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ON THE WORK AND VISION OF DMITRY DOLGOPYAT
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ABSTRACT. We present some of the results and techniques due to Dolgopyat.
The presentation avoids technicalities as much as possible while trying to fo-
cus on the basic ideas. We also try to present Dolgopyat’s work in the context
of a research program aimed at enlightening the relations between dynamical
systems and nonequilibrium statistical mechanics.

1. INTRODUCTION

This paper is occasioned by the award of the second Michael Brin prize in
Dynamical Systems to Dmitry Dolgopyat. I will try to explain not only some
of the results for which the prize has been awarded but also the general rele-
vance of Dolgopyat’s work for the future development of the field of dynamical
systems.

The modern field of dynamical systems finds its roots not only in the study
of celestial mechanics and, most notably, in Henri Poincaré’s recognition of
the phenomenon of dynamical instability [44], but also in the work of Ludwig
Boltzmann concerning the foundations of statistical mechanics. Indeed, the
very concept of ergodicity, a cornerstone in the study of dynamical systems, is
due to Boltzmann [7].

Yet, if one wants to obtain results relevant for statistical mechanics, it is nec-
essary to reckon with systems having a large number of degrees of freedom.
Up to now, apart from few cases, we are able to deal only with few degrees of
freedom (low-dimensional dynamics).1 In spite of this limitation the field of
dynamical systems has been able to produce some results relevant to statisti-
cal mechanics2 but their relevance is limited by the fact that they essentially
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1The only real exceptions are, to my knowledge, coupled-map lattices (see [34, 35] for the

latest results and references). It is true that one can establish exponential decay of correlations
for geodesic flows on manifolds of negative curvature in any dimension [40], but since nothing
is known concerning the dependence of the rate of decay on the dimension, this knowledge is
not really very useful in higher dimensions.

2A few examples are: the Hénon and Lorenz attractors [5, 51], the work on Lorentz gas started
by [9] (see [24] for latest results and references), linear response theory [46], entropy production
and fluctuations [27].
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deal with only few particles or degrees of freedom. Of course, one can con-
sider a system of many independent particles, whose behavior is completely
determined by the behavior of the one particle system, but this is clearly too
unreasonable an idealization to be a realistic model.

While treating really interacting systems is outside the possibilities of present-
day technology, it seems now possible to tackle the case of weakly interacting
systems. A success in such an endeavor would constitute a fundamental step in
the direction of a rigorous foundation of nonequilibrium statistical mechanics.
Yet, to this end several ingredients are necessary:

• a refined understanding of the statistical properties of individual systems
(decay of correlations);

• a detailed understanding of the behavior of such statistical properties un-
der small perturbations (linear response);

• a technique to investigate the motion of slowly varying quantities under
the influence of fast varying degree of freedom (averaging).3

Dolgopyat has made fundamental contributions to all the above problems
and is currently carrying out a monumental research program to harvest the
results of such preliminary successes.4

In the rest of this paper, I will discuss results and techniques that constitute
these contributions.

2. STATISTICAL PROPERTIES OF FLOWS

Geodesic flows on manifolds of negative curvature represent one of the most
interesting classes of dynamical systems. Their hyperbolicity was established
by Jacques Hadamard and Élie Cartan (see [36] for details). Ergodicity has been
first shown by Eberhard Hopf [29] for special cases and then, in the general
setting, by Dmitry Anosov [1]. The mixing is due to Yakov Sinai [2, 49].

Important related systems are the various types of billiards for which hyper-
bolicity, ergodicity and (possibly) mixing are understood, starting with the work
of Sinai [48] further developed an made precise in [9, 13].

What was missing at the closing of last century was a quantitative under-
standing of the rate of mixing (i.e., decay of correlations) for geodesic flows and
similar systems with hyperbolic behavior.5 Let us be more precise and a bit
more general.6

3This situation can either consist of variables moving slowly with respect to others, or vari-
ables oscillating rapidly and of which one wishes to study only the average behavior.

4See, for example, the truly impressive [11, 12] whose results are described in Nikolai Cher-
nov’s article in this same issue.

5With the notable exception of the geodesic flow on surfaces and some three-manifolds of
constant negative curvature where some results could be obtained using techniques of harmonic
analysis starting with [14].

