MASS-09; ALGEBRA

FALL 2009

A.Katok

HOMEWORK \# 2

Due on Wednesday, September 16
8. Prove that the number of different conjugacy classes in the symmetric group S_{n} is equal to the number of different ways the number n can be represented as the sum of (not necessarily different) positive integers.
9. Prove that any orientation preserving (even, direct) isometry of \mathbb{R}^{3} that has a fixed point, has infinitely many fixed points.
10. Find all isometries in $\operatorname{Iso}\left(\mathbb{R}^{2}\right)$ that commute with a given translation.
11. A group of isometries (or any transformations of \mathbb{R}^{n}) is called discrete if the set of images of any point has no accumulation points.
(1) Prove that any discrete group $G \subset I \operatorname{so}\left(\mathbb{R}^{2}\right)$ contains a translation subgroup of finite index.
Hint: Assume the opposite and consider the subgroup $G \cap I o^{+}\left(\mathbb{R}^{2}\right)$.
(2) Give an example of an infinite discrete group $G \subset I \operatorname{so}\left(\mathbb{R}^{3}\right)$ that contains no translations (except for the identity).
12.
(1) Describe the full symmetry group of the integer lattice \mathbb{Z}^{2} in the plane.
(2) Give an example of a "nice" set in \mathbb{R}^{2} whose full symmetry group is the group \mathbb{Z}^{2} of translations by vectors with integer coordinates.

