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PROPOSITION 2.6.10 (Contraction Principle). Let X be a complete metric
space. Under the action of iterates of a contraction f : X → X all points converge
with exponential speed to the unique fixed point of f .

PROOF. As in euclidean space iterating d(f(x), f(y)) ≤ λd(x, y) gives

d(fn(x), fn(y)) → 0 as n → ∞,

so the asymptotic behavior of all points is the same. On the other hand (2.2.6)

shows that for any x ∈ X the sequence (fn(x))n∈N is a Cauchy sequence. Thus

for any x ∈ X the limit of fn(x) as n → ∞ exists if the space is complete, and by
(2.2.5) this limit is the same for all x. (2.2.7) shows that it is a fixed point x0 of f .
(Note that uniqueness of the fixed point does not depend on completeness.) !

As in the euclidean case we see that d(fn(x), x0) ≤
λn

1 − λ
d(f(x), x), that

is, all orbits converge to x0 exponentially fast. If x0 is already known or an esti-

mate in terms of initial data is not required then one can use (2.2.5) to see that
d(fn(x), x0) ≤ λnd(x, x0) to get the same conclusion in a more straightforward
way.

It is at times useful that the Contraction Principle can be applied under weaker
hypotheses than the one we used. Indeed, looking at the proof one can see that it

would suffice to assume the following property:

DEFINITION 2.6.11. A map f of a metric space is said to be eventually con-
tracting if there are constants C > 0, λ ∈ (0, 1) such that

(2.6.1) d(fn(x), fn(y)) ≤ Cλnd(x, y)

for all n ∈ N.

It is, however, not only possible to reproduce the proof of the Contraction Prin-

ciple under this weakened hypothesis, but we can find a metric for which such
a map becomes a contraction. Indeed, this metric is uniformly equivalent to the

original one.
The change of metric that turns an eventually contracting map into a contrac-

tion has an analog for maps that are not necessarily contracting, so we prove a

useful slightly more general statement.

PROPOSITION 2.6.12. If f : X → X is a map of a metric space and there
are C, λ > 0 such that d(fn(x), fn(y)) ≤ Cλnd(x, y) for all x, y ∈ X, n ∈ N0

then for every µ > λ there exists a metric dµ uniformly equivalent to d such that
dµ(f(x), f(y)) ≤ µd(x, y) for all x, y ∈ X .

PROOF. Take n ∈ N such that C(λ/µ)n < 1 and set

dµ(x, y) :=
n−1∑

i=0

d(f i(x), f i(y))/µi.

This is called an adapted or Lyapunov metric for f . The two metrics are uniformly
equivalent:

d(x, y) ≤ dµ(x, y) ≤
n−1∑

i=0

C(λ/µ)id(x, y) ≤
C

1 − (λ/µ)
d(x, y),
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Note now that

dµ(f(x), f(y)) =
n∑

i=1

d(f i(x), f i(y))

µi−1
= µ(dµ(x, y) +

d(fn(x), fn(y))

µn
− d(x, y))

≤ µdµ(x, y) − (1 − C(λ/µ)n)d(x, y) ≤ µdµ(x, y).

!

As an immediate consequence we see that eventually contracting maps can

be made contracting by a change of metric because for λ < 1 as in Defini-
tion 2.6.11 we can take µ ∈ (λ, 1) in Proposition 2.6.12:

COROLLARY 2.6.13. Let X be a complete metric space and f : X → X an
eventually contracting map (Definition 2.6.11). Then under the iterates of f all
points converge to the unique fixed point of f with exponential speed.

Let us point out one of the major strengths of the notion of an eventually con-

tracting map. As we just found, whether or not a map is a contraction can de-
pend on the metric. This is not the case for eventually contracting maps: If a

map f satisfies (2.6.1) and d′ is a metric uniformly equivalent to d, specifically
md′(x, y) ≤ d(x, y) ≤ Md′(x, y), then

d′(fn(x), fn(y)) ≤ Md(fn(x), fn(y)) ≤ MCλnd(x, y) ≤
MC

m
λnd′(x, y).

