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z1w̄1 − z2w̄2, i.e.

SU(1, 1) = {g ∈ SL(2, C) | g =
(

a c
c̄ ā

)
},

and

K = {
(

eiϕ 0
0 e−iϕ

)
}.

The homogeneous space G/K can be identified with the “projectivized”
space of the negative vectors in C2 (< z, z >< 0), analogous to that discussed
above for R3, or in homogeneous coordinates, with the unit disc in C,

U = {z ∈ C | |z| < 1}.
In the Poincaré upper half–plane model, G = SL(2, R), and K = SO(2),

the stabilizer of the point i ∈ H. Here the homogeneous space G/K is
identified with the upper half–plane

H = {z ∈ C | Im z > 0}.
by the following construction. Each matrix in SL(2, R) can be written as a
product of upper–triangular and orthogonal (the Iwasawa decomposition):

g =
(

a b
c d

)
=

(√
y x√

y

0 1√
y

) (
cos ϕ − sin ϕ
sin ϕ cos ϕ

)
,

where x, y ∈ R, y > 0. Then π : G/K → H given by

π(g) = g(i) =
ai + b

ci + d
= x + iy = z

does the identification.
In the last two conformal models, the corresponding G acts by fractional–

linear transformations: for g =
(

a b
c d

)
, g(z) = az+b

cz+d .

1.2. The hyperbolic plane

Let H = {z ∈ C | Im(z) > 0} be the upper–half plane. We have seen
(Exercise 2) that equipped with the metric

ds =

√
dx2 + dy2

y
, (1.2.1)

it becomes a model of the hyperbolic or Lobachevski plane. We will see that
the geodesics (i.e., the shortest curves with respect to this metric) will be
straight lines and semicircles orthogonal to the real line

R = {z ∈ C | Im(z) = 0}.
Using this fact and elementary geometric considerations, one easily shows

that any two points in H can be joined by a unique geodesic, and that from
any point in H in any direction one can draw a geodesic. We will measure
the distance between two points in H along the geodesic connecting them.
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It is clear that any geodesic can be continued indefinitely, and that one can
draw a circle centered at a given point with any given radius.

The tangent space to H at a point z is defined as the space of tangent
vectors at z. It has the structure of a 2–dimensional real vector space or of
a 1–dimensional complex vector space: TzH ≈ R2 ≈ C. The Riemannian
metric (1.2.1) is induced by the following inner product on TzH: for ζ1 =
ξ1 + iη1 and ζ2 = ξ2 + iη2 in TzH, we put

〈ζ1, ζ2〉 =
(ζ1, ζ2)

Im(z)2
, (1.2.2)

which is a scalar multiple of the Euclidean inner product (ζ1, ζ2) = ξ1ξ2 +
η1η2.

We define the angle between two geodesics in H at their intersection
point z as the angle between their tangent vectors in TzH. Using the formula

cos ϕ =
〈ζ1, ζ2〉
‖ζ1‖‖ζ2‖

=
(ζ1, ζ2)

|ζ1||ζ2|
,

where ‖ ‖ denotes the norm in TzH corresponding to the inner product 〈 , 〉,
and | | denotes the norm corresponding to the inner product ( , ), we see that
this notion of angle measure coincides with the Euclidean angle measure.

The first four axioms of Euclid hold for this geometry. However, the
fifth postulate of Euclid’s Elements, the axiom of parallels, does not hold:
there is more than one geodesic passing through the point z not lying in the
geodesic L that does not intersect L (see Fig. 1.2.1).

z

L

Figure 1.2.1. Geodesics in the upper half-plane

Therefore the geometry in H is non–Euclidean. The metric in (1.2.1)
is said to be the hyperbolic metric. It can be used to calculate the length
of curves in H the same way the Euclidean metric

√
dx2 + dy2 is used to

calculate the length of curves on the Euclidean plane. Let I = [0, 1] be the
unit interval, and γ : I → H be a piecewise differentiable curve in H,

γ(t) = {v(t) = x(t) + iy(t) | t ∈ I}.
The length of the curve γ is defined by
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h(γ) =
∫ 1

0

√
(dx

dt )2 + (dy
dt )

2

y(t)
dt. (1.2.3)

We define the hyperbolic distance between two points z,w ∈ H by setting

ρ(z,w) = inf h(γ),

where the infimum is taken over all piecewise differentiable curves connecting
z and w.

Proposition 1.2.1. The function ρ : H × H → R defined above is a
distance function, i.e., it is

(a) nonnegative: ρ(z, z) = 0; ρ(z,w) > 0 if z *= w;
(b) symmetric: ρ(u, v) = ρ(v, u);
(c) satisfies the triangle inequality: ρ(z,w) + ρ(w, u) ≥ ρ(z, u).

Proof. It is easily seen from the definition that (b), (c), and the first
part of property (a) hold. The second part follows from Exercise 3. !

Consider the group SL(2, R) of real 2×2 matrices with determinant one.

