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science is that they describe a system in a deterministic way. This means that for any

allowed initial condition there is a solution, which then describes the evolution from that

initial condition onward. In addition, determinacy requires that the solution be unique—if

it were not then the initial data would not determine the evolution uniquely and the model

would have no predictive value.

This issue came up for example, in Section 9.4g. Right now we examine only the basic

fact of existence and uniqueness of solutions by itself. While it can conveniently be taken

for granted in the sequel, it is appealing to derive it here as yet another application of the

Contraction Principle. Obtaining existence of solutions in this way has the advantage that

smooth dependence of the fixed point of a contraction on the contraction has beautiful and

useful implications about the behavior of solutions of a differential equation as the initial

condition is varied: Small changes in initial condition change the solution only slightly.

a. The uniform case. The present use of the Contraction Principle is called Picard

iteration. It is the first time we use the Contraction Principle in a function space. The

idea here is that we can write a differential equation with initial condition as an integral

equation and then apply the integral to continuous functions as candidates for solutions.

This operation turns out to be a contraction and hence to improve our guesses at a solution

iteratively.

THEOREM 9.4.1. Suppose f : R × Rn → Rn a continuous function that is Lipschitz

continuous in y ∈ Rn with Lipschitz constantM . Given any (a, b) ∈ R×Rn and δ < 1/M
there is a unique solution ϕa,b : (a−δ, a+δ) → Rn of the differential equation ẏ = f(t, y)
with ϕa,b(a) = b.

PROOF. The space. We use a contraction defined on the space of differentiable func-

tions (candidate solutions). Specifically, the hypothesis on f means that ‖f(t, y′)−f(t, y)‖ ≤
M‖y′ − y‖ for t ∈ R, y, y′ ∈ Rn. Consider the set of continuous functions ϕ : [a− δ, a +
δ] → Rn and let ‖ϕ‖ := max|t−a|≤δ ‖ϕ(t)‖. This is a complete metric space by Theo-
rem A.1.13.

The map. We apply the Contraction Principle to the Picard operator defined by

Pa,b(ϕ) (t) := b +

∫ t

a
f(x, ϕ(x)) dx.

The contraction property. Note that

‖Pa,b(ϕ) − Pa,b(ϕ
′)‖ = max

|t−a|≤δ
‖

∫ t

0
f(x, ϕ(x)) − f(x, ϕ′(x)) dx‖ ≤ Mδ‖ϕ − ϕ′‖,

that is, Pa,b is a contraction and hence has a unique fixed point. It remains to show that

FIGURE 9.4.1. Picard iteration

fixed points of Pa,b are solutions of ẏ = f(t, y) with ϕ(a) = b (and vice versa). To that
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end differentiate the fixed point condition ϕa,b(t) = b +
∫ t

a f(x, ϕa,b(x)) dx with respect
to t to get ϕ̇a,b(t) = f(t, ϕa,b(t)) by the Fundamental Theorem of Calculus. Evidently

fixed points ϕa,b of Pa,b satisfy ϕa,b(a) = b. To see conversely that solutions are fixed
points insert a solution into the fixed point condition and observe that the integrand is ϕ̇,
yielding a fixed point by the Fundamental Theorem. Thus existence and uniqueness of the

fixed point gives existence and uniqueness of solutions. !

In fact, the solutions are defined for all time in this case (Proposition 9.4.7) by piecing

together the local ones obtained here.

EXAMPLE 9.4.2. One can explicitly carry out this iteration scheme for the differential

equation ẏ = y, y(0) = 1 with y0(x) = 1 as the initial guess. Then y1(x) = 1 +∫ x
0 y(x) dx = 1 +

∫ x
0 dx = 1 + x and y2(x) = 1 +

∫ x
0 1 + xdx = 1 + x + x2/2.

Inductively, yk(x) =
∑k

n=0 xn/n!, so y(x) =
∑∞

n=0 xn/n! = ex.

Picard invented this scheme well before the Contraction Principle was available, and

this method of successive approximation was carried out by verifying that the errors shrink

sufficiently fast.

b. The nonuniform case. It may happen that the Lipschitz constant of the right hand

side of the differential equation depends on t and that the right hand side is not even defined
for all time and not on all of Rn either. In that case there is still a result like Theorem 9.4.1,

but some care must be taken that the solutions do not leave the domain of the right hand

side:

THEOREM 9.4.3. Suppose I ∈ R is an open interval, O ⊂ Rn open, f : I ×O → Rn

a continuous function that is an M -Lipschitz continuous function of y ∈ O for any fixed

t ∈ I . Given any (a, b) ∈ I × O there exists a δ > 0 such that there is a unique solution
ϕa,b : (a − δ, a + δ) → Rn of the differential equation ẏ = f(t, y) with ϕa,b(a) = b.

