
Lectures on Groups and Their

Connections to Geometry

Anatole Katok

Vaughn Climenhaga

Department of Mathematics, Pennsylvania State University,

University Park, Pennsylvania 16802

E-mail address: katok a@math.psu.edu

Department of Mathematics, Pennsylvania State University,

University Park, Pennsylvania 16802

E-mail address: climenha@math.psu.edu





Contents

Chapter 1. Elements of group theory 1
Lecture 0 Wednesday, Thursday, and Friday, August 26–28 1
a. Binary operations 1
b. Monoids, semigroups, and groups 2
c. Multiplication tables and basic properties 5
d. Groups and arithmetic 7
e. Subgroups 9
f. Homomorphisms and isomorphisms 11
Lecture 1 Monday, August 31 13
a. Generalities 13
b. Cyclic groups 14
c. Direct products 16
d. Classification 17
e. Permutation groups 19
Lecture 2 Wednesday, September 2 21
a. Representations 21
b. Automorphisms: Inner and outer 23
c. Cosets and factor groups 25
d. Permutation groups 27
Lecture 3 Friday, September 4 30
a. Parity and the alternating group 30
b. Solvable groups 31
c. Nilpotent groups 34

Chapter 2. Symmetry in the Euclidean world: Groups of isometries
of planar and spatial objects 37

Lecture 4 Wednesday, September 9 37
a. Groups of symmetries 37
b. Symmetries of bodies in R2 39
c. Symmetries of bodies in R3 41
d. Isometries of the plane 44
Lecture 5 Friday, September 11 46
a. Even and odd isometries 46
b. Isometries are determined by the images of three points 46
c. Isometries are products of reflections 48
d. Isometries in R3 50

iii



iv CONTENTS

e. The group structure of Isom(R2) 51
Lecture 6 Monday, September 14 54
a. Finite symmetry groups 54
b. Discrete symmetry groups 57
Lecture 7 Wednesday, September 16 61
a. Remarks on Homework #3 61
b. Classifying isometries of R3 61
c. Isometries of the sphere 64
d. The structure of SO(3) 64
e. The structure of O(3) and odd isometries 66
Lecture 8 Friday, September 18 67
a. Odd isometries with no fixed points 67
b. Remarks from Thursday tutorial: Solution to Homework #2,

Exercise 11(1) 67
c. Finite subgroups of Isom(R3) 68
Lecture 9 Monday, September 21 74
a. Completion of the proof of Theorem 8.2 74
b. Regular polyhedra 76
c. Completion of classification of isometries of R3 79
d. From synthetic to algebraic: Scalar products 81
Lecture 10 Wednesday, September 23 83
a. Convex polytopes 83
b. Transformation groups and symmetries of polytopes 84
c. Regular polytopes 85
d. Back to scalar products 86

Chapter 3. Groups of matrices: Linear algebra and symmetry in
various geometries 89

Lecture 11 Friday, September 25 89
a. Orthogonal matrices 89
b. Eigenvalues, eigenvectors, and diagonalizable matrices 91
c. Complexification, complex eigenvectors and rotations 93
d. Differing multiplicities and Jordan blocks 95
Lecture 12 Monday, September 28 97
a. Hermitian product and unitary matrices 97
b. Normal matrices 100
c. Symmetric matrices 103
d. Linear representations of isometries and other classes of

gtransformations 103
Lecture 13 Wednesday, September 30 106
a. The projective line 106
b. The projective plane 109
c. The Riemann sphere 111
Lecture 14 Friday, October 2 113
a. Review of various geometries 113



CONTENTS v

b. Affine geometry 114
c. Projective geometry 116
d. The Riemann sphere and conformal geometry 118
Lecture 15 Friday, October 9 120
a. Comments on Theorem 14.1 120
b. Hyperbolic geometry 121
Lecture 16 Monday, October 12 122
a. Ideal objects 122
b. Hyperbolic distance 122
c. Isometries of the hyperbolic plane 126
Lecture 17 Wednesday, October 14 128
a. Matrix groups 128
b. Algebraic structure of the unipotent group 129
c. The Heisenberg group 130
Lecture 18 Friday, October 16 132
a. Groups of unipotent matrices 132
b. Matrix exponentials and relationship between multiplication

and addition 134
Lecture 19 Monday, October 19 137
a. Lie algebras 137
b. Lie groups 139
c. Examples 140

Chapter 4. Fundamental group: A different kind of group
associated to geometric objects 143

Lecture 20 Wednesday, October 21 143
a. Isometries and homeomorphisms 143
b. Tori and Z2 144
c. Paths and loops 146
d. The fundamental group 148
e. Algebraic topology 151
Lecture 21 Friday, October 23 153
a. Homotopic maps, contractible spaces and homotopy

equivalence 153
b. The fundamental group of the circle 156
c. Direct products, spheres, and bouquets of circles 157
Lecture 22 Monday, October 26 160
a. Fundamental groups of bouquets of circles 160

Chapter 5. From groups to geometric objects and back 167
Lecture 23 Wednesday, October 28 167
a. Cayley graphs 167
b. Homotopy types of graphs 169
c. Covering maps and spaces 172
d. Deck transformations and group actions 174



vi CONTENTS

Lecture 24 Friday, October 30 176
a. Subgroups of free groups are free 176
b. Abelian fundamental groups 176
c. Finitely presented groups 177
d. Free products 180
Lecture 25 Monday, November 2 181
a. Planar models 181
b. The fundamental group of a polygonal complex 184
c. Factor spaces of the hyperbolic plane 186
Lecture 26 Wednesday, November 4 188
a. Hyperbolic translations and fundamental domains 188
b. Existence of free subgroups 191
c. Surfaces as factor spaces 193
Lecture 27 Friday, November 6 195
a. A rough sketch of geometric representations of surface

groups 195
b. Fuchsian groups 196
c. More on subgroups of PSL(2,R) 198
d. The Heisenberg group and nilmanifolds 199

Chapter 6. Groups at large scale 203
Lecture 28 Monday, November 9 203
a. Commensurability 203
b. Growth in finitely generated groups 204
Lecture 29 Wednesday, November 11 207
a. Different growth rates 207
b. Groups with polynomial growth 208
c. Abelian groups 209
d. Nilpotent groups 210
Lecture 30 Friday, November 13 213
a. The automorphism group 213
b. Outer automorphisms 214
Lecture 31 Monday, November 16 216
a. The structure of SL(2,Z) 216
b. The space of lattices 218
c. The structure of SL(n,Z) 219
Lecture 32 Wednesday, November 18 222
a. Generators and generating relations for SL(n,Z) 222
b. Semi-direct products 224
c. Examples and properties of semi-direct products 226
Lecture 33 Friday, November 20 228
a. Quasi-isometries 228
b. Quasi-isometries and growth properties 229
c. Geometric properties of groups 230



CHAPTER 1

Elements of group theory

Lecture 0. Wednesday, Thursday, and Friday, August 26–28

a. Binary operations. We learn very early on that numbers are more
than just static symbols which allow us to quantify one thing or another.
Indeed, they can be added, subtracted, multiplied, and (usually) divided,
and this toolbox of arithmetic operations is largely responsible for the phe-
nomenal variety of uses we are able to make of the concept of “number”.