6For clarity, I will not state the results in full generality, e.g., I will not discuss Axiom-A flows.
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Let (M ,φt ) be a smooth Anosov flow, that is, M is a Riemannian manifold,
φt is a one parameter group of C

r (M , M), r ≥ 5,7 diffeomorphisms such that

• the tangent bundle T M has three invariant continuous sections E s , E c ,
and E u ,

• E c is one-dimensional and tangent to the flow direction
• Tx M = E s(x)⊕E c (x)⊕E u(x) for each x ∈ M
• there exist C ,λ> 0 such that for all t ∈R−

– if v ∈ E s , then ‖dφt v‖ ≥Ce−λt‖v‖
– if v ∈ E c , then ‖dφt v‖ ≥C‖v‖

• if t ∈R+ and v ∈ E u , then ‖dφt v‖ ≥Ceλt‖v‖
• the flow is topologically transitive.

Then, denoting by m the Riemannian volume, it is known that there exists a
unique measure µ such that for every g ∈C

0(M ,R) and m-almost every x ∈ M ,

(2.1) lim
T→∞

1

T

∫T

0
g ◦φt (x)d t =

∫

M
g (z)µ(d z) =µ(g ).

Note that if we consider {g ◦φt } as random variables (the randomness being in
the initial conditions, distributed according to m), then (2.1) is just the Law of
Large Numbers. A measure with the above property is called a physical mea-
sure and, in the present case, coincides with the celebrated SRB (Sinai–Ruelle–
Bowen) measure [8].8 Of course, in the case of geodesic flows µ = m and (2.1)
corresponds to the aforementioned ergodicity.

The mixing property states that for all f , g ∈C
0(M ,R), the following holds:

lim
t→∞

m( f · g ◦φt ) =µ( f )m(g ).

The long-standing question mentioned above concerns the speed of conver-
gence to such a limit.9 For more than thirty years no progress whatsoever oc-
curred on this issue until Nikolai Chernov restarted the field by obtaining some
partial results [10]. Shortly after, Dolgopyat entered the field with a series of
papers that have changed it forever. Let me explain, from my peculiar point of
view, the obstacle removed by Dolgopyat’s work.

Following a well-established path, let us consider the evolution of the prob-
ability measures

Ltµ( f ) =µ( f ◦φt ).

7The smoothness requirement is not optimal. It is used in Dolgopyat’s work to simplify cer-
tain arguments.

8The SRB measure is a measure whose conditional on unstable manifolds is absolutely con-
tinuous with respect to Lebesgue. It is a special case of the so-called u-measures discussed in
Section 3.1 of Yakov Pesin’s article in this same issue.

9Actually, to speak meaningfully of speed of convergence it is necessary to restrict the class
of functions under consideration. For example f , g ∈C

r (M ,R), r > 0, will do.
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For each fixed t ∈ R+, Lt is called the transfer operator associated to the map
φt .10 For many reasonable topologies, Lt is a strongly continuous semigroup.11

Hence, it has a generator Z , and its resolvent satisfies

R(z) := (z1−Z )−1
=

∫∞

0
e−zt

Lt d t(2.2)

Lt = lim
L→∞

∫L

−L
eat+i bt R(a + i b)db,(2.3)

at least for ℜ(z) = a large enough [15]. Clearly the SRB measure of the flow
µ satisfies Ltµ = µ. The main difference between the transfer operator of a
flow and the transfer operator of a map is obvious: in the case of an Anosov
map, the dynamics is acting nontrivially in all directions (either expanding or
contracting, one being the dual behavior of the other) but in the case of flows
there is a direction (the flow direction) in which the dynamics acts trivially. It
is then totally unclear which mechanism could produce mixing in the flow di-
rection. The advantage of studying the operators R(z) is that they contain an
integration along the flow direction, hence the action in the “bad” direction is
compactified, i.e., each function gets smoothed out in the flow direction by the
application of R(z). Thus such operators are morally similar to the transfer op-
erator of an Anosov map and indeed it is easy to check that they can be studied
by the same techniques and enjoy similar properties.

