MASS-07; GEOMETRY

FALL 2007

A.Katok

HOMEWORK # 10

November 9, 2007

Due on Friday, November 16

CONTROL PROBLEMS: You should do these problems independently without consulting other students.

39. Classify orientation reversing isometries of the hyperbolic plane. Use linear algebra first and then give a geometric interpretation following as closely as possible similarity with the isometries of Euclidean plane.

40. Calculate the hyperbolic radius and the hyperbolic center of the circle in H^2 :

$$||z - 2i - 1||^2 = 9/4.$$

REGULAR PROBLEMS:

41. Assume you know that the sum of the angles of any geodesic triangle in the hyperbolic plane is less that π . Prove that any two geodesic triangles with pairwise equal angles are isometric.

42. Prove that any orientation preserving isometry of H^2 is the product of two reflections and any orientation reversing isometry is the product of three reflections.

43. Prove that the group of orientation preserving isometries of H^2 in the unit disc model is the group of all fractional linear transformations of the form

$$z \to \frac{az + \bar{c}}{cz + \bar{a}}$$

where $a, c \in \mathbb{C}$, $a\bar{a} - c\bar{c} = 1$.

OPTIONAL PROBLEM (deadline November 30):

O6. Recall that a subgroup H of a group G is *normal* if for any $h \in H$ and $g \in G$ the conjugate $g^{-1}hg \in H$. Recall that translations form a normal subgroup in the group of isometries of Euclidean plane.

Prove that the group of isometries of the hyperbolic plane has no non-trivial normal subgroups, i.e. the only normal subgroups are the whole group and identity.

Hint: Use classification of conjugacy classes in $SL(2, \mathbb{R})$.