The study of arithmetic is the study of the behaviour of these tools
and of the numbers with which they interact. Given the utility of these
arithmetic tools, one may reasonably ask if their usefulness is inextricably
bound up in their domain of origin, or if we might profitably apply them
to something besides numbers (although just what else we ought to use in
place of numbers is not obvious).

Fortunately for our purposes (otherwise this course would not exist), the
latter alternative turns out to be the correct one. As so often happens in
mathematics, the arithmetic tools of addition, multiplication, etc. can be
abstracted and generalised for use in a much broader setting; this generali-
sation takes us from arithmetic to algebra, and leads us eventually into an
incredibly rich field of mathematical treasures.

We begin our story where so many mathematical stories begin, with a set
X, which we then equip with some structure. In this case, the key structure
we will place on X is a binary operation—that is, a function which takes two
(possibly equal) elements of X as its input, and returns another (possibly
equal) element as its output.

Formally, a binary operation is a map from the direct product X×X to
the original setX. Rather than using the functional notation f : X×X → X
for this map, so that the output associated to the inputs a and b is written
as f(a, b), it is standard to represent the binary operation by some symbol,
such as ⋆, which is written between the two elements on which it acts—thus
in place of f(a, b) we write a ⋆ b.

This notation becomes intuitive if we consider the familiar examples
from arithmetic. If X is some class of numbers (such as N, Z, R, or C), then
the usual arithmetic operators are binary operations; for example, addition
defines a map f+ : X × X → X by f+(a, b) = a + b, subtraction defines a
map f−(a, b) = a− b, and so on.

1



2 1. ELEMENTS OF GROUP THEORY

Exercise 0.1. In fact, subtraction and division only define binary op-
erations on some of the classes of numbers listed above. On which sets do
they fail to be binary operations, and why?

When we need to indicate which binary operation a set is equipped with,
we shall do so by writing the two as an ordered pair. Thus (N,+) denotes
the natural numbers equipped with addition, while (R, ·) denotes the real
numbers with multiplication.

Since we tend to think of arbitrary binary operations as generalisations
of either addition or multiplication, it is common to refer to a ⋆ b as either
the “sum” or the “product” of a and b, even when (X, ⋆) is arbitrary.

Example 0.1. Although addition and multiplication are the two pri-
mary examples, we can define many other binary operations on the above
sets of numbers, not all of which are particularly interesting:

(1) a ⋆ b = ab+ 2
(2) a ⋆ b = a+ b− 5
(3) a ⋆ b = a− 3
(4) a ⋆ b = 4

Example 0.2. As suggested in the introduction, we can define binary
operations on sets which are not sets of numbers. For example, let X be an
arbitrary set, and consider the power set P (X), which is the set of all subsets
of X. We may define a binary operation on P (X) by taking intersections:
S1 ⋆ S2 = S1 ∩ S2, where S1, S2 ⊂ X. Alternately, we may define ⋆ by
taking unions, and consider (P (X),∪). Other set operations lead to similar
constructions.

Example 0.3. Addition of vectors in Rn is a binary operation. In the
particular case n = 3, another binary operation is given by the cross product
u × v. Note that the dot product u · v is not a binary operation, since it
returns a scalar (an element of R), rather than a vector in R3.

Example 0.4. Given a set X, let F (X) be the set of all maps from
X to itself; then composition defines a binary operation on F (X), with
(f ◦ g)(x) = f(g(x)) for f, g ∈ F (X). This example will eventually turn out
to be of much greater importance than may initially be apparent.

Example 0.5. Let M(n,R) be the set of n×n matrices with real entries;
matrix multiplication defines a binary operation on M(n,R).

b. Monoids, semigroups, and groups. As given so far, the concept
of binary operation is really too general to be of much use (as one may
perhaps divine from Example 0.1). Given a, b, c ∈ X, the definition of
binary operation tells us that a ⋆ b and b ⋆ c are again elements of X, and
so we may consider the two elements (a ⋆ b) ⋆ c and a ⋆ (b ⋆ c). If these two
elements differ, then it is not clear which one is to be thought of as the
“product” (to use the multiplicative terminology) of the three elements a,
b, and c. This motivates the following definition.
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Definition 0.6. A binary operation ⋆ is associative on a set X if (a ⋆
b) ⋆ c = a ⋆ (b ⋆ c) for every a, b, c ∈ X.

Example 0.7.

(1) The usual notions of addition and multiplication are associative, while
subtraction and division are not.

(2) The set operations ∪ and ∩ are associative on P (X).
(3) Vector addition is associative, while the cross product is not: (u×u)×

v = 0, while u × (u× v) 6= 0 provided u and v are nonzero.

Exercise 0.2.

(a) Show that composition of functions is associative.
(b) Show that matrix multiplication is associative.

Associativity says that we may simply write the product of three ele-
ments as a ⋆ b ⋆ c, as the resulting element is the same whether we bracket
the product as (a ⋆ b) ⋆ c or a ⋆ (b ⋆ c).

Exercise 0.3. Let ⋆ be associative on X, and show that given any
elements a1, . . . , an ∈ X, the product a1 ⋆ · · · ⋆ an is the same no matter
where one puts the brackets.

Definition 0.8. A set X together with an associative binary operation
⋆ is called a monoid.

Remark. We must emphasise that apart from associativity, no other
hypotheses whatsoever are placed on ⋆. In particular, we do not assume
that ⋆ is commutative—that is, that a ⋆ b = b ⋆ a—one may easily check
that although this property holds for the familiar cases of multiplication
and addition of numbers, it fails for composition of functions and for matrix
multiplication.

It turns out that monoids are too general to be as useful as we would like.
We can remedy the situation somewhat by adding one more requirement.

Definition 0.9. Given a monoid (X, ⋆), an identity element is an ele-
ment e ∈ X such that e ⋆ a = a = a ⋆ e for every a ∈ X. A monoid which
possesses an identity element is known as a semigroup.

Example 0.10.

(1) In an additive number semigroup, such as (C,+), the identity element
is 0.

(2) In a multiplicative number semigroup, such as (Z, ·), the identity element
is 1.

(3) (P (X),∪) is a semigroup with identity element ∅; (P (X),∩) is a semi-
group with identity element X.

(4) (F (X), ◦) is a semigroup whose identity element is the identity map.
(5) (M(n,R), ·) is a semigroup whose identity element is the n× n identity

matrix.
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Remark. The similarity in form between the last two statements in
Example 0.10 is no coincidence. Although n × n matrices can be viewed
simply as square arrays of numbers, and matrix multiplication as merely
an arbitrary rule, a mathematical version of “Simon says”, it is much more
enlightening to consider elements of M(n,R) as linear maps from Rn to it-
self. Then matrix multiplication corresponds to composition of linear maps,
which gives an easy solution of Exercise 0.2—certainly much simpler than
trying to verify associativity using the formula for multiplying three matrices
together!

This is an early example of the connection between algebra and geometry—
here a geometric interpretation (matrices are linear maps) led to a much
simpler proof of an algebraic fact (matrix multiplication is associative). We
will explore many such connections in this course.

We will be interested in semigroups which satisfy one additional require-
ment.