In particular, for all z ∈C and ℜ(z) ≥ 0, there exists σz > 0 such that if ϕ,ψ ∈

C
r (M ,R), m(ψ) = 1, dνψ :=ψdm (where m is Lebesgue measure), then

(2.4)
R(z)νψ(ϕ) = z−1µ(ϕ)+ R̂(z)νψ(ϕ),

∣∣R̂(z)nνψ(ϕ)
∣∣≤Cz,ϕ,ψ(ℜ(z)+σz )−n .

Thus, R̂(z)νψ(ϕ) is analytic in a neighborhood of zero, as a function of z. More
precisely, for each M > 0 there is ωM > 0 such that R̂(z)νψ(ϕ) is analytic in{

z ∈C : ℜ(z) ≥ 0
}
∪

{
z ∈C : ℜ(z) ≥−ωM and |ℑ(z)| ≤ M

}
.12

For L > M ≥ 0, define a path γL,M ∈C
0([−L−a −ωM ,L+a +ωM ],C) by

γL,M (s) :=





a + i (s −a −ωM ), when L+a +ωM ≥ s ≥ M +a +ωM ,

−M −ωM + s + i M when M +a +ωM ≥ s ≥ M ,

−ωM + i s when |s| ≤ M ,

−M −ωM − s − i M when −M ≥ s ≥−M −a −ωM ,

a + i (s +a +ωM ) when −M −a −ωM ≥ s ≥−L−a −ωM .

10Historically, the name transfer operator is used for the operator that evolves the densities,

i.e., let µ≪ m,
dµ
dm = h ∈ C

r (M ,R), r ≥ 0, then one can define the operators L̃t : C
r → C

r by

d(Ltµ) = (L̃t h)dm. Given the recent developments of the field it seems more adequate to use
the name transfer operator for any operator that evolves density, measures, or more generally,
currents since they all bear similar properties.

11For example, if one considers it as acting on measures with C r densities with the C
r topol-

ogy (for densities).
12Note that the domain of analyticity does not depend on the choice of ψ and φ.
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Note that the path lies in analyticity domain of R̂(z). Thus, by (2.3),

Ltνψ(ϕ) =µ(ϕ)+ lim
L→∞

∫L

−L
e(a+i b)t R̂(a + i b)νψ(ϕ)db

=µ(ϕ)+ lim
L→∞

∫

γL,M

ezt R̂(z)νψ(ϕ)d z

=µ(ϕ)+ lim
L→∞

∫

γL,M

ezt

zr
R̂(z)Z rνψ(ϕ)d z,

where we have used the formula R(z) =
∑r

k=0 z−k−1Z k +R(z)Z r , Z being the
generator of the flow, and the above analyticity properties. Accordingly,

Ltνψ(ϕ) =µ(ϕ)+e−ωM t lim
L→∞

∫M

−M

e i bt

−ωM + i b
R̂(−ωM + i b)Z rνψ(ϕ)db

+ lim
L→∞

∫

{M≤|b|≤L}

eat+i bt

(a + i b)r
R̂(a + i b)Z rνψ(ϕ)db

−

∫a

−ωM

e i M t

(x + i M)r
R̂(x + i M)Z rνψ(ϕ)d x

+

∫a

−ωM

e−i M t

(x − i M)r
R̂(x − i M)Z rνψ(ϕ)d x.

This implies13

(2.5)
∣∣Ltνψ(ϕ)−µ(ϕ)

∣∣≤CM ,ϕ,ψ,r (M−r+1
+e−ωM t ).

Up to now, we have just rephrased in more modern language results known
since the eighties [45]. Yet, in doing so we made clear the nature of the stum-
bling block: To make any progress one needs to have a quantitative estimate of
the dependence of CM ,ϕ,ψ,r and ωM on M.

The strongest possible result would be that there exist α,ω∗ > 0 such that
infM∈RωM ≥ω∗ and CM ,ϕ,ψ,r ≤Cϕ,ψ,r Mα. This, together with (2.5), immediately
implies exponential decay of correlations for the flow. We are finally exactly at
the core of the Dolgopyat work.