PROOF. The space. The hypothesis on f means that ‖f(t, y′) − f(t, y)‖ ≤ M‖y′ −
y‖ for t ∈ I , y, y′ ∈ O. Take a closed bounded subset K of O and a closed interval

I ′ ⊂ I containing a. Let B > supt∈I′,x∈K ‖f(t, x)‖ and take δ ∈ (0, 1/M) such that
[a − δ, a + δ] ⊂ I ′ and the ball B(b, Bδ) is contained in K . Now consider the set C of
continuous functions ϕ : [a− δ, a + δ] → O such that ‖ϕ− b‖ < Bδ, where again ‖ϕ‖ :=
max|t−a|≤δ ‖ϕ(t)‖. C is a closed subset of the complete metric space af all continuous

functions on [a − δ, a + δ] (with this norm) and hence itself complete.
The map. The Picard operator is again defined by

Pa,b(ϕ) (t) := b +

∫ t

a
f(x, ϕ(x)) dx.

Then ‖Pa,b(ϕ) − b‖ ≤ max|t−a|≤δ ‖
∫ t
a f(x, ϕ(x)) dx‖ < Bδ, so Pa,b(ϕ) ∈ C for ϕ ∈ C,

that is, Pa,b is well-defined.

The contraction property. Since

‖Pa,b(ϕ) − Pa,b(ϕ
′)‖ = max

|t−a|≤δ
‖

∫ t

0
f(x, ϕ(x)) − f(x, ϕ′(x)) dx‖ ≤ Mδ‖ϕ − ϕ′‖,

Pa,b is a contraction of C and hence has a unique fixed point. As before fixed points

correspond to solutions. !



4. SOLUTIONS OF DIFFERENTIAL EQUATIONS 259

REMARK 9.4.4. Note that we only obtain local solutions here. Global ones can be

obtained by piecing together local ones; by uniqueness any two local solutions must agree

on the intersection of their domains. In fact, the only obstacle to extending solutions is

that they may run into the boundary of O, beyond which the ordinary differential equation
makes no sense. We carry this out explicitly in Section 9.4g.

c. Continuous dependence. SincePa,b depends continuously on a and b andPa,b′(C) ⊂
C for b′ sufficiently close to b, the solutions depend continuously on the initial value b by
Proposition 2.6.14.

PROPOSITION 9.4.5. Under the hypotheses of Theorem 9.4.3 solutions depend con-

tinuously on the initial value, that is, given ε > 0 there exists an η > 0 such that if

‖b′ − b‖ < η then max|t−a|≤δ ‖ϕa,b′(t) − ϕa,b(t)‖ < ε.

PROOF. We clearly need to pick η such that B(b′, Bδ) ⊂ K (see the beginning of the

previous proof) whenever ‖b′ − b‖ < η, to make sure that ϕa,b′ is defined for |t − a| <
δ. Once this is the case, however, the conclusion (for possibly smaller η) is simply a
restatement of the continuous dependence of the fixed point of a contraction on a parameter,

in this case with respect to the norm ‖ϕ‖ := max|t−a|≤δ ‖ϕ(t)‖. !

d. Smooth dependence. The map P : C × R × O → C goes into a linear space,

where differentiation makes sense (Definition A.2.1). It depends linearly (hence smoothly)

on b ∈ O, and the dependence on ϕ ∈ C is through f , and hence as smooth as f . To
indicate how one sees this consider the first derivative. The Mean Value Theorem gives

Pa,b(ϕ) (t) − Pa,b(ψ) (t) =

∫ t

a
f(x, ϕ(x)) dx −

∫ t

a
f(x, ψ(x)) dx

=

∫ t

a
f(x, ϕ(x)) − f(x, ψ(x)) dx

=

∫ t

a
(∂f/∂y)(x, cx)(ϕ(x) − ψ(x)) dx

≈
∫ t

a
(∂f/∂y)(x, ϕ(x))(ϕ(x) − ψ(x)) dx.

The first derivative is thus given byDPa,b(ϕ)(η)(t) =
∫ t

a(∂f/∂y)(x, ϕ(x))η(x) dx.
Corollary 2.2.15 implies

PROPOSITION 9.4.6. If in Proposition 9.4.5 the function f is Cr then the solutions

are Cr+1 and depend Cr on the initial value b, that is, b )→ ϕa,b(a + t) is a Cr map for

all t ∈ (−δ, δ).

The fact that the solutions themselves are Cr+1 follows inductively from the differen-

tial equation, which shows that ẏ is Ck whenever y and f are Ck.

e. Nonexistence and nonuniqueness. To see that the hypotheses are really needed

consider Figure 9.4.2. It shows the solutions x = ct2 for tẋ = 2x, where uniqueness fails
for the initial condition a = b = 0, and existence fails for any initial condition a = 0,
b *= 0. The right portion of the picture shows that solutions do not always extend to all
t where the right hand side f(t, x) is defined for all t: The solutions x = −1/(t + c) of
ẋ = x2 have singularities for finite t. Existence of solutions can be proved using only
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FIGURE 9.4.2. Problems with differential equations

continuity of the right hand side of the differential equation. However, the possible failure

of uniqueness shows that continuous dependence on the initial value cannot be expected

without a Lipschitz condition.

f. Extension of solutions. For reasons that were previewed in Section 3.2f and are

fully justified by Proposition 9.4.11, we restrict attention to differential equations of the

form ẋ = f(x), that is, differential equations whose right hand side does not depend on
time. (These are said to be autonomous differential equations and the right hand side is

then called the vector–field generating the flow.) Physically this reflects the fixed laws of

nature we assume. We would prefer not to have to worry about the possibility of solutions

being defined only up to some time, and we usually don’t:

PROPOSITION 9.4.7. If f is defined on all of Rn and is Lipschitz continuous, then the

solutions of ẋ = f(x) are defined for all t.

