MASS-07; GEOMETRY

FALL 2007

A.Katok
 HOMEWORK \# 4

September 14, 2007
Due on Friday, September 21

CONTROL PROBLEMS: You should do these problems independently without consulting other students.
13. Consider the space obtained from the torus $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ by identifying every point x with $-x$. Prove that it is homeomorphic to the sphere.
14. Calculate Euler characteristic of the Klein bottle.

REGULAR PROBLEMS:

15. A regular polyhedron in \mathbb{R}^{3} is characterized by its Schläfly symbol (p, q) where p is the number of sides of a face and q is the number of edges at each vertex. Prove that there are only five possible Schläfly symbols corresponding to five known Platonic solids.
16. Find the minimal possible number of two-simplices for a triangulation of the projective plane.
17. Define the notion of triangulation for a surface with boundary, prove invariance of Euler characteristic and calculate Euler characteristic of the sphere with m holes.

OPTIONAL PROBLEM (deadline October 1)

O2. Prove that there are only five regular polyhedra up to a similarity transformation (isometry and homotety).

