
CHAPTER 9

Simple dynamics as a tool

In this chapter, the progression of the course from simple to complicated dynamics

comes full circle. The tools from Chapter 2 are now put to use systematically, culminating

in the proof of the stable manifold theorem, which is the fundamental result for the analysis

of those highly complex systems that appeared in Chapter 7.

1. Introduction

a. Applications of the Contraction Principle. The collection of simple dynamical

systems with complicated orbit structure presented in Chapter 7 and revisited in Section 8.3

is representative of hyperbolic dynamical systems. Much of the core theory of hyperbolic

dynamics consists of results that are obtained (more or less) directly from the Contraction

Principle, which first appeared as an example of a dynamical system with simple dynamics

in Chapter 2. Although we already used it in Section 2.5 as a tool that can tell us much

about other dynamical systems, its pervasive role in hyperbolic dynamics motivates a more

thorough presentation of its uses. Accordingly, the main theme of this chapter is to present

case studies of using the Contraction Principle, that is, of putting one important insight

about a specific class of simple dynamics to use in an auxiliary space to tell us about

analysis as well as (complicated) dynamical systems. Since the results we obtain are rather

important we take some time to develop them further, notably when it comes to the basic

theory of differential equations. In this chapter we maintain the same standard of proof as

in the course.

As in the preceding chapters this intrinsically interesting development has a utilitarian

undercurrent. The results obtained here are important for the study of dynamical systems.

In the case of existence and uniqueness of solutions of differential equations this is evident.

But all other results presented here also figure in our development, and are standard tools in

dynamics. This chapter does not present nearly all such applications, but some others are

presented elsewhere, such as the Anosov Closing Lemma (Theorem 10.2.2) which follows

from the Contraction Principle by way of the Hyperbolic Fixed Point Theorem 9.5.4. The

Stable Manifold Theorem 9.5.2 is the foremost example and is featured prominently here.

b. Overview. We begin by deriving two important results in analysis, the Inverse

and Implicit Function Theorems. The latter immediately tells us something new about the

Contraction Principle itself: The fixed point of a contraction depends smoothly on the con-

traction. A first and straightforward application of these results is persistence of transverse

fixed points in Section 9.3, where we show that a simple condition on the linear part of a

map at a fixed point can guarantee that the fixed point persists when the map is perturbed.

This is similar to the situation for contractions (Proposition 2.2.20) and very much in the

spirit of linearization (which is discussed in Section 2.1, the beginning of Chapter 3, and,
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250 9. SIMPLE DYNAMICS AS A TOOL

for example, Section 6.2b7). In these first applications the space on which the contraction

is defined is the same space in which the problem is posed. However, the applications of

the Contraction Principle to existence and uniqueness of solutions of differential equations

(Section 9.4) and in the theorem on stable manifolds (Section 9.5), like many other im-

portant applications in analysis, use the Contraction Principle by reducing the situation at

hand to a search for a fixed point in a space of functions, which has infinite dimension,

rather than in a euclidean space.

c. Creating a context for the Contraction Principle. While the common feature is

the application of the Contraction Principle in some auxiliary space, the degree of clev-

erness required to set this up varies in these examples. Picard iteration (Section 9.4) is a

straightforward application, even though the space in question is not as simple as in the

earlier applications. Of course, this is also the oldest example. The initial step in the proof

of the Inverse Function Theorem 9.2.2 requires more creativity, but is close to the New-

ton method. The proof of persistence of transverse fixed points (Proposition 9.3.1) has no

equally obvious motivation for the initial step, but it exhibits some features common to

other applications of the Contraction Principle in dynamics. The central point is the com-

bination of transversality and closeness (smallness of a perturbation), which is being used

to produce an invertible map by transversality whose inverse is composed with a strongly

contracting map arising from the perturbation. (The trick is to do this in such a way that

the desired object is a fixed point of the resulting contraction.)

Except for Picard iteration all applications of the Contraction Principle in this chap-

ter depend on linearization. This, too, is typical of applications in the theory of smooth

dynamical systems.