Dolgopyat’s inequality. There exist a, α, β> 0 such that, for each |b| large,

(2.6) R(a + i b)β ln|b|νψ(ϕ) =O (|b|−α|ϕ|s |ψ|u),

where |ϕ|s = |ϕ|∞+|∂sϕ|∞, ∂sϕ being the derivative in the strong stable direc-
tion, and the analogous definition holds for |ψ|u with the strong unstable re-
placing the strong stable. Although we are skipping over many technical details,
it is not surprising that such an inequality can be iterated (the point being that
the norms on the right-hand side behave well under iteration). Accordingly,
by the usual resolvent equalities and the Neumann series for the resolvent we
have, for 0 <ω< αa

β ,

|R(−ω+ i b)νψ(ϕ)| ≤Cϕ,ψ|b|
β ln(a+ω),

13The constant CM ,ϕ,ψ depends on the constants Cz,φ,ψ in (2.4).
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and the exponential decay of correlations follows.
The derivation of Dolgopyat’s inequality is based on a quantitative version

of the joint nonintegrability of the strong stable and unstable foliations. The
actual proof is rather technical, but it unveils a new (non local) mechanism
responsible for mixing. This discovery has been the basis of many new results
in recent years (e.g., see [3, 4] or the ongoing work of Tsujii that started with
[50], just to mention a few).

Let me give a rough idea of why (2.6) holds. First of all, note that by direct
computation,

R(z)nνψ(ϕ) =
1

(n −1)!

∫

R+

t n−1e−ztνψ(ϕ◦φt )d t .

It is easy to see that the contribution of the integral from zero to cn, for c small
enough, is negligible. Next, by the expanding and contracting properties of the
dynamics one can assume without loss of generality that ϕ is essentially con-
stant along the stable fibers and νψ essentially constant along strong unstable
leafs. In addition, one can disintegrate νψ along unstable manifolds, thus it
suffices to obtain estimates for

1

(n −1)!

∫∞

cn
t n−1e−zt

∫

W
ϕ◦φt ,

where W is a small local strong unstable manifold. By partitioning the time
integral in time intervals of fixed length, one is reduced to considering integrals
of the type ∫

Wc

e−ztϕ◦φl

where now Wc is a local central unstable manifold (of a fixed size) and l ≥ cn.
By changing variable, the above integral can be seen as an integral over φl Wc

which is a large manifold in the strong unstable direction. Let us partition such
a large manifold into manifolds of fixed size φl Wc =

⋃
i Wi . Hence,

(2.7)
∫

Wc

e−ztϕ◦φl =
∑

i

∫

Wi

e−ztϕJi ,

where the Ji are determined by the Jacobian of the change of variables and
some partition of unity is used to smoothly split the integral.

By the mixing property, the Wi fill all of M . Thus, given any ball U of size
comparable to the size of the manifold, it will intersect many Wi . The basic
idea is to group the terms of the sum (2.7) according to some covering of M
and show that the sum restricted to each single group is small. That is, given
U consider the family WU of all the Wi that intersect U and let us consider a
center unstable manifold WU going through the “center” of U . We can then
use the strong stable holonomy Ψi to write all the integrals over such Wi as
integrals over WU . More precisely, let (u, t ) the coordinate along the flow and
along the strong unstable direction on Wi and (w, s) the corresponding ones on
WU , then we want to perform the change of variables (u, t ) =Ψi (w, s). Under
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the hypothesis that the holonomies are C
1, we have t ∼ s+ai ·w .14 The fact that

ai 6= 0 is exactly the non integrability assumption of the foliation: if we start
from a point in WU , we go to Wi along the strong stable (holonomy), then move
along the strong unstable direction in Wi , then along the strong stable back to
WU and we try to go back to the original point along the strong unstable in WU ,
we fail: we find ourself displaced in the time direction. Note that, in the case
of contact flows, hence of geodesic flows, an explicit formula for the ai can be
obtained [31]. We can then write

∑

Wi∈WU

∫

Wi

e−ztϕJi =
∑

Wi∈WU

∫

WU

e−z(s+ai w)ϕ J̃i +O (|∂sϕ|∞)

where J̃i is a C
1 function taking into account all the Jacobians. By the Schwartz

inequality, it follows that

(2.8)
∑

Wi∈WU

∫

Wi

e−ztϕJi = |ϕ|∞

√√√√
∑

Wi ,W j∈WU

∫

WU

e−z(ai−a j )w J̃ j J̃i +O (|∂sϕ|∞).

