MASS-09; ALGEBRA

FALL 2009

A.Katok
HOMEWORK \# 6

Due on WEDNESDAY, October 21
26. Describe conjugacy classes in the group $S L(2, \mathbb{C})$. Give geometric interpretation as conformal maps of the Riemann sphere.
27. Find necessary and sufficient conditions for the anti-fractional linear transformation $z \rightarrow \frac{a \bar{z}+b}{c \bar{z}+d}, a, b, c, d \in \mathbb{C}$ of the Riemann sphere $\mathbb{C} \cup\{\infty\}$ to be
(i) inversion wrt. a circle,
(ii) reflection in a line.

Find the circle of inversion and the axis of reflection.
28. Let $S L(2, \mathbb{Z})$ be the group of integer matrices with determinant 1. Let $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right), B=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$. Prove that A and B are not conjugate in $S L(2, \mathbb{Z})$.
29. Consider the stationary subgroup S_{z} of $\operatorname{Isom}\left(\mathbb{H}^{2}\right)$ (i.e. fractional linear and anti-fractional linear transformations with real coefficients) fixing the point $z \in \mathbb{H}^{2}$.
(1) Prove that S_{z} is generated by inversions in circles centered on the real line and passing through z.
(2) Interpret the orientation preserving subgroup of S_{z} as hyperbolic rotations around z.
30. A general torus T is the factor-group \mathbb{R}^{2} / L, where L is the lattice generated by two linearly independent vectors vectors (a, b), and (c, d). The (Euclidean) distance in T is defined as the minimum of Euclidean distance between the elements of corresponding cosets.
(1) Prove that every isometry of T comes from \mathbb{R}^{2}.
(2) Prove that T always has isometries other than translations.
(3) Find a necessary and sufficient condition for T to possess an orientation reversing isometry.
31. Find the center of the group of 3×3 matrices of the form $\left(\begin{array}{ccc}1 & m & k \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right)$ where m, n and k are integers.