Definition 0.11. Let (X, ⋆) be a semigroup. An element b ∈ X is the
inverse of a ∈ X if a ⋆ b = e = b ⋆ a. A semigroup in which every element
possesses an inverse is a group.

Thus a group is a set equipped with an associative binary operator and
an identity element, in which every element has an inverse.

Exercise 0.4. One might ask if both equalities in Definition 0.11 are
strictly necessary—that is, once we know that a ⋆ b = e, does it follow that
b ⋆ a = e as well? Show that this is not necessarily the case, and so we do
need to specify that b is a two-sided inverse.

Example 0.12.

(1) (Z,+), (R,+), and (C,+) are groups: the inverse of a is −a. (N,+) is
not a group, as no negative numbers are included, and hence no positive
numbers have inverses.

(2) (R+, ·) and (C \ {0}, ·) are groups: the inverse of a is 1/a. (R, ·) and
(C, ·) are not groups, as 0 has no inverse; similarly, (Z, ·) and (N, ·) are
not groups.

(3) Neither (P (X),∪) nor (P (X),∩) are groups; indeed, they do not have
any invertible elements, in contrast to the previous examples of R and
C.

(4) (F (X), ◦) is not a group if X has more than one element (consider the
map f : X → X which maps everything to one element). However,
we may obtain a group by restricting our attention to the set S(X) of
invertible maps in F (X)—that is, the set of bijections (one-to-one and
onto maps) from X to itself.

(5) Similarly, M(n,R) is not a group for n ≥ 1, as matrices with zero
determinant are non-invertible. By removing such matrices, we obtain
the general linear group

GL(n,R) = {A ∈M(n,R) | detA 6= 0},
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which will be central to many of our later investigations.

The notation we use will usually reflect one of the first two examples
above. In additive notation, the inverse of a is written −a; in multiplicative
notation, we write it as a−1.

c. Multiplication tables and basic properties. Take the set of all
integers, and partition it into two subsets, one containing all the even in-
tegers, the other containing all the odds. Denote the former by E and the
latter by O. Then the set X = {E,O} inherits the binary operations of
addition and multiplication from the integers; the sum of two even numbers
is even, thus we write E +E = E, and so on. All the possible combinations
are summed up in the following tables:

· E O
E E E
O E O

+ E O
E E O
O O E

Such a table will be referred to as a multiplication table (even though the
binary operation in question may be addition), and can be constructed for
any binary operation on a finite set. From the table we can read off the value
of a⋆b by looking at the entry in the row corresponding to a and the column
corresponding to b, and thus the table gives us complete information about
the binary operation. For example, if we write Z/3Z = {0, 1, 2} for the set
of possible remainders upon division by 3, and take as our binary operation
either addition or multiplication modulo 3, we obtain the following:

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

In general, there is no easy way to see from a multiplication table whether
a given binary operation is associative, short of checking every possible com-
bination (which can become remarkably tedious). However, once we have
verified associativity (through tedious means or otherwise), the other group
axioms can be checked relatively easily.

A left identity element is eℓ ∈ X such that eℓ ⋆ a = a for every a ∈ X;
the various elements eℓ⋆a are the entries in the row of the table labeled with
eℓ, and so the statement that eℓ is a left identity amounts to the statement
that the corresponding row merely repeats the entries in the top row of the
matrix (the column labels). Thus we see from the above tables that:

(1) E is a left identity for ({E,O},+).
(2) O is a left identity for ({E,O}, ·).
(3) 0 is a left identity for (Z/3Z,+).
(4) 1 is a left identity for (Z/3Z, ·).

Similarly, a right identity element is er ∈ X such that a ⋆ er = a for
every a ∈ X; this corresponds to a column in the matrix which repeats the
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row labels, and we see that for the four examples given, the left identities
are also right identities, and hence true two-sided identity elements. Thus
all of these examples are semigroups.

Remark. In fact, to check that a monoid X is a semigroup, it suffices
merely to check that X has both a left identity eℓ and a right identity er,
for then we have eℓ = eℓer = er (using the definitions of left and right
identities), and hence the two agree.

Checking for the existence of an inverse is also simple. Given an element
a ∈ X, a left inverse for a is an element b such that b⋆a = e; this corresponds
to the occurrence of the identity e in the column headed by a. Thus every
element of X has a left inverse if and only if the identity element appears
in every column of the multiplication table.

Similarly, every element ofX has a right inverse if and only if the identity
element appears in every row of the multiplication table. Thus if X is a
group, then the identity element appears in every row and column.

It is not a priori obvious that this necessary condition is also sufficient—
after all, the definition of a group requires the left and right inverses of a
to be the same. However, we may observe that if b and b′ are left and right
inverses for a, respectively, then b⋆a = a⋆b′ = e, and hence b = b⋆ (a⋆b′) =
(b ⋆a) ⋆ b′ = b′. It follows that the left and right inverse agree, and are equal
to a−1.

Example 0.13.

(1) ({E,O},+) and (Z/3Z,+) are groups.
(2) ({E,O}, ·) is not a group, as E has no inverse.
(3) (Z/3Z, ·) is not a group, as 0 has no inverse.

Remark. Once we know that (X, ⋆) is a group, we can deduce an even
stronger result about its multiplication table. Not only does the identity
element appear in each row and each column, but every element of X does.
To see this, let a, b ∈ X be arbitrary, and let c = b⋆a−1. Then b = c⋆a, and
thus b appears in the column headed by a. This shows that every element
appears in every column, and a similar argument shows that every element
appears in every row.

We can also make the dual observation that no element can appear twice
in the same row or column (if X is finite, this is equivalent to the result in
the previous paragraph, but for infinite X it is independent). To see this,
consider the column headed by a, and let b, c ∈ X be arbitrary. Then if
b ⋆ a = c ⋆ a, we have (b ⋆ a) ⋆ a−1 = (c ⋆ a) ⋆ a−1, and hence b = c. Since the
entries in the column headed by a are all of the form b ⋆ a, it follows that
they are all distinct.

One further comment about inverses is in order. What is the inverse of
a ⋆ b? A näıve guess would be a−1 ⋆ b−1—the reader is invited to verify that
this does not work out. Instead, one must reverse the order, and we find
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that (a ⋆ b)−1 = b−1 ⋆ a−1. In fact, this is perfectly intuitive. Instead of
group elements, think of a and b as standing for daily actions; let a stand
for putting on socks, and b for putting on shoes. These two things are of
course not commutative—putting on shoes before socks produces a most
ineffective set of footwear. Their inverses are a−1 (taking off socks) and b−1

taking off shoes. Then common sense and daily experience tell us that in
order to invert the element a ⋆ b (putting on socks, then shoes), we must
first apply b−1 (remove shoes), and then apply a−1 (remove socks).

d. Groups and arithmetic. The two most familiar binary operations
are addition and multiplication; we have already seen these applied to var-
ious classes of numbers (natural, integer, real, complex). One further ex-
ample which bears mentioning is the integers taken modulo a fixed n. This
arises when we fix n ∈ N and consider the equivalence relation on the inte-
gers which is given by congruence modulo n: a ≡ b mod n if and only if n
divides b − a. As with any equivalence relation, this induces a partition of
the integers into equivalence classes, such that two integers are congruent
modulo n if and only if they lie in the same equivalence classes.