It is then clear that the integrals under the square root are all of order | J̃ j J̃i |C 1 ×

|z|−1|ai −a j |
−1. At this point, it is just a matter to estimate how close two man-

ifolds can typically be. This will allow to obtain the desired result. I do not
elaborate this last part of the argument as it does not contain new ideas. The
turning point is equation (2.8), where the failure of joint integrability (embod-
ied in the fact that a j −ai 6= 0) implies that the integrals are much smaller than
previously estimated.

REMARK 2.1. The estimates (2.4) (which were the only ones available before
Dolgopyat) were totally inadequate since, not taking advantage of the presence
of rapidly oscillating functions inside the integrals, they did not provide the
factor |z|−1 which shows that the integral is smaller for larger imaginary part of
z.

By the above argument, and thanks to several highly nontrivial refinements,
Dolgopyat has been able to prove:

• Exponential decay of correlations for mixing Anosov flows with C
1 folia-

tions [16];
• Rapid mixing for C

∞ Axiom A flows with two periodic orbits having peri-
ods with a Diophantine ratio [17];

• Generic exponential mixing for suspension over shifts [18];
• Decay of correlation for group extensions (a quantitative version of Brin

theory) [19].

3. A NEW APPROACH: STANDARD PAIRS

The results described in the previous section are technically amazing but the
proofs are still in the path of the traditional approach to the study of statistical

14Where ai is proportional to the distance between WU and Wi .
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properties of dynamical systems. Indeed, even though I totally underplayed
this aspect, Dolgopyat’s argument uses Markov Poincaré sections, and the con-
sequent reduction of the system to a symbolic one.15 Hence, Dolgopyat does
not deal directly with the operators described in the previous section but rather
with their counterpart for the associated symbolic system. This makes Dolgo-
pyat’s original strategy less transparent and immediate, but the substance of
the argument is exactly as described above.

The limitations of the Markov partition approach have been felt for long time
in the Russian School and have given rise to several alternative approaches to
study the ergodic properties of dynamical systems (see e.g., [30] and the refer-
ences therein). Yet, till the mid nineties no general alternative was available to
obtain quantitative statistical results (such as estimates on the decay of correla-
tions).16

In the 1990’s many people working on different aspects of dynamical systems
deeply felt the need to overcome the traditional approach to studying quantita-
tive statistical properties and to develop a strategy independent of Markov par-
titions. Due to such a feeling a collective effort took place from the mid nineties
onward to devise alternative approaches to the study of the statistical proper-
ties of dynamical systems. As a byproduct, today there exist several alternative
approaches that can be applied to a variety of systems. One of the most power-
ful and arguably the most flexible is due to Dolgopyat: standard pairs. Indeed,
I am convinced that we have not seen yet the full extent of applicability of this
approach.17

The idea of standard pairs first appeared in [20] where Dolgopyat puts for-
ward a unified approach for the study of limit laws in dynamical systems with
some hyperbolicity. That work was also the starting point of Dolgopyat’s later
study of systems with slow-fast degrees of freedom that I will mention later on.
The standard-pairs strategy was then fully developed in [21] in which it was
used to prove the linear response formula for partially hyperbolic systems. The
new element being a new version of coupling18 that is particularly flexible and
adapted to the study of systems with some hyperbolicity.

Let me describe briefly the idea in a simple setting. Given a dynamical sys-
tem (M , f ) with a strong unstable foliation (of dimension du), one can consider
a class W of smooth manifolds “close” to the unstable foliation. For example,

15The presentation in the previous section is phrased in a language akin to [40] although the
argument presented are strictly Dolgopyat’s.

16With the notable exception of the case of one-dimensional expanding maps, see [25, 33,
37].

17Some other relevant approaches are (I quote papers that have started the approach, the en-
suing work is considerable and there is not point in mentioning it here): hyperbolic metrics [39],
Young towers [52], random perturbations [41], renewal theory [47], anisotropic Banach spaces
[6].

