MASS-09; ALGEBRA

FALL 2009

A.Katok

HOMEWORK # 4

Due on Wednesday September 30

17. Find a necessary and sufficient condition for the product of two screw motions to be a translation.

18. Let G be the isometry group of the n-dimensional cube I^n .

- (1) Find the order of G.
- (2) Find the numbers of even and odd involutions (elements of order two) in G.

Hint: Use induction in dimension.

19. The octacube whose imaginative rendering in stainless steel you may see in the lobby next to your classroom, is the four-dimensional polytope with 24 vertices: $(\pm 1, \pm 1, \pm 1, \pm 1)$, $(\pm 2, 0, 0, 0)$, $(0, \pm 2, 0, 0)$, $(0, 0, 0, \pm 2)$. Vertices of the octacube are obtained by adding to the vertices of the cube images of its center under reflections in its three-dimensional faces.

- Prove that the isometry group of the octacube acts transitively on its vertices and three-dimensional faces and that thus octacube qualifies as a *regular polytope*.
 Hints: (i) Construct an isometry that mans (2, 0, 0, 0) to (1, 1, 1, 1)
 - *Hints:* (i) Construct an isometry that maps (2, 0, 0, 0) to (1, 1, 1, 1); (ii) It may help to construct the dual polytope.
- (2) Carry the similar construction in \mathbb{R}^3 , draw resulting polyhedron, find its isometry group and explain why it is not regular.

20. Prove that for any *n* there exists a discrete infinite subgroup of $Isom(\mathbb{R}^3)$ that contains an element of order *n*.

21. Prove that any finite group of affine transformations in \mathbb{R}^3 is isomorphic to a group of isometries.