The equivalence class of a ∈ N may be denoted

[a]n = {b ∈ Z | a ≡ b mod n};
there are exactly n equivalence classes, and the collection of these classes is
denoted Z/nZ. We see that Z = [0]n ∪ [1]n ∪ · · · ∪ [n− 1]n, and so

Z/nZ = {[0]n, [1]n, . . . , [n− 1]n}.
Observe that the example {E,O} from before is just another way of writing
Z/2Z.

Addition and multiplication both define binary operations on Z/nZ in
the obvious way; that is,

[a]n + [b]n = [a+ b]n, [a]n · [b]n = [ab]n.

Exercise 0.5. Check that these operations are well-defined; that is, that
if a, a′, b, b′ ∈ Z are such that [a]n = [a′]n and [b]n = [b′]n, then [a + b]n =
[a′ + b′]n, and similarly for multiplication.

For simplicity of notation, we will from now on write a in place of [a]n,
with the understanding that we work modulo n; thus Z/nZ may be thought
of as comprising the integers from 0 to n− 1.

It may easily be checked that (Z/nZ,+) is a group, in which the identity
element is 0 and the inverse of a is n − a. This group has the important
property that it is generated by a single element; that is, if we consider the
elements 1, 1+1, 1+1+1, and so on, we eventually get every element of the
group. Such a group is called cyclic, and the element which is repeatedly
added to itself (in this case 1) is called a generator.

Exercise 0.6. Find necessary and sufficient conditions for a to be a
generator of Z/nZ.
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The situation with (Z/nZ, ·) is more complicated. This is a semigroup
with identity element 1, but is not yet a group, because 0 has no inverse.
In order to obtain a group, we should restrict our attention to invertible
elements—are there any of these? a is invertible if and only if there exists
b such that ab ≡ 1 mod n; equivalently, we require the existence of b, d ∈ Z
such that ab − nd = 1. Using the Euclidean algorithm, we know that such
integers exist if and only if a and n are relatively prime (their greatest
common divisor is 1).

We now restrict our attention to the set

(Z/nZ)∗ = {[a]n | a and n are relatively prime}.
Exercise 0.7. Show that ((Z/nZ)∗, ·) is a group.

The fact that (Z/nZ)∗ is a group under multiplication gives us an alge-
braic structure with which to work; we can use this structure to give simple
proofs of some arithmetic facts.

Example 0.14. Let p be prime, so that (Z/pZ)∗ = {1, . . . , p − 1}. We
compute the residue class of (p− 1)! modulo p by observing that (p− 1)! is
the product of all the elements of (Z/pZ)∗, and so

(0.1) [(p − 1)!]p = [1]p[2]p · · · [p− 1]p.

Since (Z/pZ)∗ is a group, every element has an inverse; for each 1 ≤ a ≤ p−1
there exists b such that [a]p[b]p = [1]p. Assuming a 6= b, we may remove [a]p
and [b]p from (0.1) without changing the product. Repeating this process
until we have removed every element which is not its own inverse, we see
that

[(p− 1)!]p =
∏

{1≤a≤p−1|[a]2p=[1]p}

a.

Now [a]2p = [1]p if and only if a2 − 1 = (a − 1)(a + 1) is a multiple of p.
Since p is prime, this implies that either a − 1 or a + 1 is a multiple of p,
and hence [a]p is either [1]p or [p− 1]p. It follows that [(p− 1)!]p = [p− 1]p,
or equivalently, (p− 1)! ≡ p− 1 mod p.

We may summarise this by saying that p divides (p − 1)! + 1 for every
prime number p, a fact which is not at all obvious without invoking the
group structure of (Z/pZ)∗.

Example 0.15. Fermat’s Little Theorem states that if p is prime and
1 ≤ a < p, then ap−1 ≡ 1 mod p. To see this, we once again consider
the product of all elements in (Z/pZ)∗, as in (0.1), and then consider the
following product:

(0.2) [ap−1(p− 1)!]p = [a]p[2a]p · · · [(p− 1)a]p.

Because (Z/pZ)∗ is a group, the elements in (0.2) are just a permutation
of the elements in (0.1) (recall our discussion of multiplication tables). It
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follows that the products are the same, since we are in the abelian setting,
and thus

[(p − 1)!]p = [ap−1]p[(p − 1)!]p.

Multiplying both sides on the right by [(p − 1)!]−1
p gives the result.

Example 0.16. Fermat’s Little Theorem can be generalised to Euler’s
Theorem, which states that aϕ(n) ≡ 1 mod n whenever a and n are relatively
prime, where ϕ(n) is Euler’s totient function, which counts the number
of integers 1 ≤ k < n which are relatively prime to n. This number is
exactly the cardinality of the group (Z/nZ)∗, and so the same argument as
in Exercise 0.15 yields a proof of this result.

From now on we will use multiplicative notation for arbitrary groups,
unless otherwise specified, and will often indicate the binary operation by
juxtaposition, writing ab (or perhaps a · b) in place of a ⋆ b and referring to
the resulting element as the product of a and b. The identity element will
usually be denoted by 1 rather than e. We will also denote exponents in the
standard way: a0 = 1 and an+1 = an · a. Negative exponents are defined by
a−n = (a−1)n, where a−1 is the inverse of a.

Definition 0.17. Let X be an arbitrary group. The order of a ∈ X is
the smallest positive integer k such that ak = 1; if no such integer exists, we
say that the order of a is ∞.

Exercise 0.8. Show that if X is finite, then the order of every element
divides the cardinality of the group.

e. Subgroups. Let G be a group, and suppose that H ⊂ G is also a
group with the same binary operation ⋆. Then H is called a subgroup of G.
Since H is a group in its own right, it must satisfy the following properties:

(1) If a, b ∈ H, then a ⋆ b ∈ H.
(2) If a ∈ H, then a−1 ∈ H.
(3) e ∈ H.

The first of these states that H is closed under multiplication, which guar-
antees that ⋆ is a genuine binary operation on H. Then associativity of ⋆
on H follows from associativity on G.

The second and third requirements guarantee that H is closed under
taking inverses (hence inverses exist in H) and has an identity element. In
fact, given an arbitrary non-empty subsetH ⊂ G, it suffices to check (1) and
(2) to see that H is a group; choosing any a ∈ H, (2) implies that a−1 ∈ H,
and then (1) implies that a ⋆ a−1 = e ∈ H.

Exercise 0.9. Show that H ⊂ G is a subgroup if and only if ab−1 ∈ H
whenever a, b ∈ H.

The technique of passing to a subgroup is a standard source of new
groups to study, and helps us to relate various groups with which we are
already familiar.



10 1. ELEMENTS OF GROUP THEORY

Example 0.18.

(1) (Z,+) and (R,+) are subgroups of (C,+).
(2) (R+, ·) is a subgroup of (C \ {0}, ·).
(3) The unit circle S1 = {z ∈ C | |z| = 1} is closed under multiplication

and inverses, and contains the identity, hence (S1, ·) is a subgroup of
(C \ {0}, ·).
A richer set of examples comes from considering the group S(Rn) of

all invertible maps from Rn to itself. By considering classes of maps with
certain other properties, we obtain various important subgroups.