−2δ −δ δ 2δ

b

b′

FIGURE 9.4.3. Extension of solutions

PROOF. For any initial condition y(0) = b there is a solution ϕ0,b : [−δ, δ] → Rn with

ϕ0,b(0) = b by Theorem 9.4.1. For the initial condition ϕ0,b(δ) =: b′ there is a solution
ϕδ,ϕb(δ) on [0, 2δ], that is,

ϕ̇δ,ϕb(δ)(t) = f(ϕδ,ϕb(δ)) and ϕδ,ϕb(δ)(0) = b.

At the same time ϕ̇0,b(t) = f(ϕ0,b) and ϕ0,b(0) = b, so ϕδ,ϕb(δ)(t) = ϕ0,b(t) for t ∈ [0, δ]
by uniqueness. Therefore there is a unique solution on [−δ, 2δ]. Extending similarly from
−δ gives a solution on [−2δ, 2δ], which can in turn be continued to [−3δ, 3δ], etc. Thus
solutions are defined for all time, independently of the initial condition. !
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Applying Proposition 9.4.5 about T/δ times gives:

PROPOSITION 9.4.8. Solutions depend continuously on the initial value for any finite

amount of time, that is, given T, ε > 0 there exists a δ > 0 such that if ‖b′ − b‖ < δ then
max|t−a|≤T ‖ϕa,b′(t) − ϕa,b(t)‖ < ε.

g. Flows. We now study the maps arising from solutions of differential equations.

LEMMA 9.4.9. The map φt
a : b )→ ϕa,b(a + t) of Proposition 9.4.6 is defined on all of

Rn for any value of t, and it is Cr if f is. It is also independent of a.

PROOF. Proposition 9.4.7 shows that φt
a is defined on Rn for any t. Proposition 9.4.6

shows that it is as smooth as f .
Given a, a′ ∈ R and b ∈ Rn consider the solutions ϕa,b and ϕa′,b of the differential

equation. Then φt
a(b) = ϕa,b(a + t) and φt

a′(b) = ϕa′,b(a′ + t). We need to show that
these coincide. If we define ψ(t) := ϕa,b(t + a) and ψ′(t) := ϕa′,b(t + a′) then we have

ψ̇(t) = f(ψ(t)), ψ(0) = b and ψ̇′(t) = f(ψ′(t)), ψ′(0) = b.

By uniqueness φt
a′(b) = ϕa′,b(t + a′) = ψ′(t) = ψ(t) = ϕa,b(a + t) = φt

a(b). !

We drop the subscript a henceforth and write φt(b) = ϕa,b(a + t) from now on (and
make a = 0 our default choice).

DEFINITION 9.4.10. A family (φt)t∈R of maps for which (t, x) )→ φt(x) is Cr is said

to be a Cr flow if φs+t = φs ◦ φt for all s, t ∈ R.

This “group property” holds in our situation:

PROPOSITION 9.4.11. A differential equation ẋ = f(x) with f : Rn → Rn a Cr

function and ‖Df‖ bounded defines a Cr flow on Rn.

PROOF. Given t ∈ R the functions ψ1(s) := ϕ0,b(s + t) and ψ2(s) := ϕ0,ϕ0,b(t)(s)
are solutions of the differential equation and ψ2(0) = ϕ0,ϕ0,b(t)(0) = ϕ0,b(t) = ψ1(0), so
ψ1 = ψ2 by uniqueness. Consequently

φs ◦ φt(b) = φs(ϕ0,b(t)) = ϕ0,ϕ0,b(t)(s) = ϕ0,b(s + t) = φs+t(b).

Taking s = −t shows in particular that φt is invertible with inverse φ−t. Thus these maps

φt are Cr diffeomorphisms. !

Section 2.4a gave a complete description of the dynamics of the flow generated by the

differential equation ẋ = f(x) on the line, where f is a Lipschitz continuous function:
There is a closed set of fixed points and the flow is monotone on every complementary

interval with all orbits asymptotic to one endpoint and asymptotic to the other endpoint in

negative time.

Changing the size of the right hand side without changing the direction does not

change orbits, only the speed along them.

DEFINITION 9.4.12. The flows generated by ẋ = f(x) and ẋ = a(x)f(x) for some
continuous nowhere zero scalar function a are said to be related by a time change.