2. Implicit and Inverse Function Theorems in euclidean space

a. The Inverse Function Theorem. The inverse function theorem says that if a dif-

ferentiable map has invertible derivative at some point then the map is invertible near that

point. This result is related to linearization: If we assume a certain qualitative (“yes-no”)

fact about the linear part (invertibility) then it holds for the nonlinear map itself—at least

in a neighborhood. The version for the real line is familiar from calculus:

THEOREM 9.2.1. Suppose I ⊂ R is an open interval and f : I → R a differentiable

function. If a ∈ I is such that f ′(a) $= 0 and f ′ is continuous at a then f is invertible on a
neighborhoodU of a and (f−1)′(y) = 1/f ′(x), where y = f(x).

Usually one thinks of invertibility as the easy part and the derivative formula as the

hard one, because the basic calculus examples of invertible real-valued functions are given

by formulas where invertibility is rather apparent. However, the main content of this result

is to conclude invertibility from knowledge only of the linear part of a map at one point,

without any such extra information. The derivative formula is then an easy postlude. We

even get higher derivatives easily. This result is fairly easy in Rn as well, however, we first

give a proof for the simple case of a single variable.

PROOF. Given y, we want to solve the equation f(x) = y for x, which is the same as
to find a root of Fy(x) := y − f(x). To this end we first set up a suitable contracting map.
The space. The space on which the contraction acts is the real line.
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FIGURE 9.2.1. The Inverse Function Theorem

Defining the contraction. The Newton method Section 2.2h suggests to make an initial

guess x (where y is fixed for the moment) and improve the guess by repeatedly applying
the map

Fy(x) = x −
Fy(x)

F ′
y(x)

= x +
y − f(x)

f ′(x)
.

To verify that this is a contraction involves taking and estimating the second derivative of

f , but we don’t assume it exists. It is convenient to instead consider the map

ϕy(x) := x +
y − f(x)

f ′(a)

on I . Its fixed points are solutions of our problem because ϕy(x) = x if and only if

y
f(x)

a x ϕy(x)

FIGURE 9.2.2. ϕy

f(x) = y.
The contraction property. Now we show that ϕy is a contraction of some closed subset of

O. Then by the Contraction Principle it has a unique fixed point and hence there exists a
unique x such that f(x) = y.

To that end let A := f ′(a) and α = |A|/2. By continuity of f ′ at a there is an ε > 0
such thatW := (a − ε, a + ε) ⊂ I and |f ′(x) − A| < α for x in the closureW ofW .
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To see that ϕy is a contraction onW note that if x ∈ W then

|ϕ′
y(x)| = |1 −

f ′(x)

A
| = |

A − f ′(x)

A
| <

α

|A|
= 1/2.

Using Proposition 2.2.3 we get |ϕy(x) − ϕy(x′)| ≤ |x − x′|/2 for x, x′ ∈ W .

We need to show also that ϕy(W ) ⊂ W for y sufficiently close to b := f(a). Let
δ = Aε/2 and V = (b − δ, b + δ). Then for y ∈ V we have

|ϕy(a) − a| = |a +
y − f(a)

A
− a| = |

y − b

A
| < |

δ

a
| =

ε

2
,

so if x ∈ W then

|ϕy(x) − a| ≤ |ϕy(x) − ϕy(a)| + |ϕy(a) − a| <
x − a

2
+

ε

2
≤ ε

and hence ϕy(x) ∈ W .

Therefore Proposition 2.2.21 applied to ϕy : W → W for y ∈ V produces a unique

fixed point g(y) ∈ W , which depends continuously on y.
Next we prove that the inverse is differentiable. For y = f(x) ∈ V we want to show

that g′(y) exists and is the reciprocal of B := f ′(g(y)).
Let U := g(V ) = W ∩ f−1(V ) (the preimage under f ), so U is open. Take y + k =

f(x + h) ∈ V . Then

|h|
2

≥ |ϕy(x + h) − ϕy(x)| = |h +
f(x) − f(x + h)

A
| = |h −

k

A
| ≥ |h|− |

k

A
|

hence
|h|
2

≤ |
k

A
| <

|k|
α

and
1

|k|
<

2

α|h|
.

Since g(y + k)− g(y) − k/B = h− k/B = −(f(x + h) − f(x) − Bh)/B we therefore

get

|g(y + k) − g(y) − k/B|
|k|

<
2

|B|α
|f(x + h) − f(x) − Bh|

|h|
−−−−−−−−−→
|h|≤2|k|/α→0

0,

which proves g′(y) = 1/B = 1/f ′(g(y)).
Finally, suppose f ∈ Cr. We show inductively that g ∈ Cr. To that end assume

g ∈ Ck for some k < r (we start the induction with k = 0). Then f ′(g(y)) ∈ Ck and so

is its reciprocal g′. Thus, g ∈ Ck+1. !