Example 0.19. We have already observed that n×n real matrices may
be thought of as linear maps on Rn; thus GL(n,R) may be viewed as a
subgroup of S(Rn). An important subgroup of GL(n,R) (and thus of S(Rn))
is the special linear group

SL(n,R) = {A ∈M(n,R) | detA = 1}.
The proof that SL(n,R) is a subgroup is an easy application of the fact
that the identity matrix has determinant 1 and that the determinant is
multiplicative (detAB = detA · detB).

Example 0.20. An isometry of Rn is a map f : Rn → Rn such that
d(f(x), f(y)) = d(x,y) for every x,y ∈ Rn, where d is the Euclidean dis-
tance

d(x,y) =
√

(x1 − y1)2 + · · · + (xn − yn)2.

Let Isom(Rn) denote the set of all isometries of Rn. It is easy to check that
the composition of two isometries is an isometry, that the identity map is an
isometry, and that the inverse of an isometry is an isometry, and it follows
that Isom(Rn) is a subgroup of S(Rn).

Example 0.21. Let UT (n,R) denote the set of all upper triangular ma-
trices in GL(n,R); that is, all invertible n×n matrices A such that Aij = 0
whenever i > j, and thus all entries below the main diagonal vanish. We
claim that UT (n,R) is a subgroup of GL(n,R); clearly it contains the iden-
tity matrix, and it is not hard to show that it is closed under multiplication.
However, it is not immediately clear why the inverse of an upper triangu-
lar matrix is upper triangular. One proof of this fact may be given using
Cramer’s rule, which gives an explicit formula for the inverse of a matrix.

Another proof is as follows. Observe that an n × n matrix A is upper
triangular if and only if it can be decomposed as A = DU , where D is a
diagonal matrix and U is upper triangular with all diagonal entries equal to
1. Now A−1 = (DU)−1 = U−1D−1; one may check that D−1 is a diagonal
matrix, and thus it suffices to show that U−1 is upper triangular.

U has the form I + X, where all non-zero entries of X lie above the
main diagonal. An easy computation shows that Xn = 0 (for X2, the
entries immediately above the main diagonal vanish, for X3, the entries
in the two diagonals above the main diagonal vanish, and so on)—such a
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matrix is called nilpotent. We may adapt the familiar formula (1 + x)−1 =
1 − x+ x2 − x3 + · · · , since in this case the sum terminates, and we have

U−1 = (I +X)−1 = I −X +X2 − · · · + (−1)n−1Xn−1.

Each Xk is upper triangular, thus U−1 is upper triangular, and we are done.

f. Homomorphisms and isomorphisms. As is the case with any
mathematical structure, when we consider a map from one group to another,
we are not interested in just any old map, but rather one which somehow
preserves the algebraic structure given by the group. This is made precise
by the following definition.

Definition 0.22. Let G and H be groups. A map ϕ : G → H is a
homomorphism if ϕ(ab) = ϕ(a)ϕ(b) for every a, b ∈ G. If in addition ϕ is
a bijection (one-to-one and onto), it is called an isomorphism, and we say
that G and H are isomorphic.

This definition may be phrased as follows: a homomorphism is a map ϕ
such that given any two elements a, b ∈ G, we may either multiply a and b,
and then apply ϕ, or apply ϕ to a and b, and then multiply the resulting
elements of H, with the same result.

Another way of saying the same thing is to state that ϕ is a homomor-
phism if the following diagram commutes:

G×G
ϕ×ϕ−−−−→ H ×H

y⋆G

y⋆H

G
ϕ−−−−→ H

Here ϕ× ϕ is the map (ϕ× ϕ)(a, b) = (ϕ(a), ϕ(b)).

Proposition 0.23. Let ϕ : G → H be a homomorphism. Then the
following hold:

(1) ϕ(eG) = eH ;
(2) ϕ(a−1) = ϕ(a)−1 for every a ∈ G.

Proof. We need only perform some simple computations.

(1) ϕ(eG) = ϕ(eGeG) = ϕ(eG)ϕ(eG). Multiplying both sides by ϕ(eG)−1

gives the result.
(2) eH = ϕ(eG) = ϕ(aa−1) = ϕ(a)ϕ(a−1), and multiplying both sides by

ϕ(a)−1 gives the result. �

Example 0.24.

(1) Fix a ∈ Z, and define ϕ : Z → Z by ϕ(n) = an. Then ϕ is a homomor-
phism. It is an isomorphism if and only if n = ±1.

(2) Fix a ∈ R, and define ϕ : R → R by ϕ(x) = ax. Then ϕ is a homomor-
phism, and is also an isomorphism provided a 6= 0.
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(3) Consider the exponential map ϕ : R → R+ given by ϕ(x) = ex. We have
ϕ(x + y) = ex+y = exey = ϕ(x)ϕ(y), and so ϕ is an isomorphism from
(R,+) to (R+, ·).

(4) Twist the exponential map by a right angle in the complex plane—that
is, consider ϕ(x) = eix, which maps R to C. Then ϕ is a homomorphism
from (R,+) to (C \ {0}, ·), but is not an isomorphism, as it is neither
one-to-one nor onto.

The last example provides a good illustration of an important general
principle. From the viewpoint of group theory, two isomorphic groups are
completely identical, and so it is of interest to know when two groups are
isomorphic, as this often lets us translate problems from one setting into
another, in which they may be more tractable, or which may give us new
insights. A homomorphism does not give us such a clean equivalence: (R,+)
and (C\{0}, ·) have very different properties. However, if we can find a way
to make the homomorphism a bijection, then we will have an isomorphism
which carries some genuine information.

To do this, we must first make the map ϕ : G→ H surjective by restrict-
ing our attention to the image of the map—that is, the set

Imϕ = {ϕ(a) | a ∈ G} ⊂ H.

Exercise 0.10. Show that Imϕ is a subgroup of H.

In the present example, this corresponds to considering ϕ as a map from
(R,+) to (S1, ·), in which case it becomes onto. To make it one-to-one, we
will need to introduce the kernel of a homomorphism, normal subgroups,
and quotient groups.
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Lecture 1. Monday, August 31

a. Generalities. Let us briefly review where we stand. We began by
defining a group—a set together with a binary operation which is associative,
has an identity element, and with respect to which every element is invert-
ible. We then moved on to define and discuss the concepts of subgroups,
homomorphisms, and isomorphisms.

These last three concepts, which are absolutely foundational to the study
of groups, are in fact not specific to group theory, but are really much more
general in scope. Let us explain what we mean by this.

In most branches of modern mathematics, one begins by considering a
set equipped with a certain sort of structure, which is defined by a list of
axioms. In the present case, the structure is a binary operation, and the
axioms are listed above. If we consider a set with two binary operations, and
if in addition we require them to interact in a certain way (which mirrors the
relationship between addition and multiplication of integers), then we are
dealing with another sort of algebraic object called a ring. Further examples
abound: a set with a linear structure is a vector space, a set with a notion of
convergence is a topological space, a set with a notion of distance is a metric
space, and so on and so forth.

Whatever structure we consider on a setX, we may then consider subsets
of X which inherit a similar structure; thus we obtain subgroups, subrings,
subspaces, etc. Given two sets X and Y with a particular structure, we may
also consider maps f : X → Y which preserve that structure. This is the
general notion of a morphism; depending on the structure we are studying,
we may refer to such maps as homomorphisms, linear maps, continuous
maps, isometries, etc.

