formula is due to Gauss, and follows the exposition in Cox-
eter’s book “Introduction to Geometry” (sections 16.4 and 16.5). It
is essentially a synthetic proof, and as such does not give us a value
for the constant of proportionality; to obtain that value, we must
turn to analytic methods. We will also deviate slightly from the true
synthetic approach by using drawings in the two models of H2.

As with so many things, non-Euclidean geometry was first discov-
ered and investigated by Gauss, who kept his results secret because
he had no proof that his geometry was consistent. Eventually, the
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Figure 4.20. Computing the area of a hyperbolic triangle.

introduction of several models (of which the Poincaré half-plane and
open disc models were not the earliest) showed that hyperbolic ge-
ometry is consistent, contingent upon the consistency of Euclidean
geometry; a contradiction in the former would necessarily lead to a
contradiction in the latter.

Theorem 4.10. Given a hyperbolic triangle ∆ with angles α, β, and
γ, the area A of ∆ is given by

(4.12) A =
1

−κ (π − α− β − γ)

where κ is the curvature, whose value is −1 for the standard upper
half-plane and open disc models.

Proof. The proof of the analogous formula for the sphere involved
partitioning it into segments and using an inclusion-exclusion formula.
This relied on the fact that the area of the sphere is finite; in our



Lecture 30. 223

Ω

Figure 4.21. A singly asymptotic triangle.

present case, we must be more careful, as the hyperbolic plane has
infinite area. However, we can recover a setting in which a similar
proof works by considering asymptotic triangles, which turn out to
have finite area.

The idea is as follows: let z1, z2, z3 denote the vertices of the
triangle, and without loss of generality, take z1 to be the origin in the
open disc model. As shown in Figure 4.20, draw the half-geodesic γ1

which begins at z1 and passes through z2; similarly, draw the half-
geodesics γ2 and γ3 beginning at z2 and z3, and passing through z3

and z1, respectively. Let wj denote the point at infinity approached
by γj as it nears the boundary of the disc.

Now draw three more geodesics, as shown in the picture; η1 is to
be asymptotic to w3 and w1, η2 is to be asymptotic to w1 and w2, and
η3 is to be asymptotic to w2 and w3. Then the region T0 bounded by
η1, η2, and η3 is a triply asymptotic triangle. If we write Tj for the
doubly asymptotic triangle whose vertices are zj , wj , and wj−1, we
can decompose T0 as the disjoint union

T0 = T1 ∪ T2 ∪ T3 ∪ ∆

and so the area A(∆) may be found by computing the areas of the
regions Tj , provided they are finite.

Since these regions are not bounded, it is not at first obvious why
they should have finite area. We begin by making two observations
concerning triply asymptotic triangles.

First, all triply asymptotic triangles are isometric. That is, given
w1, w2, w3 ∈ ∂D2 and w̃1, w̃2, w̃3 ∈ ∂D2 with the same orientation,
Lemma 4.9 guarantees the existence of a unique fractional linear
transformation f taking wj to w̃j , which must then preserve ∂D2

and map the interior to the interior, and hence is an isometry of H2.
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Secondly, a triply asymptotic triangle will have finite area iff each
of its ‘arms’ does, where by an ‘arm’ we mean the section of the
triangle which approaches infinity. How do we compute the area of
such an arm? A prototypical example is the singly asymptotic triangle
shown in Figure 4.21, where we use the half-plane model and choose
∞ as the point on the ideal boundary, so two of the geodesics are
vertical lines. The infinitesimal area element at each point is given
by 1

y2 dx dy where dx and dy are Euclidean displacements, and so the
area of the shaded region Ω is

A(Ω) =

∫

Ω

1

y2
dx dy

which converges as y → ∞, and hence Ω has finite area. It follows that
the area of a triply asymptotic triangle is finite, and independent of
our choice of triangle; denote this area by µ. Note that any hyperbolic
triangle is contained in a triply asymptotic triangle, and so every
hyperbolic triangle must have area less than µ.

