
Problems from the midterm: solutions and comments

Problem 1.1. Consider the torus T obtained from a regular hexagon by
identifying pairs of opposite sides by translations. How many fixed points
can an isometry of T have?

Solution: The first step is to identify the isometries of T . The group
of isometries is generated by translations of the plane together with the
dihedral group D6, which comprises rotations and reflections and can be
interpreted as the group of isometries of the hexagon. Upon composition of
these generators, we obtain other rotations and reflections as well as glide
reflections along certain lines. In fact, any line forming an angle of kπ

6
with

the horizontal will do. An important point to keep in mind is that any
rotation is conjugate via a translation to a rotation around the centre of the
hexagon and hence has the same number of fixed points.

The next step is to count fixed points of these isometries. A non-trivial
translation has no fixed points, and a reflection has infinitely many. Because
a glide reflections preserves the family of lines parallel to its axis and acts
as a translation on any such line, the existence of a single fixed point for
such an isometry implies the existence of an entire line of fixed points. It
remains to consider rotations around the center of the hexagon.

Rotation around the centre of the hexagon will not fix any other point
in the interior, and so we need only consider the edges and vertices. The
six vertices of the hexagon are identified in two equivalence classes, each
corresponding to a different point on the torus. Rotation by ±

π

3
interchanges

these two vertices and permutes the edges, and so has only one fixed point,
the centre. Rotation by ±

2π

3
leaves these two vertices fixed and permutes

the edges, and so has three fixed points. Finally, rotation by π exchanges
the vertices but acts as the flip on each of the edges and in particular fixes
the midpoint of each edge, and so has four fixed points.

Thus the possible numbers of fixed points are 0, 1, 3, 4, and ∞. �

Comment: A completely rigorous discussion (which was not required for
the exam problem) would require proving that the list above exhausts all
isometries. This can be achieved by looking at simple (non self-intersecting)
closed geodesics. There are three parallel families forming the angles π

3
with

each other. Isometry moves any such family to another family. Composing
if necessary a given orientation preserving isometry I with a rotation by a
multiple of π

3
one produces an isometry which preserves each family. Since

an isometry is uniquely determined by images of three points (as in the
whole plane) this composition is a translation. Thus the isometry I is either
translation itself or a product of translation and rotation, hence a rotation
by kπ

3
. For an orientation reversing isometry take composition with a fixed

reflection which gives one of the above orientation preserving isometries.
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Problem 1.2. A regular map of type (p, q) on a surface is a map such that
every face has p sides and every vertex has p edges attached to it. Notice
that in both cases an edge may be counted twice if, correspondingly, the same
face lies on both sides of the edge, or if the edge is a loop.

Find for what valus of p and q there exists a regular map of type (p, q) on
the torus.

Solution: The corresponding problem for the sphere led us to the five
Platonic solids, and we adopt a similar approach here. Each face has p

sides, so pF = 2E, and similarly qV = 2E. Hence we have

χ = V − E + F = (
2

q
− 1 +

2

p
)E

Since the Euler characteristic of the torus is zero, this leads us to the nec-
essary condition

1

q
+

1

p
=

1

2

Thus both p and q are greater than 2 and at least one must be smaller
than 5 since 1

5
+ 1

5
< 1

2
. Thus the only positive integer solutions to this

equation are (3, 6), (4, 4), and (6, 3). These correspond to the three regular
tesselations of the plane, by triangles, squares, and hexagons, respectively;
each of these can be ‘rolled up’ onto the torus (in infinitely many different
ways) to demonstrate the existence of (infinitely many) (p, q)-regular maps
of a given type. �

Comment: The maps with the smallest number of elements are

• type (4, 4): the square with opposite sides identified, i.e. the first
standard model for the torus:

• type (6, 3): the (regular) hexagon with opposite sides identified, i.e.
the second standard model for the torus:

• type (3, 6): a parallelogram with opposite sides identified, and diag-
onal added.

Notice the difference with the sphere case where there is only one model
for each of the five admissible types.
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Question 2.1. Describe all isometries of the standard torus of revolution
(“the bagel”) listing orientation preserving and orientation reversing sepa-
rately. Is it true that every isometry extends to an isometry of R

3?

Solution: The orientation preserving isometries are given by (i) rotations
around the z-axis by any angle, along with (ii) rotation around any line
through the origin in the xy-plane by the specific angle π.

The orientation reversing isometries are given by (iii) reflections through
any vertical plane containing the z-axis, along with (iv) reflection through
the xy-plane composed with a rotation around z axis.

All isometries extend to isometries of R
3. �

Comment: We note first two common mistakes. First, the torus of revolution
is not isometric to the flat torus obtained from a planar model on a square,
and so it will do us no good to consider isometries of the latter.

Second, if we take the z-axis to be the axis of rotation, so that the torus
is given as the set of solutions to

(
√

x2 + y2 − 2)2 + z2 = 1

then the map of the surface obtained by rotating the vertically-oriented
circles is not an isometry.

A proof that the list is complete (not required) can be obtained as follows:
notice that the long and short horizontal circles (in the intersection with the
xy-plane) can be characterized as the only simple (non self-intersecting) iso-
lated closed geodesics. Hence every isometry preserves each of those circles.
On the circle the isometry is either a rotation or a reflection. Isometries
preserve angles and take geodesics into geodesics. Hence vertical circles are
mapped into vertical circles preserving distance along those. Thus if the
big horizontal circle rotates each vertical circle either just rotates with it
(rotation; case (i)) or rotates and reflects in the horizontal plane (case (iv)).
If the big horizontal circle is reflected then two vertical circles are fixed and
hence the isometry either fixes each point of those circles (case (iii)) or is
the reflection along the horizontal axis (case(ii)).