18Coupling has been used for some time in abstract ergodic theory under the name of join-
ing, it was introduced by Hillel Furstenberg [26] (see [28] for an account of recent developments).
Its use in the study of quantitative decay of correlations has been pioneered by Lai-Sang Young
[53] inspired by its use in the field of interacting particle systems [38].
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one can consider du-dimensional manifolds with uniformly bounded curva-
ture and inner and outer size. In addition, one requires the tangent spaces to
be uniformly close to the unstable direction. The key property of such a set be-
ing that for each W ∈W and n ∈N there exists a set {Wi } ⊂W that is a covering
of f nW with a uniformly bounded number of overlaps. The standard pairs are
then the elements of the set

Ωα,D =

{
(W,ϕ) : W ∈W ,

∫

W
ϕ= 1, ‖lnϕ‖C α(W,R) ≤ D

}
.

For each ℓ= (W,ϕ) and A ∈C
0(M ,R), we can write

Eℓ(A) =
∫

W
Aϕ.

Then Ωα,D can be naturally viewed as a subset of the probability measures on
M . Also, we require for standard pairs an extension of the covering property
imposed on W . Namely, for each ℓ ∈Ωα,D and n ∈N there exist {ℓi } ⊂Ωα,D and
αi ≥ 0,

∑
i αi = 1 such that, for each A ∈C

0(M ,R),

(3.1) Eℓ(A ◦ f n) =
∑

i

αiEℓi
(A).

Essentially, the above means that the dynamics preserves the regularity of the
densities of the measures. This is a natural requirement since the dynamics,
restricted to directions close to the strong unstable manifold, is expanding and
hence tends to regularize the densities as it happens in expanding maps.

Let Ωα,D be the weak closure of the convex hull of Ωα,D , then (3.1) implies
f∗Ωα,D ⊂Ωα,D . Thus, any invariant measure obtained by a Krylov–Bogoliubov
method starting with a measure in Ωα,D must belong to Ωα,D . This can be used
to prove the existence of the SRB measure for the system (and, more generally,
u-measures). Indeed, the above is similar to the approach used in [43]. Yet,
here one does not use directly the unstable manifolds (in the same spirit of
[39]). As a consequence, the construction is much more flexible. Although this
may seem a small change in point of view, the consequences are far-reaching.
In particular, this approach is well suited to study the statistical properties of
the above invariant measures and of their perturbations.

To this effect a further hypothesis is needed: assume that for each ε> 0 there
exists nε ∈ N such that, for each W ∈ W , f nεW is ε-close to every point. For
example, this is the case if the system is topologically mixing.

Accordingly, given any two standard pairs ℓ,ℓ′, for n0 large, we will have
many (i.e., a fixed percentage) of the manifolds Wi ,W ′

j , which constitute the

decomposition of f nW, f nW ′, close together. The basic idea is then to match
(couple) the mass in nearby leaves along the weak stable foliation. To see how
to proceed, let us consider two manifolds Wi and W ′

j that are ε-close. By this
we mean that the weak-stable holonomy Ψ between the two manifolds is well
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220 CARLANGELO LIVERANI

defined on a fixed percentage of their volume and dist(Ψ(x), x) ≤ ε.19 Next,
since (Wi ,ϕi ), (W ′

j ,ϕ′
j ) ∈Ωα,D , it follows that ϕi ,ϕ′

j are larger, in absolute value,

than e−Dδ, δ being the uniform size of the elements of Ωα,D . Fix a ∈ (0,e−Dδ)
small enough and let φ ∈C

∞(W,R) be supported on the domain of Ψ, then by
a change of variables,

∫

Wi

Aφ=

∫

W ′
j

A ◦Ψ
−1φ◦Ψ

−1 JΨ,

where JΨ is the Jacobian associated to the change of variables. Starting with
Anosov’s work [1] it is well known that in many cases the holonomy and its Ja-
cobian are Hölder [32], thus (Wi , za(ϕi −aφ)),

(
W ′

j , za(ϕ j −aφ◦Ψ−1 JΨ)
)
∈Dα,D

provided that a is chosen small enough, za being the normalization factor. On
the other hand, (Wi , aφ) and (W ′

j , aφ◦Ψ−1 JΨ) represent measures that may not
belong to Dα,D but are bound to have the same evolution under the dynamics.
Indeed, for each A ∈C

