MASS-09; ALGEBRA

FALL 2009

A.Katok

HOMEWORK # 2

Due on Wednesday, September 16

8. Prove that the number of different conjugacy classes in the symmetric group S_n is equal to the number of different ways the number n can be represented as the sum of (not necessarily different) positive integers.

9. Prove that any orientation preserving (even, direct) isometry of \mathbb{R}^3 that has a fixed point, has infinitely many fixed points.

10. Find all isometries in $Iso(\mathbb{R}^2)$ that commute with a given translation.

11. A group of isometries (or any transformations of \mathbb{R}^n) is called *discrete* if the set of images of any point has no accumulation points.

(1) Prove that any discrete group $G \subset Iso(\mathbb{R}^2)$ contains a translation subgroup of finite index.

Hint: Assume the opposite and consider the subgroup $G \cap Iso^+(\mathbb{R}^2)$.

(2) Give an example of an infinite discrete group $G \subset Iso(\mathbb{R}^3)$ that contains no translations (except for the identity).

12.

- (1) Describe the full symmetry group of the integer lattice \mathbb{Z}^2 in the plane.
- (2) Give an example of a "nice" set in \mathbb{R}^2 whose full symmetry group is the group \mathbb{Z}^2 of translations by vectors with integer coordinates.