It acts on H by Möbius transformations as follows. To each g =
(

a b
c d

)
∈

SL(2, R), we assign the transformation

Tg(z) =
az + b

cz + d
. (1.2.4)

Proposition 1.2.2. Any Möbius transformation Tg maps H into itself.

Proof. We can write

w = Tg(z) =
(az + b)(cz + d)

|cz + d|2 =
ac|z|2 + adz + bcz + bd

|cz + d|2 .

Therefore

Im(w) =
w − w

2i
=

(ad − bc)(z − z)

2i|cz + d|2 =
Im(z)

|cz + d|2 . (1.2.5)

Thus Im(z) > 0 implies Im(w) > 0. !

One can check directly that if g, h ∈ SL(2, R), then Tg ◦ Th = Tgh and
T−1

g = Tg−1 . It follows that each Tg, g ∈ SL(2, R) is a bijection, and thus we
obtain a representation of the group SL(2, R) by Möbius transformations of
the upper–half plane H. In fact, the two matrices g and −g give the same
Möbius transformation, so formula (1.2.4) actually gives a representation of
the quotient group SL(2, R)/{±12} (where 12 is the 2 × 2 identity matrix)
denoted by PSL(2, R), which we will identify with the group of Möbius
transformations of the form (1.2.4). Notice that PSL(2, R) contains all
transformations of the form

z → az + b

cz + d
with ad − bc = ∆ > 0,
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since by dividing the numerator and the denominator by
√

∆, we obtain a
matrix for it with determinant equal to 1. In particular, PSL(2, R) con-
tains all transformations of the form z → az + b (a, b ∈ R, a > 0). Since
transformations in PSL(2, R) are continuous, we have the following result.

Theorem 1.2.3. The group PSL(2, R) acts on H by homeomorphisms.

Definition. A transformation of H onto itself is called an isometry if
it preserves the hyperbolic distance in H.

Isometries clearly form a group; we will denote it by Isom(H).

Theorem 1.2.4. Möbius transformations are isometries, i.e., we have
the inclusion PSL(2, R) ⊂ Isom(H).

Proof. Let T ∈ PSL(2, R). By Theorem 1.2.3 T maps H onto itself.
Let γ : I → H be the piecewise differentiable curve given by z(t) = x(t) +
iy(t). Let

w = T (z) =
az + b

cz + d
;

then we have w(t) = T (z(t)) = u(t)+iv(t) along the curve γ. Differentiating,
we obtain

dw

dz
=

a(cz + d) − c(az + b)

(cz + d)2
=

1

(cz + d)2
. (1.2.6)

By (1.2.5) we have

v =
y

|cz + d|2 , therefore

∣∣∣∣
dw

dz

∣∣∣∣ =
v

y
.

Thus

h(T (γ)) =
∫ 1

0

|dw
dt |dt

v(t)
=

∫ 1

0

|dw
dz ||

dz
dt |dt

v(t)
=

∫ 1

0

|dz
dt |dt

y(t)
= h(γ).

The invariance of the hyperbolic distance follows from this immediately. !

1.3. Geodesics

Theorem 1.3.1. The geodesics in H are semicircles and the rays or-
thogonal to the real axis R.

Proof. Let z1, z2 ∈ H. First consider the case in which z1 = ia, z2 =
ib with b > a. For any piecewise differentiable curve γ(t) = x(t) + iy(t)
connecting ia and ib, we have

h(γ) =
∫ 1

0

√
(dx

dt )2 + (dy
dt )

2

y(t)
dt ≥

∫ 1

0

|dy
dt |dt

y(t)
≥

∫ 1

0

dy
dt dt

y(t)
=

∫ b

a

dy

y
= ln

b

a
,

but this is exactly the hyperbolic length of the segment of the imaginary
axis connecting ia and ib. Therefore the geodesic connecting ia and ib is the
segment of the imaginary axis connecting them.
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Now consider the case of arbitrary points z1 and z2. Let L be the unique
Euclidean semicircle or a straight line connecting them. Then by Exercise 4,
there exists a transformation in PSL(2, R) which maps L into the positive
imaginary axis. This reduces the problem to the particular case studied
above, so that by Theorem 1.2.4 we conclude that the geodesic between z1

and z2 is the segment of L joining them. !

Thus we have proved that any two points z and w in H can be joined
by a unique geodesic, and the hyperbolic distance between them is equal
to the hyperbolic length of the geodesic segment joining them; we denote
the latter by [z,w]. This and the additivity of the integral (1.2.3) imply the
following statement.

Corollary 1.3.2. If z and w are two distinct points in H, then

ρ(z,w) = ρ(z, ξ) + ρ(ξ, w)

if and only if ξ ∈ [z,w].

Theorem 1.3.3. Any isometry of H, and in particular any transforma-
tion from PSL(2, R), maps geodesics into geodesics.

Proof. The same argument as in the Euclidean case works here. !

The cross–ratio of distinct points z1, z2, z3, z4 ∈ Ĉ = C ∪ {∞} is defined
by the following formula:

(z1, z2; z3, z4) =
(z1 − z2)(z3 − z4)

(z2 − z3)(z4 − z1)
.

