# MASS-09; ALGEBRA 

FALL 2009

## A.Katok <br> HOMEWORK \# 5

Due on FRIDAY, OCTOBER 9 (after the midterms)
22. Consider the group $G$ of isometries of $\mathbb{R}^{2}$ generated by reflections in the sides of a triangle $T$.
(1) Prove that $G$ is discrete if and only if $T$ belongs to one of the four types: (i) regular; isosceles right; (iii) right with an angle $\pi / 6$; isosceles with an angle $2 \pi / 3$;
(2) In cases (i),(ii),(iii),(iv) as above, describe the finite index subgroups of translations in $G .^{1}$
23. Prove that an upper-triangular matrix is normal if and only if it is diagonal.

Hint: Look at diagonal elements. Induction in dimension may help.
24. Let $S U(2)$ be the group of complex unitary $2 \times 2$ matrices with determinant one. Prove that there is a continuous bijective map from the group $S U(2)$ onto the sphere $S^{3} \subset \mathbb{R}^{4}$.
25.(1) Prove that the group $\operatorname{Aff}\left(\mathbb{R}^{2}\right)$ is isomorphic to the group of projective transformations of the projective plane preserving a fixed line.
(2) Find a similar statement in lower dimension.

[^0]
[^0]:    ${ }^{1}$ there was a minor error in the original formulation: (iv) was omitted.