Now we adapt this argument to Rn:

THEOREM 9.2.2 (Inverse function theorem). SupposeO ⊂ Rm is open, f : O → Rm

is differentiable and thatDf is invertible at a point a ∈ O and continuous at a. Then there
exist neighborhoods U ⊂ O of a and V of b := f(a) ∈ Rm such that f is a bijection from
U to V (that is, f is one-to-one on U and f(U) = V ). The inverse g : V → U of f is

differentiable with Dg(y) = (Df(g(y)))−1. Furthermore, if f is Cr (that is, all partial

derivatives of f up to order r exist and are continuous) on U , then so is its inverse.

PROOF. The proof is actually the same as before. We only need to replace various

numbers by linear maps, and some absolute values by norms.

The space. The contraction acts in Rm.
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The map. For any given y ∈ Rm consider the map

ϕy(x) := x + Df(a)−1(y − f(x))

onO. Notice that ϕy(x) = x if and only if f(x) = y, so we try to find a unique fixed point
for ϕy . We need a setW on which it is a contraction.

The contraction property. Let A := Df(a), α < ‖A−1‖−1/2, and, using continuity ofDf
at a, take ε > 0 such that ‖Df(x) − A‖ < α for x in the closure ofW := B(a, ε). To see
that ϕy is a contraction note that

‖Dϕy(x)‖ = ‖ Id−A−1Df(x)‖ = ‖A−1(A − Df(x))‖ < ‖A−1‖α =: λ < 1/2

for x ∈ W and apply Corollary 2.2.15 to get ‖ϕy(x)−ϕy(x′)‖ ≤ λ‖x−x′‖ for x, x′ ∈ W .

Therefore by Proposition 2.2.20 there is a neighborhoodV of b such thatϕy is a contraction

of W for all y ∈ V and has a unique fixed point g(y) ∈ W (which depends continuously

on y). U := g(V ) = W ∩ f−1(V ) is open.
The determinant ofDf(x) depends continuously onDf and hence is continuous at a

as a function of x. Thus, by taking V (and hence U ) smaller, if necessary, we may assume
detDf $= 0 on U and therefore thatDf(x) is invertible on U .

For y = f(x) ∈ V we want to show that Dg(y) exists and is the inverse of B :=
Df(g(y)). Take y + k = f(x + h) ∈ V . Then

(9.2.1)
‖h‖
2

≥ ‖ϕy(x + h) − ϕy(x)‖ = ‖h + A−1(f(x) − f(x + h))‖

= ‖h − A−1k‖ ≥ ‖h‖ − ‖A−1‖‖k‖,

so
‖k‖
α

> ‖A−1‖‖k‖ ≥
‖h‖
2

and
1

‖k‖
<

2

α‖h‖
.

Since g(y + k) − g(y) − B−1k = h − B−1k = −B−1(f(x + h) − f(x) − Bh) we get

‖g(y + k) − g(y) − B−1k‖
‖k‖

<
‖B−1‖
α/2

‖f(x + h) − f(x) − Bh‖
‖h‖

−−−−−−−−−−→
‖h‖≤2‖k‖/α→0

0,

which provesDg(y) = B−1.

Finally, suppose f ∈ Cr and g ∈ Ck for some k < r. ThenDf(g(y)) ∈ Ck and so is

its inverseDg by using the formula for matrix inverses (the entries ofA−1 are polynomials

in those of A divided by det A $= 0). Thus, g ∈ Ck+1. !

b. The Implicit Function Theorem. A result closely related to the Inverse Function

Theorem is the Implicit Function Theorem. It follows easily from the Inverse Function

Theorem and is therefore indirectly an application of the Contraction Principle. Further-

more, as we see in the next subsection, it immediately tells us more about the Contraction

Principle itself regarding the dependence of the fixed point of a contraction on the contrac-

tion (see also Figure 2.2.3).