Theorem 1.3.4. Suppose z,w ∈ H are two distinct points, the geodesic
joining z and w has endpoints z∗, w∗ ∈ R ∪ {∞}, and z ∈ [z∗, w]. Then

ρ(z,w) = ln(w, z∗; z,w∗).

Proof. Using Exercise 4, in PSL(2, R) let us choose a transformation
T which maps the geodesic joining z and w to the imaginary axis. By
applying the transformations z 1→ kz (k > 0) and z 1→ −1/z if necessary, we
may assume that T (z∗) = 0, T (w∗) = ∞ and T (z) = i. Then T (w) = ri for
some r > 1, and

ρ(T (z), T (w)) =
∫ r

1

dy

y
= ln r.

On the other hand, (ri, 0; i,∞) = r, and the theorem follows from the
invariance of the cross–ratio under Möbius transformations, a standard fact
from complex analysis (which can be checked by a direct calculation). !

We will derive several explicit formulas for the hyperbolic distance in-
volving the hyperbolic functions

sinh x =
ex − e−x

2
, cosh x =

ex + e−x

2
, tanh z =

sinhx

cosh x
.

Theorem 1.3.5. For z,w ∈ H, we have
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(a) ρ(z,w) = ln |z−w|+|z−w|
|z−w|−|z−w|;

(b) cosh ρ(z,w) = 1 + |z−w|2
2Im(z)Im(w) ;

(c) sinh[12ρ(z,w)] = |z−w|
2(Im(z)Im(w))1/2 ;

(d) cosh[12ρ(z,w)] = |z−w|
2(Im(z)Im(w))1/2 ;

(e) tanh[12ρ(z,w)] = |z−w
z−w |.

Proof. We will prove that (e) holds. By Theorem 1.2.4, the left–hand
side is invariant under any transformation T ∈ PSL(2, R). By Exercise 5,
the right–hand side is also invariant under any T ∈ PSL(2, R). Therefore
if is sufficient to check the formula for the case when z = i, w = ir (r > 1).
The right–hand side is equal to (r − 1)/(r + 1). The left–hand side is equal
to tanh[12 ln r]. A simple calculation shows that these two expressions are
equal. The other formulas are proved similarly. !

1.4. Isometries

We have seen that transformations in PSL(2, R) are isometries of the hy-
perbolic plane H (Theorem 1.2.4). The next theorem identifies all isometries
of H in terms of Möbius transformations and symmetry in the imaginary
axis.

Theorem 1.4.1. The group Isom(H) is generated by the Möbius trans-
formations from PSL(2, R) together with the transformation z 1→ −z. The
group PSL(2, R) is a subgroup of Isom(H) of index two.

Proof. Let ϕ be any isometry of H. By Theorem 1.3.3, ϕ maps
geodesics into geodesics. Let I denote the positive imaginary axis. Then
ϕ(I) is a geodesic in H, and according to Exercise 4, there exists an isometry
T ∈ PSL(2, R) that maps ϕ(I) back to I. By applying the transformations
z 1→ kz (k > 0) and z 1→ −1/z, we may assume that g ◦ ϕ fixes i and maps
the rays (i,∞) and (i, 0) onto themselves. Hence, being an isometry, g ◦ ϕ
fixes each point of I. The same (synthetic) argument as in the Euclidean
case shows that

g ◦ ϕ(z) = z or − z. (1.4.1)

Let z1 and z2 be two fixed points on I. For any point z not on I, draw two
hyperbolic circles centered at z1 and z2 and passing through z. These circles
intersect in two points, z and z′ = −z, since the picture is symmetric with
respect to the imaginary axis (note that a hyperbolic circle is a Euclidean
circle in H, but with a different center). Since these circles are mapped
into themselves under the isometry g ◦ ϕ, we conclude that g ◦ ϕ(z) = z or
g ◦ ϕ(z) = −z. Since isometries are continuous (see Exercise 6), only one
of the equations (1.4.1) holds for all z ∈ H. If g ◦ ϕ(z) = z, then ϕ(z) is a
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Möbius transformation of the form (1.2.4). If g ◦ ϕ(z) = −z, we have

ϕ(z) =
az + b

cz + d
with ad − bc = −1, (1.4.2)

which proves the theorem. !

Thus we have characterized all the isometries of H. The sign of the
determinant of the corresponding matrix in (1.2.4) or (1.4.2) determines the
orientation of an isometry. We will refer to transformations in PSL(2, R) as
orientation–preserving isometries and to transformations of the form (1.4.2)
as orientation–reversing isometries.

Now we will study and classify these two types of isometries of the
hyperbolic plane H.

Orientation–preserving isometries. The classification of matrices in
SL(2, R) into hyperbolic, elliptic, and parabolic depended on the absolute
value of their trace, and hence makes sense in PSL(2, R) as well. A matrix
A ∈ SL(2, R) with trace t is called hyperbolic if |t| > 2, elliptic if |t| < 2,
and parabolic if |t| = 2. Let

T (z) =
az + b

cz + d
∈ PSL(2, R).

