MASS-09; ALGEBRA

FALL 2009

A.Katok
 HOMEWORK \# 4

Due on Wednesday September 30
17. Find a necessary and sufficient condition for the product of two screw motions to be a translation.
18. Let G be the isometry group of the n-dimensional cube I^{n}.
(1) Find the order of G.
(2) Find the numbers of even and odd involutions (elements of order two) in G.
Hint: Use induction in dimension.
19. The octacube whose imaginative rendering in stainless steel you may see in the lobby next to your classroom, is the four-dimensional polytope with 24 vertices: $(\pm 1, \pm 1, \pm 1, \pm 1),(\pm 2,0,0,0),(0, \pm 2,0,0)$, $(0,0, \pm 2,0),(0,0,0, \pm 2)$. Vertices of the octacube are obtained by adding to the vertices of the cube images of its center under reflections in its three-dimensional faces.
(1) Prove that the isometry group of the octacube acts transitively on its vertices and three-dimensional faces and that thus octacube qualifies as a regular polytope.
Hints: (i) Construct an isometry that maps $(2,0,0,0)$ to $(1,1,1,1)$;
(ii) It may help to construct the dual polytope.
(2) Carry the similar construction in \mathbb{R}^{3}, draw resulting polyhedron, find its isometry group and explain why it is not regular.
20. Prove that for any n there exists a discrete infinite subgroup of $\operatorname{Isom}\left(\mathbb{R}^{3}\right)$ that contains an element of order n.
21. Prove that any finite group of affine transformations in \mathbb{R}^{3} is isomorphic to a group of isometries.