Invertible morphisms—in the present case, isomorphisms—are particu-
larly important, because they allow us to treat X and Y as equivalent, from
the point of view of the structure being studied, by defining an equivalence
relation on the class of all sets endowed with that structure. This allows us
to pose the problem of classifying such objects, which in the case of groups
may be phrased as follows: Produce an explicit list of groups such that no
two groups on the list are isomorphic to each other, and such that every
group is isomorphic to a group on the list.

If we consider sets with no additional structure, then the relevant equiv-
alence relation is nothing but the existence of a bijection; two sets X and Y
are equivalent as sets if there exists a bijection from one to the other. Thus
the classification problem for sets reduces to producing a list of all possible
cardinalities. For finite sets, this is straightforward, as we need merely pro-
duce one set with each finite cardinality; this amounts to constructing the
natural numbers.1

1For infinite sets, the matter becomes somewhat more delicate, as one encounters the
continuum hypothesis and other such set theoretic beasts.
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Another familiar example is sets with a linear structure—vector spaces.
A complete classification of finite-dimensional vector spaces is given by the
list of Euclidean spaces Rn; every finite-dimensional vector space is isomor-
phic to the Euclidean space with the same dimension.2

It turns out that classifying groups, even only finite, is a much harder
problem than classifying either finite sets or finite-dimensional vector spaces.
It is too much to ask for a classification of all (even finite) groups, and so
one must instead proceed by classifying particular classes of groups. For
certain classes of group, e.g. abelian ones, this problem is manageable, as
will will soon explain. On the other hand, if one considers (finite) groups in
a natural sense opposite to abelian (such groups are called simple and we
will define this notion in due time), their classification has been one of the
outstanding achievements of twentieth-century algebra.

b. Cyclic groups. We begin by describing a class of groups which are
in some sense the “simplest possible” (but far from being simple in the sense
alluded to above).

Definition 1.1. Given a group G and an element g ∈ G, the subgroup
generated by g if 〈g〉 = {gn | n ∈ Z}. We say that G is cyclic if there exists
g ∈ G such that 〈g〉 = G. Such a g is called a generator of G.

Note that the elements gn may not be distinct; we may have gm = gn

for some m 6= n.

Remark. Let g ∈ G be arbitrary (not necessarily a generator). Since
subgroups are closed under the binary operation, any subgroup which con-
tains g must also contain 〈g〉. It follows that g is a generator if and only if
it is not contained in any subgroups of G other than G itself.

Example 1.2.

(1) The infinite group (Z,+) (which from now on will simply be denoted Z)
is cyclic; its generators are ±1.

(2) The group nZ = {. . . ,−2n,−n, 0, n, 2n, . . .} is cyclic; its generators are
±n. In fact, this group is isomorphic to Z via the map ϕ : Z → nZ given
by ϕ(a) = na.

(3) The group of residue classes (Z/nZ,+) (from now on simply denoted
Z/nZ) is a cyclic group with n elements. As with Z, the element 1 is
a generator; however, there are typically other generators as well. For
example, in the case n = 5, we see that the subgroup generated by 2 is
{0, 2, 4, 1, 3}, and so 2 generates Z/5Z.

Theorem 1.3. Every cyclic group is isomorphic to either Z or Z/nZ for
some n ∈ N.

2Again, for infinite-dimensional vector spaces life is more interesting, and in this
context one typically considers vector spaces with some additional structure, such as
Banach spaces or Hilbert spaces.
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Proof. Let G = 〈g〉. Suppose that gn 6= e for every n ∈ Z, n 6= 0.
Then gm 6= gn for all m 6= n (otherwise gm−n = e), and hence the map

ϕ : Z → G

n 7→ gn

is one-to-one. ϕ is onto since g generates G, and it is easy to check that ϕ
is a homomorphism, and hence an isomorphism.

Now suppose there exists n such that gn = e, and let n be the smallest
positive integer with this property. Define ϕ : Z/nZ → G by ϕ(k) = gk. The
fact that ϕ is a homomorphism follows from the fact that gn = e; injectivity
follows since n is minimal with this property; and surjectivity follows since
g generates G. Thus ϕ is an isomorphism. �

When we study a group G, one of the most important insights into its
structure comes from determining its subgroups. Since Theorem 1.3 tells us
that the groups Z and Z/nZ are universal models for all cyclic groups, we
can understand the subgroup structure of cyclic groups by understanding
the subgroups of these two examples.

Proposition 1.4. Every subgroup of the infinite cyclic group Z is of the
form nZ for some n ∈ Z.

Proof. Given a subgroup G ⊂ Z, let n be the minimal positive element
in G. It follows that nZ ⊂ G. Now suppose there exists k ∈ G such that
k /∈ nZ. Then there exists 1 ≤ r < k and q ∈ Z such that k = qn + r;
since G is a subgroup and since k, n ∈ G, we have r = k − qn ∈ G as well.
This contradicts the assumption that n is minimal, and we conclude that
G = nZ. �

Proposition 1.5. Every subgroup of a finite cyclic group Z/nZ is of
the form 〈k〉, where k is a factor of n.

Proof. Once again, fix a subgroup G ⊂ Z/nZ = {0, 1, . . . , n − 1},
and let k be the minimal positive element of G. The same argument as in
Proposition 1.4 shows that G = 〈k〉. To see that k divides n, let q ∈ N and
0 ≤ r < k be such that n = qk − r, and thus qk ≡ r mod n. It follows that
r ∈ G, and by the minimality of k, we must have r = 0, hence k divides
n. �

Corollary 1.6. If p is prime, then Z/pZ has no nontrivial subgroups.

Corollary 1.7. An element a ∈ Z/nZ is a generator if and only if a
and n are relatively prime.

Proof. By Proposition 1.5, every subgroup of Z/nZ is of the form 〈k〉,
where k divides n. a ∈ Z/nZ is a generator if and only if it is not contained
in any such subgroup (except for the case k = 1). But a ∈ 〈k〉 if and only
if k divides a, and so this is the statement that no factor of n divides a,
with the exception of 1, which is the statement that a and n are relatively
prime. �
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c. Direct products. Having described the simplest possible groups—
cyclic groups—we now examine ways to build more complicated groups from
these basic building blocks.

Definition 1.8. Let G and H be groups. The direct product of G and
H is the set

G×H = {(g, h) | g ∈ G,h ∈ H},
together with the binary operation

(g1, h1) · (g2, h2) = (g1g2, h1h2).

Exercise 1.1. Show thatG×H is a group with identity element (eG, eH).

Remark. Although the groups we deal with may not be abelian, the
operation of taking a direct product is commutative in the sense that G×H
and H ×G are isomorphic groups.

Example 1.9. Consider the group V = (Z/2Z) × (Z/2Z), which is the
direct product of two cyclic groups of order two; this is often called the
Klein four-group. We see that V = {(0, 0), (0, 1), (1, 0), (1, 1)}, and that
every element of V (besides the identity (0, 0)) has order two. In particular,
V has no generators, and so is not cyclic.

