MASS-09; ALGEBRA

FALL 2009

A.Katok

HOMEWORK # 5

Due on FRIDAY, OCTOBER 9 (after the midterms)

22. Consider the group G of isometries of \mathbb{R}^2 generated by reflections in the sides of a triangle T.

- (1) Prove that G is discrete if and only if T belongs to one of the four types: (i) regular; isosceles right; (iii) right with an angle $\pi/6$; isosceles with an angle $2\pi/3$;
- (2) In cases (i),(ii),(iii),(iv) as above, describe the finite index subgroups of translations in G^{1} .

23. Prove that an upper-triangular matrix is normal if and only if it is diagonal.

Hint: Look at diagonal elements. Induction in dimension may help.

24. Let SU(2) be the group of complex unitary 2×2 matrices with determinant one. Prove that there is a continuous bijective map from the group SU(2) onto the sphere $S^3 \subset \mathbb{R}^4$.

25.(1) Prove that the group $\operatorname{Aff}(\mathbb{R}^2)$ is isomorphic to the group of projective transformations of the projective plane preserving a fixed line.

(2) Find a similar statement in lower dimension.

¹there was a minor error in the original formulation: (iv) was omitted.