In other words, only the constant C depends on the metric, not the existence of

such a constant.
Even without considering smooth maps, as we did in Proposition 2.2.20, the

fixed point of a contraction depends continuously on the contraction. This is useful

in applications and therefore it is worthwhile to develop this idea further. The nat-
ural way to express continuous dependence is to consider families of contractions

parametrized by a member of another metric space.

PROPOSITION 2.6.14. If X, Y are metric spaces, X is complete, f : X×Y → X
a continuous map such that fy :=f(·, y) is λ-contraction for all y ∈ Y , then the fixed
point g(y) of fy depends continuously on y.

PROOF. Apply

d(x, g(y)) ≤
∞∑

i=0

d(f i
y(x), f i+1

y (x)) ≤
1

1 − λ
d(x, fy(x))

to x = g(y′) = f(g(y′), y′) to get

d(g(y), g(y′)) ≤
1

1 − λ
d(f(g(y′), y′), f(g(y′), y)).

!

Exercises

EXERCISE 2.6.1. Show that an open r-ball is an open set.

EXERCISE 2.6.2. Show that any union (not necessarily finite or countable) of open

sets is open, and that any intersection of closed sets is closed.
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EXERCISE 2.6.3. Consider the set Z of integers as a metric space with the euclidean

metric d(n, m) = |n−m|. Describe the balls {n ∈ Z d(n, 0) < 1} and {n ∈ Z d(n, 0) ≤
1}. Which of these is open and which is closed?

EXERCISE 2.6.4. Describe all open sets of Z (with the euclidean metric d(n, m) =
|n − m|).

EXERCISE 2.6.5. Show that the interior of any set is open and that the closure of any

set is closed.

EXERCISE 2.6.6. Show that the boundary of a subset of a metric space is a closed set

and that the boundary of an open set is nowhere dense. Conclude that the boundary of a

boundary is nowhere dense.

EXERCISE 2.6.7. Decide, with proof, which of the following are complete metric

spaces (with the usual metric): R, Q, Z, [0, 1].

EXERCISE 2.6.8. Prove that a closed subset of a complete metric space is complete.

Problems for further study

EXERCISE 2.6.9. Suppose that X is a compact metric space and f : X → X is such

that d(f(x), f(y)) < d(x, y) for any x '= y
Prove that f has a unique fixed point x0 ∈ I and limn→∞ fn(x) = x0 for any x ∈ I .

EXERCISE 2.6.10. Suppose that X is a complete metric space such that the distance

function is bounded by one from above and f : X → X is such that d(f(x), f(y)) ≤
d(x, y) − 1/2(d(f(x), f(y)))2.

Prove that f has a unique fixed point x0 ∈ I and limn→∞ fn(x) = x0 for any x ∈ I .

7. Fractals

a. The Cantor set. We next consider a space that is often seen as an oddity in an

analysis course, the Cantor set. We will see, however, that sets like this arise naturally and

frequently in dynamics and constitute one of the most important spaces we encounter.

1. Geometric definition. The ternary Cantor set or middle-third Cantor set is de-

scribed as follows. Consider the unit interval C0 = [0, 1] and remove from it the open

middle third (1/3, 2/3) to retain two intervals of length 1/3 whose union we denote by
C1. Apply the same prescription to these intervals, that is, remove their middle thirds. The

remaining set C2 consists of four intervals of length 1/9 from each of which we again

remove the middle third. Continuing inductively we obtain nested sets Cn consisting of

2n intervals of length 3−n (for a total length of (2/3)n → 0). The intersection C of all

these sets is nonempty (because they are closed and bounded and by Proposition A.1.23)

and closed and bounded because all Cn are. It is called the middle-third or ternary Cantor

set.

2. Analytic definition. It is useful to describe this construction analytically as follows.

LEMMA 2.7.1. C is the collection of numbers in [0, 1] that can be written in ternary
expansion (that is, written with respect to base 3 as opposed to base 10) without using 1 as

a digit.