1(M ,R) and n ∈N,

∣∣∣∣
∫

Wi

A ◦ f nφ−

∫

W ′
j

A ◦ f n
·φ◦Ψ

−1 JΨ

∣∣∣∣=
∣∣∣∣
∫

Wi

[
A ◦ f n

− A ◦ f n
◦Ψ

]
φ

∣∣∣∣≤Cε‖A‖C 1σn ,

where σ≤ 1 and is strictly smaller than 1 if the holonomy goes along the strong
stable (e.g., in the case of Anosov diffeomorphisms).

Since a fixed proportion, say ρ, of the mass can be matched at any n0 interval
of time,

∣∣Eℓ
(

A ◦ f 2kn0
)
−Eℓ′

(
A ◦ f 2kn0

)∣∣≤ εσ−kn0 |A|C 1 + (1−ρ)k
|A|C 0 .

In the easiest possible case (σ < 1) this immediately implies that all the mea-
sures associated to standard pairs converge20 exponentially fast to the same
limiting object, call it µ, which is clearly an invariant measure.

The above approach, presented here in a nutshell, has been remarkably suc-
cessful in the study of partially hyperbolic systems (see Yakov Pesin’s compan-
ion paper) and systems with discontinuities (as nicely illustrated in Chernov’s
contribution to this issue).

19Remember that given two manifolds W,W ′ the weak-stable holonomy Ψ : W → W ′ is
defined as follows: given x ∈ W and calling W cs (x) its local weak-stable manifold, {Ψ(x)} =
W ′∩W cs (x).

20By a simple approximation argument one can prove that the convergence takes place also
for A ∈C

0(M ,R), yet if one wants to have quantitative results it is necessary to use smoother test
functions. In other words, we observe exponential decay only if we consider the convergence
with respect to the topology of the distributions of order 1 (or α > 0), that is we have to regard
the measures as elements of C

1(M ,R)′.
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4. LIMIT THEOREMS: A UNIFIED POINT OF VIEW

Another important contribution by Dolgopyat is the idea to combine the
standard-pair technique and the martingale problem of Daniel Stroock and Sri-
nivasa Varadhan [42] to develop a general and powerful approach to study av-
eraging in Dynamical Systems [22]. Some results that can be obtained by such
an approach are detailed and discussed in Chernov’s paper in this same issue.

To give a quick idea of the method let us use it to prove something quite
obvious: the weak law of large numbers. Let us consider the measure µ con-
structed in the previous section. One would like to prove that it is a physical
measure, i.e., for all A ∈ C

0(M ,R) and Lebesgue almost all points x ∈ M we
have

lim
n→∞

1

n

n−1∑

k=0
A

(
f k (x)

)
=µ(A).

This is the strong law of large numbers, here we aim at proving the weaker
statement: for all B ∈C

0(R,R)

(4.1) lim
n→∞

∫

M
B

(
1

n

n−1∑

k=0
A ◦ f k (x)

)
m(d x) = B(µ(A)).

Clearly, it suffices to prove the statement for smooth A,B . Let us define

SN ,t :=
1

N

⌊t N⌋−1∑

k=0
A ◦ f k

+
1

N
A ◦ f ⌊t N⌋

(
t N −⌊t N⌋

)
,

where ⌊s⌋ := maxZ∩ (−∞, s] for s ∈ R. Then SN ,·(x) ∈ C
0(R+,R) for each x ∈

M . Hence SN ,t can be thought as a family of random variables in C
0(R+,R)

with law defined by the finite-dimensional distributions determined, for each
function B ∈C

0(Rk ,R), by

E
[
B

(
SN1,t1 , . . . ,SNk ,tk

)]
=

∫

M
B

(
SN1,t1 (x), . . . ,SNk ,tk (x)

)
m(d x).

Moreover, since

SN ,t+h(x)−SN ,t (x) =O (h)

for each h ≪ 1, it is immediate that such a family of processes is tight. Hence,
there exist accumulation points for N →∞.

