MASS-09; ALGEBRA

FALL 2009

A.Katok
 HOMEWORK \# 1

Due on Wednesday September 9

1. Prove that any homomorphic image of the group \mathbb{Z} is a cyclic group.
2. (1) Prove that the group of all complex numbers of absolute value one by multiplication is isomorphic to the factor-group \mathbb{R} / \mathbb{Z}.
(2) Prove that the group of non-zero all complex numbers by multiplication is isomorphic to the group \mathbb{R}^{2} / G, where G is the group of vectors of the form $(n, 0), n \in \mathbb{Z}$.
3. Consider S_{3}, the group of all permutations of three elements. It has three subgroups of order 2 . Describe explicitly right and left cosets for each of these subgroups.
4. Find all possible orders of various elements in the symmetric groups S_{6} and S_{7}.
5. Find the number of cyclic permutations of n elements.
6. (1) Find the number of different elements of order 2 in the symmetric group S_{n}.
(2) Find the number of different elements of order 2 in the alternating group A_{n}, or equivalently, the number of different even involutions of n elements.
7. Consider the group $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
(1) Prove that G is the only group of order 8 all of whose element have order 2.
(2) Embed G into symmetric group S_{6}, i.e. find a subgroup of S_{6} isomorphic to G
(3) Prove that G cannot be embedded into S_{5}, i.e the latter group does not contain a subgroup isomorphic to G.