Example 1.10. Now consider G = (Z/2Z) × (Z/3Z). We have G =
{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}, and a simple computation shows that
the subgroup generated by (1, 1) is

〈(1, 1)〉 = {(0, 0), (1, 1), (0, 2), (1, 0), (0, 1), (1, 2)} = G.

Thus (1, 1) is a generator, and G is cyclic. It follows from Theorem 1.3 that
G is isomorphic to Z/6Z.

What is the difference between the previous two examples? Why is the
direct product cyclic in one case, and not in the other? The answer lies in
the following result.

Proposition 1.11. Let G and H be finite cyclic groups. The direct
product G×H is cyclic if and only if |G| and |H| are relatively prime.

Proof. By Theorem 1.3, it suffices to consider the case G = Z/mZ,
H = Z/nZ. We first show that if m and n are relatively prime, then G×H
is cyclic; indeed, (1, 1) is a generator.

To see this, observe that 〈(1, 1)〉 = {(a, a) | a ∈ Z}, and that (a, a) =
(k, ℓ) inG×H if and only if there exist p, q ∈ Z such that a = pm+k = qn+ℓ.
In this case we have pm− qn = ℓ− k. Now it follows from our assumption
that m and n are relatively prime that for every (k, ℓ), we may use the
Euclidean algorithm to find such a p and q. Letting a = pm + k, we have
(k, ℓ) = (a, a) ∈ 〈(1, 1)〉, and it follows that (1, 1) is a generator.

Now suppose m and n are not relatively prime, and let d > 1 be an
integer which divides both of them. Let k = mn/d, and observe that for
any (a, b) ∈ G ×H we have (ka, kb) = (0, 0) since m and n both divide k.
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It follows that the order of (a, b) divides k; in particular, because k < mn =
|G × H|, (a, b) is not a generator. This is true for any choice of a and b,
hence G×H is not cyclic. �

d. Classification. We can now offer a complete description of the
structure of all finite cyclic groups. Given a cyclic group G = Z/nZ, write
the prime factorisation of n as

n = pk11 · · · pkm
m ,

where pi 6= pj for i 6= j. The different factors pki

i are relatively prime, and
so Proposition 1.11 implies that

(1.1) G = (Z/pk11 Z) × · · · × (Z/pkm
m Z).

Exercise 1.2. Let p be prime and k ∈ N. Show that Z/pkZ has exactly
one subgroup of order pj for each 0 ≤ j ≤ k, and no other subgroups.

Exercise 1.2 shows that the cyclic groups whose order is a power of a
prime form a nice set of building blocks with which to work, since their
subgroup structure is quite transparent.

In fact, (1.1) is just a particular case of the more general structure the-
orem for finite abelian groups, which we only formulate now and will proof
later in this course.

Theorem 1.12. Let G be a finite abelian group. Then G can be written
in the form (1.1), where the pi are not necessarily distinct.

Of course, there is more to life than finite abelian groups. But this gives
us a good handle on one particular corner of the algebraic world, and shows
us how a more general class of groups (finite abelian groups) can be built
up from a much simpler one (cyclic groups of prime power order).

We have seen a number of results having to do with divisibility relation-
ships between the orders of various elements in a group, and between the
order of a subgroup and the order of a group. In fact, these relationships
hold far beyond the cyclic setting.

Theorem 1.13 (Lagrange’s Theorem). Let G be a finite group and H a
subgroup of G. Then |H| divides |G|.

Proof. We need the notion of a coset. Fix an element g ∈ G. The left
coset of H corresponding to g is

gH = {gh | h ∈ H};
the right coset Hg is defined similarly. Whether we consider left or right
cosets is a somewhat arbitrary choice; for now we consider left cosets, al-
though right cosets would work just as well.

The key observation is that the left cosets of H partition G; to see this,
fix two cosets g1H and g2H, and suppose that g1H ∩ g2H 6= ∅. Then there
exist h1, h2 ∈ H such that g1h1 = g2h2 ∈ g1H ∩ g2H, and it follows that
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g−1
2 g1 = h−1

2 h1 ∈ H (using the definition of a subgroup). From this we

obtain g−1
2 g1H = H, and multiplying on the left by g2 yields g1H = g2H.

The preceding argument shows that any two cosets g1H and g2H are
either disjoint or equal; it follows that the left cosets of H partition G, and
since |gH| = |H| for every g ∈ G, we obtain

|G| = |H| · (number of left cosets of H in G).

Thus |H| divides |G|, and we are done. �

Definition 1.14. The number |G|/|H| is called the index of the sub-
group H, and may be defined for subgroups of arbitrary (not necessarily
finite) groups as the number of left (or right) cosets.

Observe that the result of Exercise 0.8 may be obtained as a corollary
of Lagrange’s Theorem. The following consequence of Lagrange’s Theorem
will also be helpful.

Corollary 1.15. If |G| is prime, then G is cyclic.

Proof. Fix g ∈ G, g 6= e. Then |〈g〉| > 1, and since |〈g〉| divides |G|,
which is prime, we must have |〈g〉| = |G|, which is only possible if 〈g〉 = G.
It follows that g is a generator; hence G is cyclic. �

Armed with these results, we sally forth to classify the smallest groups
we can find. (One must begin somewhere.)

Groups of order ≤ 3 are easy: any group of order 1 is trivial, while
Corollary 1.15 tells us that any group of order 2 or 3 (and also 5) is cyclic,
and hence isomorphic to Z/2Z or Z/3Z by Theorem 1.3.

We have already encountered two non-isomorphic groups of order 4: the
cyclic group Z/4Z, and the Klein four-group (Z/2Z) × (Z/2Z).

Proposition 1.16. Any group of order 4 is isomorphic to one of these
two groups.

Proof. Let |G| = 4. We need to show that is G is not cyclic it is
isomorphic to (Z/2Z) × (Z/2Z). For, every element of such a groups G has
order 2 and hence is equal to its inverse Let g1 6= g2 be two non-identity
elements of G; both g1g2 and g2g1 are not equal to identity and neither
equals g1 or g2. Hence those elements coincide with the only remaining
element element of the group. Thus the map φ : G → (Z/2Z) × (Z/2Z)
defined as φ(e) = (0, 0), φ(g1) = (0, 1), φ(g2) = (0, 1), φ(g1g2) = (1, 1) is an
isomorphism. �

Once again, any group of order 5 is cyclic, and hence isomorphic to Z/5Z.
At the next step, though—groups of order 6—we suddenly find ourselves
with a little variety in our life. Of course one has the cyclic group Z/6Z,
but now a new breed of group appears, which we discuss next.



LECTURE 1. MONDAY, AUGUST 31 19

e. Permutation groups. We have proven by exhaustion that every
group with ≤ 5 elements is abelian. We now exhibit a non-abelian group
with 6 elements. Consider an equilateral triangle T in the plane, and let S3

be its set of symmetries. That is, S3 is the set of all isometries of the plane
which map T to itself; of course the identity map is in S3, but we also have
two rotations (by π/3 and by 2π/3 around the centre of the triangle) and
three reflections (through the three lines of symmetry), so that |S3| = 6.