The fixed points of T are found by solving the equation

z =
az + b

cz + d
, i.e., cz2 + (d − a)z − b = 0.

We obtain

w1 =
a − d +

√
(a + d)2 − 4

2c
, w2 =

a − d −
√

(a + d)2 − 4

2c
.

We see that if T is hyperbolic, then it has two fixed points in R ∪ {∞},
if T is parabolic, it has one fixed point in R ∪ {∞}, and if T is elliptic,
it has two complex conjugate fixed points, hence one fixed point in H. A
Möbius transformation T fixes ∞ if and only if c = 0, and hence it is in
the form z 1→ az + b (a, b ∈ R, a > 0). If a = 1, it is parabolic; if a *= 0,
it is hyperbolic and its second fixed point is b/(1 − a). The fixed point wi

of T can be expressed in terms of the eigenvector
(

xi

yi

)
with eigenvalue λi,

namely wi = xi/yi. In terms of the eigenvalue λi, the derivative at the fixed
point wi can be written as itself:

T ′(wi) =
1

(cwi + d)2
=

1

λ2
i

.

Definition. A fixed point w of a transformation f : H → H is called
attracting if |f ′(w)| < 1, and it is called repelling if |f ′(w)| > 1.

Now we are ready to summarize what we know from linear algebra about
different kinds of transformations in PSL(2, R) and describe the action of
Möbius transformations in H geometrically.
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1. Hyperbolic case. A hyperbolic transformation T ∈ PSL(2, R) has
two fixed points in R∪{∞}, one attracting, denoted by u, the other repelling,
denoted by w. The geodesic in H connecting them is called the axis of T
and is denoted by C(T ). By Theorem 1.3.3, T maps C(T ) onto itself, and
C(T ) is the only geodesic with this property. Let λ be the eigenvalue of
T with |λ| > 1. Then the matrix of T is conjugate to the diagonal matrix(

λ 0
0 1/λ

)
, which corresponds to the Möbius transformation

Λ(z) = λ2z, (1.4.3)

i.e., there exists a transformation S ∈ PSL(2, R) such that STS−1 = Λ.
The conjugating transformation S maps the axis of T , oriented from u to
w, to the positive imaginary axis I, oriented from 0 to ∞, which is the axis
of Λ (cf. Exercises 4 and 9).

In order to see how a hyperbolic transformation T acts on H, it is useful
to look at the all its iterates T n, n ∈ Z. If z ∈ C(T ), then T n(z) ∈ C(T )
and T n(z) → w as n → ∞, while T n(z) → u as n → −∞. The curve C(T )
is the only geodesic which is mapped onto itself by T , but there are other
T–invariant curves, also “connecting” u and w. For the standard hyperbolic
transformation (1.4.3), the Euclidean rays in the upper half–plane issuing
from the origin are obviously T–invariant. If we define the distance from a
point z to a given geodesic L as infv∈L ρ(z, v), we see that the distance is
measured over a geodesic passing through z and orthogonal to L (Exercise
7). Such rays have an important property: they are equidistant from the
axis C(Λ) = I (see Exercise 8), and hence are called equidistants. Under
S−1 they are mapped onto equidistants for the transformation T , which are
Euclidean circles passing through the points u and w (see Figure 1.4.1).

A useful notion in understanding how hyperbolic transformations act is
that of isometric circle. Since T ′(z) = (cz + d)−2, the Euclidean lengths are
multiplied by |T ′(z)| = |cz + d|−2. They are unaltered in magnitude if and
only if |cz + d| = 1. If c *= 0, then the locus of such points z is the circle

∣∣∣∣z +
d

c

∣∣∣∣ =
1

|c|

with center at −d/c and radius 1/|c|. The circle

I(T ) = {z ∈ H | |cz + d| = 1}

is called the isometric circle of the transformation T . Since its center −d/c
lies in R, we immediately see that isometric circles are geodesics in H. Fur-
ther, T (I(T )) is a circle of the same radius, T (I(T )) = I(T−1), and the
transformation maps the outside of I(T ) onto the inside of I(T−1) and vice
versa (see Figure 1.4.1 and Exercise 10.

If c = 0, then there is no circle with the isometric property: all Euclidean
lengths are altered.



1.4. ISOMETRIES 13

0

I 

S

C(T)

u w

Figure 1.4.1. Hyperbolic transformations

2. Parabolic case. A parabolic transformation T ∈ PSL(2, R) has
one fixed point p ∈ R ∪ {∞}. The transformation T has one eigenvalue
λ = ±1 and is conjugate to the transformation P (z) = z + b for some
b ∈ R, i.e., there exists a transformation S ∈ PSL(2, R) such that P =
STS−1. The transformation P is an Euclidean translation, and hence it
leaves all horizontal lines invariant. Horizontal lines are called horocycles for
the transformation P . Under the map S−1 they are sent to invariant curves
(horocycles) for the transformation T . Horocycles for T are Euclidean circles
tangent to the real line at the parabolic fixed point p (see Figure 1.4.2 and
Exercise 3.1.2).

b

b =! 