In order to complete our calculations for A, we must find a for-
mula for the areas of the doubly asymptotic triangles T1, T2, and T3

(the shaded triangles in Figure 4.20). Note first that by using an
isometry to place the non-infinite vertex of a doubly asymptotic tri-
angle at the origin, we see that the area depends only on the angle at
the vertex. Given an angle θ, let f(θ) denote the area of the doubly
asymptotic triangle with angle π − θ, so that if θj is the angle in the
triangle at the vertex zj , then A(Tj) = f(θj).

We may obtain a triply asymptotic triangle as the disjoint union
of two doubly asymptotic triangles with angles π − α, π − β where
α+ β = π, and hence

f(α) + f(β) = µ

Similarly, we may obtain a triply asymptotic triangle as the disjoint
union of three doubly asymptotic triangles with angles π − α, π − β,
and π−γ where (π−α)+(π−β)+(π−γ) = 2π and hence α+β+γ = π,
so we have

f(α) + f(β) + f(γ) = µ
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for such α, β, γ. We may rewrite the above two equations as

f(α + β) + f(π − α− β) = µ

f(α) + f(β) + f(π − α− β) = µ

and comparing the two gives

f(α + β) = f(α) + f(β)

so that f is in fact a linear function. Further, the limit α → π corre-
sponds to a doubly asymptotic triangle whose nonzero angle shrinks
and goes to zero, and so the triangle becomes triply asymptotic; hence
f(π) = µ, and we have

f(θ) =
µ

π
θ.

It follows that

A(∆) = T0 − T1 − T2 − T3 = µ − µ

π
(θ1 + θ2 + θ3)

=
µ

π
(π − θ1 − θ2 − θ3)

and hence our formula is proved, with constant of proportionality
1
−κ = µ

π .

In order to calculate the coefficient of proportionality for the stan-
dard half-plane model consider the triply asymptotic triangle T in the
upper half-plane bounded by the unit circle |z| = 1 and the vertical
lines Re z = 1 and Re z = −1. The area of T is given by

µ =

∫

T

1

y2
dx dy =

∫ 1

−1

∫ ∞

√
1−x2

1

y2
dy dx

=

∫ 1

−1

1√
1 − x2

dx =

∫ π/2

−π/2
dθ = π

using the substitution x = sin θ. This confirms the choice κ = −1 for
the usual model. !

Note that the formula is valid not only for finite triangles, but also
for asymptotic triangles, since taking a vertex to infinity is equivalent
to taking the corresponding angle to zero.

The above proof that the area µ of a triply asymptotic triangle is
finite relied on analytic methods, rather than purely synthetic ones.
We sketch the purely synthetic proof given in Coxeter’s book, which
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Figure 4.22. Decomposing an asymptotic triangle.

relies only on the fact that area is additive and that reflections are
isometries. As before, it suffices to prove that the area of a singly
asymptotic triangle is finite.

Consider such a triangle, given by the shaded region in Fig-
ure 4.22. Here we begin with the asymptotic triangle ABG and
extend the geodesic AB to the point F at infinity. Then we draw
the geodesic asymptotic to F and G and add the perpendicular AH,
which bisects the angle at A. Note that all the curves in this picture
represent geodesics—as this is a purely synthetic picture, it does not
refer to either of the models, and in particular, does not include the
ideal boundary. Reflecting BG in the line AH gives the geodesic EF ;
the geodesics BC, ED bisect the appropriate angles and meet the
geodesic FG orthogonally.

The bulk of the proof is in the assertion that by repeated reflec-
tions first in ED and then in AH, the rest of the shaded region can
be brought into the pentagon ABCDE. The first step is shown in
Figure 4.22, and the details of the proof are left to the reader. Once
it is established that ABG can be decomposed into triangles whose
isometric images fill ABCDE disjointly, it follows immediately that
the area of ABG is finite, and the proof is complete.

Exercise 4.21. Find all the isometries which preserve a triply as-
ymptotic triangle.

Exercise 4.22. Consider a line in the hyperbolic plane and a doubly
asymptotic triangle for which this line is one of the sides. Assume
the angle at the finite vertex is fixed, and find the locus of all finite
vertices.