Like the Inverse Function Theorem the Implicit Function Theorem transfers infor-

mation about the linear part of a map to the map itself. To see how, consider the ques-

tion answered by the Implicit Function Theorem in the case of a linear map. Suppose

A : Rn × Rm → Rn is a linear map and write it as A = (A1, A2), where A1 : Rn → Rn

and A2 : Rm → Rn are linear. Suppose we pick k ∈ Rm and want to find h ∈ Rn such
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thatA(h, k) = 0. To see when this can be done rewrite this as A1h+A2k = 0 to conclude
that if A1 is invertible then

(9.2.2) A(h, k) = 0 ⇔ h = −(A1)
−1A2k.

One can interpret this as saying that the equation A(h, k) = 0 implicitly defines a map
h = Lk such that A(Lk, k) = 0. The Implicit Function Theorem says that if this is true
for the linear part of a map, then it is true for the map itself: Under some assumptions

corresponding to invertibility of A1, the equation f(x, y) = 0 implicitly defines a map
x = g(y) such that f(g(y), y) = 0. To state those assumptions for a map f : Rn × Rm →
Rn we write Df = (D1f, D2f) analogously to the above, with D1f : Rn → Rn and

D2f : Rm → Rn.

The Implicit Function Theorem gives an analogous statement for nonlinear maps. It

tells us that if we can solve an equation given a particular value of a parameter then there

is a solution for nearby parameter values as well.

THEOREM 9.2.3 (Implicit Function Theorem). Let O ⊂ Rn × Rm be open and

f : O → Rn a Cr map. If there is a point (a, b) ∈ O such that f(a, b) = 0 and D1f(a, b)
is invertible then there are open neighborhoods U ⊂ O of (a, b), V ⊂ Rm of b such that
for every y ∈ V there exists a unique x =: g(y) ∈ Rn with (x, y) ∈ U and f(x, y) = 0.
Furthermore g is Cr and Dg(b) = −(D1f(a, b))−1D2f(a, b).

Rm

Rn

Rn

FIGURE 9.2.3. Implicit function theorem

PROOF. F (x, y) := (f(x, y), y) : O → Rn × Rm is Cr and if A = Df(a, b) then
DF (a, b) (h, k) = (A(h, k), k) by the chain rule. This gives zero only if k = 0 and
A(h, k) = 0, hence (h, k) = 0 by (9.2.2). Therefore DF is invertible and by the Inverse

Function Theorem 9.2.2 there are open neighborhoodsU ⊂ O of (a, b) andW ⊂ Rn×Rm

of (0, b) such that F : U → W is invertible withCr inverseG = F−1 : W → U . Thus, for
any y ∈ V := {y ∈ Rm (0, y) ∈ W} there exists an x=: g(y) ∈ Rn such that (x, y) ∈ U
and F (x, y) = (0, y), that is, f(x, y) = 0.

Now (g(y), y) = (x, y) = G(0, y) and hence g is Cr. To find Dg(b) let γ(y) :=
(g(y), y). Then f(γ(y)) ≡ 0 and henceDf(γ(y))Dγ(y) = 0 by the chain rule. For y = b
this givesD1f(a, b)Dg(b)+D2f(a, b) = Df(a, b)Dγ(b) = 0, completing the proof. !
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c. The smooth Contraction Principle. Returning to dynamics we apply smoothness

of the implicit function g to the Contraction Principle To show that the fixed point of a
contraction depends smoothly on the contraction itself (see Figure 2.2.3). To express this

we write our contractions as maps with a parameter.

THEOREM 9.2.4. Suppose f : Rn × Rm → Rn is Cr and there exists a λ < 1 such
that d(f(x, y), f(x′, y)) ≤ λd(x, x′) for x, x′ ∈ X . Then for every y ∈ Y there is a

unique fixed point g(y) of x -→ f(x, y) and g is Cr.

PROOF. Existence of the fixed point g(y) follows from the Contraction Principle.

Now write F (x, y) := f(x, y) − x and notice that this is a Cr function that satisfies the

hypotheses of the Implicit Function Theorem 9.2.3: It is zero at (a, b) = (g(y), y) (any
choice of y is fine here) and ‖D1Fv‖ = ‖D1fv−v‖ ≥ ‖v‖−‖D1fv‖ ≥ (1−λ)‖v‖ > 0
for v $= 0, so D1F is invertible. Thus g ∈ Cr . !