S

Figure 1.4.2. Parabolic transformations

If c *= 0, then the isometric circles for T and T−1 are tangent to each
other (see Exercise 11). If c = 0, then there is no unique circle with the
isometric property: in this case T is an Euclidean translation, all Euclidean
lengths are unaltered.

3. Elliptic case. An elliptic transformation T ∈ PSL(2, R) has a
unique fixed point e ∈ H. It has the eigenvalues λ = cos ϕ + i sin ϕ and
λ = cos ϕ − i sin ϕ, and it is easier to describe its simplest form in the unit
disc model of hyperbolic geometry: U = {z ∈ C | |z| < 1}. The map

f(z) =
zi + 1

z + i
(1.4.4)



14 1. HYPERBOLIC GEOMETRY

is a homeomorphism of H onto U . The distance in U is induced by means
of the hyperbolic distance in H:

ρ(z,w) = ρ(f−1z, f−1w) (z,w ∈ U).

The readily verified formula

2|f ′(z)|
1 − |f(z)|2 =

1

Im(z)

implies that this distance in U is derived from the metric

ds =
2|dz|

1 − |z|2
.

Geodesics in the unit disc model are circular arcs and diameters orthogonal
to the principle circle Σ = {z ∈ C | |z| = 1}, the Euclidean boundary of U .
Isometries of U are the conjugates of isometries of H, i.e., we can write

S = f ◦ T ◦ f−1 (T ∈ PSL(2, R)).

Exercise 13 shows that orientation–preserving isometries of U are of the form

z 1→ az + c

cz + a
(a, c ∈ C, aa − cc = 1),

and the transformation corresponding to the standard reflection R(z) = −z
is also the reflection of U in the vertical diameter.

Let us return to our elliptic transformation T ∈ PSL(2, R) that fixes
e ∈ H. Conjugating T by f , we obtain an elliptic transformation of the
unit disc U . Using an additional conjugation by an orientation–preserving
isometry of U if necessary (see Exercise 3.2.3), we bring the fixed point to
0, and hence bring T to the form z 1→ e2iϕz. In other words, an elliptic
transformation with eigenvalues eiϕ and e−iϕ is conjugate to a rotation by
2ϕ.

Example 1 . Let z 1→ −1/z be the elliptic transformation given by the

matrix
(

0 −1
1 0

)
. Its fixed point in H is i. It is a transformation of order

2 since the identity in PSL(2, R) is {12,−12}, and hence is a half–turn. In

the unit disc model, its matrix is conjugate to the matrix
(

i 0
0 −i

)
.

Orientation–reversing isometries. The simplest orientation–rever-
sing isometry of H is the transformation R(z) = −z, which is the reflection
in the imaginary axis I, and hence it fixes I pointwise. It is also a hyper-
bolic reflection in I, i.e., if for each point z we draw a geodesic through z,
orthogonally to I and intersecting I at a point z0, then R(z) = z′ is on
the same geodesic and ρ(z′, z0) = ρ(z, z0). Let L be any geodesic in H and
T ∈ PSL(2, R) be any Möbius transformation. Then the transformation

TRT−1 (1.4.5)
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fixes the geodesic L = T (I) pointwise and therefore may be regarded as
a “reflection in the geodesic L”. In fact, it is the well–known geometrical
transformation called inversion in a circle.

Definition. Let Q be a circle in R2 with center K and radius r. Given
any point P *= K in R2, a point P1 is called inverse to P if

(a) P1 lies on the ray from K to P ,
(b) |KP1| · |KP | = r2.

The relationship is reciprocal: if P1 is inverse to P , then P is inverse
to P1. We say that P and P1 are inverse with respect to Q. Obviously,
inversion fixes all points in the circle Q. Inversion may be described by a
geometric construction (see Exercise 15). We will derive a formula for it.
Let P , P1 and K be the points z, z1, and k in C. Then the definition can
be rewritten as

|(z1 − k)(z − k)| = r2, arg(z1 − k) = arg(z − k).

Since arg(z − k) = − arg(z − k), both equations are satisfied if and only if

(z1 − k)(z − k) = r2. (1.4.6)

This gives us the following formula for the inversion in a circle:

z1 =
kz + r2 − |k|2

z − k
. (1.4.7)

Now we are able to prove a theorem for isometries of the hyperbolic
plane similar to a result in Euclidean geometry.

Theorem 1.4.2. Every isometry of H is a product of not more than
three reflections in geodesics in H.

Proof. By Theorem 1.4.1 it suffices to show that each transformation
from the group PSL(2, R) is a product of two reflections. Let

T (z) =
az + b

cz + d
.

First consider the case for which c *= 0. Then both T and T−1 have well–
defined isometric circles (see Exercise 11). They have the same radius 1/|c|
and their centers are on the real axis at −d/c and a/c, respectively. We will
show that T = R◦RI(T ), where RI(T ) is the reflection in the isometric circle
I(T ), or inversion, and R is the reflection in the vertical geodesic passing
through the midpoint of the interval [−d/c, a/c]. To do this, we use formula
(1.4.6) for inversion:

RI(T )(z) =
−d

cz + 1
c2 − d2

c2

z + d
c

=
−d(z + d

c ) + 1
c

cz + d
.

