MASS-09; ALGEBRA

FALL 2009

A.Katok

MIDTERM EXAMINATION
Tuesday, October 62009

SECTION 1. PROBLEMS

Provide complete solutions with proofs of any two of the problems.
1.1. Prove that the only non-abelian group of order 10 is the dihedral group D_{5}.
1.2. Find matrix representations for the following groups:
(1) Orientation preserving isometries in \mathbb{R}^{3} preserving a given plane.
(2) Affine maps in \mathbb{R}^{3} preserving a given plane.
1.3. Let T be factor-group \mathbb{R}^{2} / L, where L is the lattice generated by vectors $(1,0)$, and $(1 / 2, \sqrt{3} / 2)$ (T is another torus). The (Euclidean) distance in T is defined as the minimum of Euclidean distance between the elements of corresponding cosets.

Describe the group of isometries of T with Euclidean distance.
1.4. Prove that if an orientation preserving isometry in \mathbb{R}^{n} has a non-fixed point of period two, it has infinitely many such points.

SECTION 2. THEORETICAL QUESTIONS

2.1. List all conjugacy classes in the group $\operatorname{Isom}\left(\mathbb{R}^{3}\right)$.
2.2. List all finite groups of isometries (not only rotation groups) in \mathbb{R}^{3}.

SECTION 3. QUESTIONS

Give complete answers. Any explanations/proofs are optional.
3.1. How many different elements of orders 3,4 and 5 are in the symmetric group S_{9} ? How many of those permutations are even?
3.2. Name two non-isomorphic non-abelian groups of order 12 .
3.3. Consider the group G generated by reflections in the sides of the regular hexagon. List all normal subgroups of G.

