MASS-09; ALGEBRA

FALL 2009

A.Katok

HOMEWORK # 8

Due on WEDNESDAY, November 4

37. Prove that $\pi_1(SL(2, R)) = \mathbb{Z}$.

38. Consider the subgroup G of $Isom(R^2)$ generated by the translation T(x, y) = (x + 1, y) and the glide reflection G(x, y) = (-x, y + 1).

- (1) Prove that G acts on \mathbb{R}^2 freely and in the discrete fashion.
- (2) Prove that G is non-abeloian and has an abelian subgroup of index two.
- (3) Let $K = R^2/G$ be the factor-space, Show that there is a twoto-one covering map $c : \mathbb{T}^2 \to K$.

39. Let $c: X \to S^1$ be a covering map. Prove that X is either the line or the circle.

40. Find subgroups of F_2 isomorphic to F_n , $n = 1, 2, 3, \ldots, \infty$

41. Show that F_2 has infinitely many non-conjugate subgroups of finite index.