The reflection in the line x = (a − d)/2c is given by the formula

R(z) = −z + 2
a − d

2c
.



16 1. HYPERBOLIC GEOMETRY

Combining the two, we obtain

R ◦ RI(T ) =
az + b

cz + d
.

Now if c = 0, the transformation T may be either parabolic z 1→ z + b or
hyperbolic z 1→ λ2z + b, each fixing ∞. In the first case, the theorem follows
from the Euclidean result for translations. For T (z) = λ2z + b, it is easy to
see that the reflections should be in circles of radii 1 and λ centered at the
second fixed point. !

1.5. Hyperbolic area and the Gauss–Bonnet formula

Let T be a Möbius transformation. The differential of T , denoted by
DT , at a point z is the linear map that takes the tangent space TzH onto
TT (z)H and is defined by the 2 × 2 matrix

DT =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

.

Theorem 1.5.1. Let T ∈ PSL(2, R). Then DT preserves the norm in
the tangent space at each point.

Proof. For ζ ∈ TzH, we have DT (ζ) = T ′(z)ζ by Exercise 21. Since

|T ′(z)| =
Im(T(z))

Im(z)
=

1

|cz + d|2 ,

we can write

‖DT (ζ)‖ =
|DT (ζ)|
Im(T(z))

=
|T ′(z)||ζ|
Im(T(z))

=
|ζ|

Im(z)
= ‖ζ‖.

!

Corollary 1.5.2. Any transformation in PSL(2, R) is conformal, i.e.,
it preserves angles.

Proof. It is easy to prove the polarization identity, which asserts that
for any ζ1, ζ2 ∈ TzH we have

〈ζ1, ζ2〉 =
1

2
(‖ζ1‖2 + ‖ζ2‖2 − ‖ζ1 − ζ2‖2);

this identity implies that the inner product and hence the absolute value of
the angle between tangent vectors is also preserved. Since Möbius transfor-
mations preserve orientation, the corollary follows. !

Let A ⊂ H. We define the hyperbolic area of A by the formula

µ(A) =
∫

A

dxdy

y2
, (1.5.1)

provided this integral exists.

Theorem 1.5.3. Hyperbolic area is invariant under all Möbius transfor-
mations T ∈ PSL(2, R), i.e., if µ(A) exists, then µ(A) = µ(T (A)).
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Proof. It follows immediately from the preservation of Riemannian
metric (Theorem 1.5.1). Here is a direct calculation as well. When we
performed the change of variables w = T (z) in the line integral of Theorem
1.2.4, the coefficient |T ′(z)| appeared (it is the coefficient responsible for the
change of Euclidean lengths). If we carry out the same change of variables in
the plane integral, the Jacobian of this map will appear, since it is responsible
for the change of the Euclidean areas. Let z = x+iy, and w = T (z) = u+iv.

The Jacobian is the determinant of the differential map DT and is cus-
tomarily denoted by ∂(u, v)/∂(x, y). Thus

∂(u, v)

∂(x, y)
:= det

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

=
(∂u

∂x

)2
+

(∂v

∂x

)2
= |T ′(z)|2 =

1

|cz + d|4
. (1.5.2)

We use this expression to compute the integral

µ(T (A)) =
∫

T (A)

dudv

v2
=

∫

A

∂(u, v)

∂(x, y)

dxdy

v2

=
∫

A

1

|cz + d|4
|cz + d|4

y2
dxdy = µ(A),

as claimed. !

A hyperbolic triangle is a figure bounded by three segments of geodesics.
The intersection points of these geodesics are called the vertices of the trian-
gle. We allow vertices to belong to R∪{∞}. There are 4 types of hyperbolic
triangles, depending on whether 0, 1, 2, or 3 vertices belong to R∪ {∞} (see
Figure 1.5.1).

Figure 1.5.1. Hyperbolic triangles

The Gauss–Bonnet formula shows that the hyperbolic area of a hyper-
bolic triangle depends only on its angles.

Theorem 1.5.4 (Gauss-Bonnet). Let ∆ be a hyperbolic triangle with
angles α, β, and γ. Then µ(∆) = π − α − β − γ.

Proof. First we consider the case in which one of the vertices of the
triangle belongs to R ∪ {∞}. Since transformations from PSL(2, R) do not
alter the area and the angles of a triangle, we may apply the transformation
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from PSL(2, R) which maps this vertex to ∞ and the base to a segment of
the unit circle (as in Figure 1.5.2), and prove the formula in this case.

A
B

C D0

"

" #

#

$

Figure 1.5.2

The angle at infinity is equal to 0, and let us assume that the other two
angles are equal to α and β. Since the angle measure in the hyperbolic plane
coincides with the Euclidean angle measure, the angles A0C and B0D are
equal to α and β, respectively, as angles with mutually perpendicular sides.
Assume the vertical geodesics are the lines x = a and x = b. Then

µ(∆) =
∫

∆

dxdy

y2
=

∫ b

a
dx

∫ ∞
√

1−x2

dy

y2
=

∫ b

a

dx√
1 − x2

.

