MASS-07; GEOMETRY

FALL 2007

A.Katok
HOMEWORK \# 11

November 19, 2007
Due on Friday, November 30

CONTROL PROBLEMS: You should do these problems independently without consulting other students.
44. On a surface with Riemannian metric express curvature at a point through the error term in the area of a disc centered at this point as the radius goes to zero.
45. Show that the curvature at a point p of a surface with Riemannian metric is equal to the limit of the ratio of the difference between the sum of the angles of a small geodesic triangle Δ and π and the area of the triangle Δ when all vertices of Δ converge to p.

Generalize this statement to geodesic polygons.

REGULAR PROBLEMS:

46. Calculate the length of a circle in the hyperbolic plane and the area of a disc. Show that curvature is equal to -1 . Show that both the length and the area grow exponentially as functions of radius as radius goes to infinity.
47. Consider the one-sheet hyperboloid \mathcal{H} in \mathbb{R}^{3} given by the equation $x^{2}+y^{2}-z^{2}=1$. Prove that through every point of \mathcal{H} pass two straight lines which lies in \mathcal{H}. Find equations of those lines using coordinate z as parameter and prove that the lines are geodesics in \mathcal{H}.
48. Prove that \mathcal{H} has negative curvature at every point.

Hint: Use definition of curvature from Problem 45 and geodesic quadrilaterals formed by segments of geodesics from Problem 47.
49. Assume the following statement: Curvature of any convex surface in \mathbb{R}^{3} is non-negative at every point. Prove that no compact surface in \mathbb{R}^{3} has negative curvature.
50. Prove that the pseudosphere, the surface of revolution of the curve in the $x z$-plane given parametrically

$$
x=\frac{1}{\cosh t}, z=t-\frac{\sinh t}{\cosh t}, \quad t \geq 0
$$

around the z axis, has constant negative curvature -1 .
Hint: Introduce coordinates on the pseudosphere in which the Riemannian metric induced from \mathbb{R}^{3} has the same form as in the upper half-plane model of the hyperbolic plane.