REMARK 9.2.5. Instead of the domainRn×Rm one can takeA×O, whereO ⊂ Rm

is open and A is the closure of an open set, say. (One needs a closed set to apply the

Contraction Principle, but a good enough set to be able to differentiate r times.

REMARK 9.2.6. Suppose fλ depends smoothly on λ and f := f0 is as in Proposi-

tion 2.2.20 (p. 39). Show that there is a smooth family λ -→ xλ with x0 as in Proposi-

tion 2.2.20 and fλ(xλ) = xλ.

3. Persistence of transverse fixed points

The fixed point of a contraction simultaneously exhibits two kinds of stability. As an

attracting fixed point it is asymptotically stable. Proposition 2.2.20 and Proposition 2.6.14

(as well as Theorem 9.2.4) state that it is also stable under perturbations of the map, that is,

perturbations of the map have a unique fixed point nearby. This is an important robustness

property of the local dynamics, and we now use the Contraction Principle to describe a

general condition under which an analogous conclusion holds. This is a straightforward

and simple illustration of the use of the Contraction Principle and Implicit Function Theo-

rem in dynamics where the Contraction Principle is applied to a derived system in the same

space.

Recall that two C1-maps f and g are C1-close if |f − g| + ‖Df − Dg‖ is uniformly
small.

PROPOSITION 9.3.1. If p is a periodic point of period m for a C1 map f and the dif-

ferentialDfm
p does not have one as an eigenvalue (in this case p is said to be a transverse

periodic point) then for every map g sufficiently C1-close to f there is a unique periodic

point of period m close to p.

Note that in dimension one the assumption on the derivative simply means that it is not

one. Accordingly, in the example of the basic bifurcation of Section 2.3b (see Figure 2.3.2)

the single fixed point appears or disappears exactly when there is a tangency with the

diagonal, that is, the derivative of the map is one. Figure 9.3.1 illustrates this. The axis

of the independent variable points right, the vertical axis is for the “output”, and the axis

towards the rear gives a parameter with which the map changes. The plane shows the

diagonal for various parameters, and the graphs of perturbed maps combine to a surface

that intersects the diagonals in the family of fixed points.
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FIGURE 9.3.1. Persistence of a fixed point

PROOF. The space. We define a contraction in a neighborhood of p.
The map. Introduce local coordinates near pwith p as the origin. In these coordinatesDfm

0

becomes a matrix. Since 1 is not among its eigenvalues the map F = fm − Id defined
locally in these coordinates is locally invertible by the Inverse Function Theorem 9.2.2.

Now let g be a map C1-close to f . Near 0 one can write gm = fm − H whereH is small

together with its first derivatives. A fixed point for gm can be found from the equation

x = gm(x) = (fm − H)(x) = (F + Id−H)(x) or (F − H)(x) = 0 or

x = F−1H(x).

The contraction property. Since F−1 has bounded derivatives and H has very small first

derivatives one can show that F−1H is a contracting map. More precisely, let ‖ ·‖0 denote

the C0-norm, ‖dF−1‖0 = L, and

max (‖H‖0, ‖dH‖0) ≤ ε.

Then, since F (0) = 0, we get ‖F−1H(x) − F−1H(y)‖ ≤ εL‖x − y‖ for every x, y
close to 0 and ‖F−1H(0)‖ ≤ L‖H(0)‖ ≤ εL, and hence ‖F−1H(x)‖ ≤ ‖F−1H(x) −

F−1H(0)‖+‖F−1H(0)‖ ≤ εL‖x‖+εL. Thus if ε ≤
R

L(1 + R)
the discX = {x ‖x‖ ≤

R} is mapped by F−1H into itself and the map F−1H : X → X is contracting. By the

Contraction Principle it has a unique fixed point in X , which is thus a unique fixed point
for gm near 0. !

REMARK 9.3.2. It is easy to show that a transverse fixed point is isolated.

REMARK 9.3.3. If f is a C1 map with a hyperbolic fixed point p, that is,Df |p has no
eigenvalues on the unit circle, and g is sufficiently C1-close to f then g has a unique fixed
point near p and this fixed point is a hyperbolic fixed point of g.

4. Solutions of differential equations

Differential equations are a natural setting in which dynamical issues arise, and they

appear in several important contexts. At the basis of the use of differential equations in