The substitution x = cos θ (0 ≤ θ ≤ π) gives

µ(∆) =
∫ β

π−α

− sin θdθ

sin θ
= π − α − β.

For the case in which ∆ has no vertices at infinity, we continue the geodesic
connecting the vertices A and B, and suppose that it intersects the real axis
at the point D (if one side of ∆ is a vertical geodesic, then we label its
vertices A and B), and draw a geodesic from C to D. Then we obtain the
situation depicted in Figure 3.2.1.

We denote the triangle ADC by ∆1 and the triangle CBD by ∆2. Our
formula has already been proved for triangles such as ∆1 and ∆2, since the
vertex D is at infinity. Now we can write

µ(∆) = µ(∆1) − µ(∆2) = (π − α − γ − θ) − (π − θ − π + β)

= π − α − β − γ,

as claimed. !

Theorem 1.5.4 asserts that the area of a triangle depends only on its
angles, and is equal to the quantity π − α − β − γ, which is called the
angular defect. Since the area of a nondegenerate triangle is positive, the
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"

(

Figure 1.5.3

angular defect is positive, and therefore, in hyperbolic geometry the sum
of angles of any triangle is less than π. We will also see that there are no
similar triangles in hyperbolic geometry (except isometric ones).

Theorem 1.5.5. If two triangles have the same angles, then there is an
isometry mapping one triangle into the other.

Proof. If necessary, we perform the reflection z 1→ −z, so that the re-
spective angles of the triangles ABC and A′B′C ′ (in the clockwise direction)
are equal. Then we apply a hyperbolic transformation mapping A to A′ (Ex-
ercise 3.2.3), and an elliptic transformation mapping the side AB onto the
side A′B′. Since the angles CAB and C ′A′B′ are equal, the side AC will
be mapped onto the side A′C ′. We must prove that B is then mapped to
B′ and C to C ′. Assume B′ is mapped inside the geodesic segment AB. If
we had C ′ ∈ [A,C], the areas of triangles ABC and A′B′C ′ would not be
equal, which contradicts Theorem 1.5.4. Therefore C must belong to the
side A′C ′, and hence the sides BC and B′C ′ intersect at a point X (see Fig.
1.5.4); thus we obtain the triangle B′XB. Its angles are β and π − β since
the angles at the vertices B and B′ of our original triangles are equal (to β).
We see that, in contradiction with Theorem 1.5.4, the sum of the angles of
the triangle B′XB is at least π. !

1.6. Hyperbolic trigonometry

Let us consider a general hyperbolic triangle with sides of hyperbolic
length a, b, c and opposite angles α,β, γ. We assume that α,β, and γ are
positive (so a, b, and c are finite) and prove the following results.

Theorem 1.6.1. (i) The Sine Rule: sinh a
sin α = sinh b

sinβ = sinh c
sinγ .

(ii) The Cosine Rule I: cosh c = cosh a cosh b−sinh a sinh b cos γ.
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C

Figure 1.5.4

(iii) The Cosine Rule II: cosh c = cos α cos β+cos γ
sinα sin β .

Remark. Note the existence of Cosine Rule II. This has no analogue in
Euclidean geometry: in hyperbolic geometry it implies that if two triangles
have the same angles, then there is an isometry mapping one triangle onto
the other.

Proof of (ii). Let us denote the vertices opposite the sides a, b, c by
va, vb, vc respectively. We shall use the model U and may assume that vc = 0
and Im va = 0, Re va > 0 (see Figure 1.6.1). By Exercise 19(iv) we have

vav  = 0c

vb

Figure 1.6.1

va = tanh
1

2
ρ(0, va) = tanh(

1

2
b), (1.6.1)

and similarly,

vb = eiγ tanh(
1

2
a), (1.6.2)
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We have c = ρ(va, vb), and from Exercise 19(iii)

cosh c = sinh2[
1

2
ρ(va, vb)] + 1 =

2|va − vb|2

(1 − |va|2)(1 − |vb|2)
+ 1. (1.6.3)

The right-hand side of expression (1.6.3) is equal to
cosh a cosh b − sinh a sinh b cos γ by Exercise 22, and hence (ii) follows. !

Proof of (i). Using (ii) we obtain
(

sinh c

sin γ

)2

=
sinh2 c

1 −
(

cosh a cosh b−cosh c
sinh a sinh b

)2 . (1.6.4)

The Sine Rule will be valid if we prove that the expression on the right-hand
side of (1.6.4) is symmetric in a, b, and c. This follows from the symmetry
of

(sinha sinh b)2 − (cosh a cosh b − cosh c)2

which is obtained by a direct calculation. !