The goal is then to study such accumulation points and prove that they all
coincide, thereby proving that the sequence of random variables converges. To
this end, let B ∈C

2(R2,R) and h ≪ 1. Then,

B(SN ,t+h(x), t +h)−B(SN ,t (x), t )

= ∂SB(SN ,t (x), t )

[
1

N

⌊(t+h)N⌋−1∑

k=⌊(t+h2)N )⌋

A ◦ f k
]
+∂t B(SN ,t (x), t )h +O (h2).
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By the mixing properties of the previous section, we have21

E
[
B(SN ,t+h(x), t +h)−B(SN ,t (x), t )

]
= E

[
∂SB(SN ,t (x), t )µ(A)+∂t B(SN ,t (x), t )

]
h

+O (h2)+O
(
e−αh2N )

,

for some α> 0. Finally, we chose B(z, t ) = B(z +µ(A)(s − t )) in order to kill the
term proportional to h.22 If Ŝt is any accumulation point of SN ,t , then

E
[
B

(
Ŝt+h +µ(A)(s − t −h)

)
−B

(
Ŝt +µ(A)(s − t )

)]
=O (h2).

Summing the above for t = kh, where k = 1, . . . ,h−1s and taking h → 0, yields

E
(
B(Ŝs)

)
= E(B(µ(A)s)) = B(µ(A)s),

which, for s = 1, gives (4.1) (the Weak Law of Large Numbers) after a trivial
density argument.

The above approach is extremely flexible. For example the reader can easily
apply it to obtain the Central Limit Theorem, the only change is that now one
needs to expand to third order since the second order in the Taylor expansion
gives the main contributions (this is just Ito’s formula).

Of course, to apply such a strategy to a given system a lot of extra work may
be necessary. This is clearly remarked and illustrated in Chernov’s paper in this
same issue which describes applications to much more general (even nonsta-
tionary) and physically relevant situations. The above strategy also plays a role
in the study of the Lyapunov exponents for some of the systems discussed in
Pesin’s contribution.

5. CONCLUSIONS

Thanks to the above results and ideas Dolgopyat has set the stage for a mon-
umental research program already well underway. Some relevant topics that
can be addressed using these techniques are

• study of an heavy particle interacting with light ones,
• limit laws for systems without an invariant probability measure (for ex-

ample, Lorentz gas),

21The point here is that SN ,t depends from the trajectory till time t while in the sum we have
created a gap of N h2. Hence we can substitute the average of the product by the product of
the averages if we have a control on multiple correlations. But it is possible to show that the
technique described in the previous section allows to obtain results on multiple correlations as
well. Indeed, one can consider standard pairs at time N t obtained by very small manifolds at
time zero. Clearly the past history on such standard pairs will be the same for all points so one
has a natural way to condition on the past and the same arguments as in the previous chapters
imply a decay of correlations due to the gap between t N and N (t +h2).

22This is simply the solution of the equation ∂t B = −µ(A)∂z B with final condition B(z, s) =
B(z). Note that such an equation has a C

2 solution, provided that B ∈C
2. Of course, if we apply

this method to more general situations we will obtain much more complex (non linear) equa-
tions and the existence, regularity and uniqueness of the solutions can pose a real challenge. Yet,
only quite weak information is needed. For example, for diffusion equations the uniqueness of
the solution of the martingale problem suffices [42].
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• long time behavior of nonstationary systems (e.g., particles under the ac-
tion of an external field),

• systems with weak interactions.

As already mentioned several times, Chernov’s paper discusses some of the re-
sults already achieved along these lines. Here I would like only to conclude
going back to my initial remarks.

I claimed that to establish once and for all the relevance of dynamical sys-
tems for nonequilibrium statistical mechanics it is necessary to treat systems
of many interacting components (e.g., particles). A first step could be to treat
systems with very weakly interacting components. Also, I mentioned some out-
standing problems that must be overcome to proceed in such a direction. The
techniques and the ideas presented in the previous sections address exactly
such obstacles and provide powerful tools to remove them. I believe that Dol-
gopyat work has cleared the road of many of such difficulties and the path is
now open to try to treat nontrivial systems relevant for nonequilibrium statis-
tical mechanics. Dolgopyat is already marching along such a path, I am sure
that many will follow.
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