Proof of (iii). Let us write A for cosh a,B for cosh b, and C for cosh c.
The Cosine Rule I yields

cos γ =
(AB − C)

(A2 − 1)
1
2 (B2 − 1)

1
2

and so

sin2 γ =
D

(A2 − 1)(B2 − 1)

where D = 1 + 2ABC − (A2 + B2 + C2) is symmetric in A,B, and C.
The expression for sin2 γ shows that D ≥ 0. Using analogous expressions
for cos α, sin α, cos β, and sinβ we observe that if we multiply both the
numerator and denominator of

cos α cos β + cos γ

sinα sin β

by the positive value of

(A2 − 1)
1
2 (B2 − 1)

1
2 (C2 − 1)

1
2

we obtain

cos α cos β + cos γ

sin α sin β
=

[(BC − A)(CA − B) + (AB − C)(C2 − 1)]

D
= C

!

Theorem 1.6.2. (Pythagorian Theorem) If γ = π
2 we have cosh c =

cosh a cosh b.

Proof. Immediate from the Cosine Rule I. !
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Exercises

1. Prove that the metric in the Poincaré disc model is given by

ds2 =
4(dη2

1 + dη2
2)

(1 − (η2
1 + η2

2))
2
.

2. Prove that the metric in the upper half–plane model is given by

ds2 =
dη2

1 + dη2
3

η2
3

.

3. Prove that if z *= w, then ρ(z,w) > 0.

4. Let L be a semicircle or a straight line orthogonal to the real axis which
meets the real axis at a point α. Prove that the transformation

T (z) = −(z − α)−1 + β ∈ PSL(2, R),

for an appropriate value of β, maps L to the positive imaginary axis.

5. Prove that for z,w ∈ H and T ∈ PSL(2, R), we have

|T (z) − T (w)| = |z − w||T ′(z)T ′(w)|1/2.

6. Prove that isometies are continuous maps.

7. (a) Prove that there is a unique geodesic through a point z orthogonal
to a given geodesic L.

(b)* Give a geometric construction of this geodesic.
(c) Prove that for z /∈ L, the greatest lower bound infv∈L ρ(z, v) is

achieved on the geodesic described in (a).

8. Prove that the rays in H issuing from the origin are equidistant from
the positive imaginary axis I.

9. Let A ∈ PSL(2, R) be a hyperbolic transformation, and suppose that
B = SAS−1 (B ∈ PSL(2, R)) is its conjugate. Prove that B is also hyper-
bolic and find the relation between their axes C(A) and C(B).

10. Prove that isometric circles I(T ) and I(T−1) have the same radius,
and that the image of I(T ) under the transformation T is I(T−1).

11. Prove that

(a) T is hyperbolic if and only if I(T ) and I(T−1) do not intersect;
(b) T is elliptic if and only if I(T ) and I(T−1) intersect;
(c) T is parabolic if and only if I(T ) and I(T−1) are tangential.

12. Prove that the horocycles for a parabolic transformation with a fixed
point p ∈ R are Euclidean circles tangent to the real line at p.
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13. Show that orientation–preserving isometries of U are of the form

z 1→ az + c

cz + a
(a, c ∈ C, aa − cc = 1).

14. Prove that for any two distinct points z1, z2 ∈ H there exists a
transformation T ∈ PSL(2, R) such that T (z1) = z2.

15. Give a geometric construction of the inversion in a given circle Q in
the Euclidean plane R2.

16. Prove that the transformation (1.4.5) is an inversion in the circle
corresponding to the geodesic L.

17. Prove that two hyperbolic transformations in PSL(2, R) commute if
and only if their axes coincide.

18. Let A ∈ PSL(2, R) be hyperbolic and B ∈ PSL(2, R) be an elliptic
transformation different from the identity. Prove that AB *= BA.

19. Use the map f (1.4.4) to derive the formulae for the hyperbolic distance
in the unit disc model similar to those in Theorem 1.3.5, for z,w ∈ U :

(i) ρ(z,w) ∈ ln |1−zw̄|+|z−w|
|1−zw̄|−|z−w|,

(ii) cosh2[12ρ(z,w)] = |1−zw̄|2
(1−|z|2)(1−|w|2) ,

(iii) sinh2[12ρ(z,w)] = |z−w|2
(1−|z|2)(1−|w|2) ,

(iv) tanh[12ρ(z,w)] = | z−w
1−zw̄ |.

20. Justify the calculations in (1.5.2) by checking that for the Möbius
transformation

w = T (z) =
az + b

cz + d
with z = x + iy, w = u + iv

we have
∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y

(these are the classical Cauchy–Riemann equations) and

T ′(z) =
dw

dz
=

1

2

(∂w

∂x
− i

∂w

∂y

)
=

∂u

∂x
+ i

∂v

∂x
;

(Hint: express x and y in terms of z and z and use the Cauchy–Riemann
equations.)

21. If we identify the tangent space TzH ≈ R2 with the complex plane C

by means of the map
(

ξ
η

)
1→ ξ + iη = ζ,
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then DT (ζ) = T ′(z)ζ, where in the left–hand side we have a linear transfor-
mation of TzH ≈ R2, and in the right–hand side, the multiplication of two
complex numbers.

22. Show that the right-hand side of expression (1.6.3) is equal to
cosh a cosh b − sinh a sinh b cos γ.