Equipping S3 with the binary operation of composition, we obtain a
group, called the symmetric group of order 3, whose structure we will study
in more detail in the next lecture. For now, we observe that if we label the
three vertices of T and simply keep track of where the vertices are mapped,
then we know the entire action of any given element of S3. Thus using the
labels {1, 2, 3}, we see that S3 may also be thought of as the group of all
permutations of the set X3 = {1, 2, 3}; to use our earlier notation, this is
S(X3).

More generally, one may consider the symmetric group of order n, which
consists of all permutations of n elements, and is denoted Sn = S(Xn).

Proposition 1.17. |Sn| = n!.

Proof. Image of 1 can be defined in n different ways; that fixed image
of 2 can be defined in n− 1 different ways and so on. �

Since n! is a highly divisible number, Lagrange’s Theorem permits many
possible orders for the subgroups of Sn. This leaves the door open for a high
degree of complexity in the algebraic structure of Sn, although it does not
guarantee it. In fact, this complexity is present, and we state two ways in
which it is manifested.

The first way, which is quite simple, is the observation that the groups
Sn are nested; that is,

S2 ⊂ S3 ⊂ S4 ⊂ · · · ⊂ Sn ⊂ Sn+1 ⊂ · · · .
(In fact, Sn contains not just one, but n subgroups which are isomorphic to
Sn−1.)

The second (rather deeper) way in which the complex structure of Sn
manifests itself is the following:

Theorem 1.18. Every finite group is isomorphic to a subgroup of Sn
(for sufficiently large n).

Proof. Notice that every group acts by right translations on the set of
its elements. To be precise, consider for g ∈ G the transformation Rg that
maps every element h ∈ G into hg. Then composition Rg1 and Rg2 (in that
order) equals to Rg1g2. Hence g 7→ Rg is an injective homomorphism into
the group of all bijections of G. If G is finite its bijections can be identified
with permutations of order |G| simply by numbering elements of G in an
arbitrary way. Thus the homomorphism described above is an isomorphism
between G and a subgroup of S|G|. �
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A subgroup of Sn is called a permutation group. Theorem 1.18 says
that every finite group is isomorphic to a permutation group. This indicates
that we should not expect to gain complete understanding of the structure
of subgroups of Sn, since any behaviour which occurs in any finite group
occurs in them as well. This will not prevent us into gaining insights into
important structural properties of that group.
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Lecture 2. Wednesday, September 2

a. Representations. We begin with a theorem which was stated last
time.

Theorem 2.1. Let G be a finite group. Then G is isomorphic to a
subgroup of Sn, where n = |G|.

Proof. Given g ∈ G, define a map Rg : G → G by Rg(h) = hg. This
may be thought of as right translation by g; one could also define left trans-
lation by Lg(h) = gh. It follows from the axioms of a group that Rg is a
bijection:

(1) If Rgh1 = Rgh2, then h1g = h2g; hence h1 = (h1g)g
−1 = (h2g)g

−1 = h2,
so Rg is one-to-one.

(2) Given an arbitrary h ∈ G, we have Rg(hg
−1) = hg−1g = h, so Rg is

onto.

Now the map ϕ : g 7→ Rg defines a map from G into S(G), the group of all
bijections of G onto itself. Because G is finite, S(G) may also be written
as S|G| = Sn, and so it remains to show that ϕ is an isomorphism onto its
image.

Given g1, g2 ∈ G, we write Rg1Rg2 for the element of Sn obtained by
applying first Rg1, then Rg2 ; this could also be written as Rg2 ◦Rg1 , where
it is important to note that the order is reversed.

To see that ϕ is a homomorphism, we observe that for every h, g1, g2 ∈ G,
we have

(Rg1Rg2)h = Rg2(Rg1h) = Rg2(hg1) = hg1g2 = Rg1g2h.

It follows that ϕ(g1g2) = ϕ(g1)ϕ(g2).
Finally, observe that ϕ(g) is the identity map if and only if hg = h for all

h ∈ G. Since the identity element is the only element with this property, the
kernel of ϕ is trivial, hence ϕ is one-to-one. It follows that ϕ is a bijective
homomorphism—an isomorphism—from G onto ϕ(G) ⊂ Sn. �

Exercise 2.1. Carry out the analogous construction using Lg instead
of Rg. Be careful with the ordering. . . .

Theorem 2.1 is a concrete illustration of one of the purposes for which
homomorphisms and isomorphisms are designed—to build bridges between
the structure of different groups. When such bridges are built, it is often
the case that some of the structure of the first group is lost in translation;
this motivates the following definition.

Definition 2.2. Given a homomorphism ϕ : G→ H, the kernel of ϕ is
the set

(2.1) kerϕ = {g ∈ G | ϕ(G) = eH}.
Notice that kerϕ is a subgroup of G; If ϕ(g1) = ϕ(g2) = eH then

ϕ(g1g2) = ϕ(g1)ϕ(g2) = eHeH = eH
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Furthermore if kerϕ is trivial then ϕ is injective since ϕ(g1) = ϕ(g2)
implies that ϕ(g−1

1 g2 = eH

Remark. It may be helpful to realise that if V and W are vector spaces,
then they are also abelian groups (with the binary operation of vector addi-
tion). In this case, a linear map ϕ : V → W is also a group homomorphism,
and the kernel of ϕ is nothing but the null space.

Any element in the kernel of ϕ is in some sense erased by the action of
the homomorphism. Thus homomorphisms for which the kernel is trivial
(kerϕ = {e}) are of particular importance; such a homomorphism is called
an embedding, and we say that G is embedded into H. If we consider ϕ as
a map from G to the image ϕ(G) ⊂ H, then it is a bijection, and so G and
ϕ(G) are isomorphic. The subgroup ϕ(G) is the isomorphic image of G in
H.

Using this language, the moral of the story told in Theorem 2.1 can
be stated as follows: There is a class of universal objects (the symmetric
groups) into which every finite group can be embedded. Each such embed-
ding gives us a concrete realisation of a particular group, representing it as
a permutation group.

There are other classes of universal objects which we might use to rep-
resent abstract groups. The most important such class is the class of matrix
groups, and chief among these is the general linear group

(2.2) GL(n,R) = {A ∈M(n,R) | detA 6= 0},
where M(n,R) is the set of all n× n matrices with real entries.

Definition 2.3. A homomorphism ϕ : G→ GL(n,R) is called a linear
representation of G. If kerϕ is trivial, we say that the representation is
faithful.

Thus a faithful linear representation of a group G is an embedding of G
into a matrix group; to put it another way, a representation of G is a concrete
realisation of G as a collection of invertible matrices, and the representation
is faithful if distinct elements of G correspond to distinct matrices.

Proposition 2.4. The symmetric group Sn can be embedded into GL(n,R).

Proof. Sn is the group of all permutations of n symbols. To embed Sn
intoGL(n,R), we must find a one-to-one homomorphism ϕ : Sn → GL(n,R).
This involves assigning to each permutation g ∈ Sn an invertible linear map
ϕ(g) : Rn → Rn.

An easy way to do this is to fix n linearly independent elements in Rn—
say the standard basis vectors e1, . . . , en—and to let ϕ(g) be the unique
linear map which permutes these elements according to the permutation
given by g. That is, each g ∈ Sn corresponds to a bijection g : {1, . . . , n} →
{1, . . . , n}. Define the action of ϕ(g) on the vectors e1, . . . , en by

ϕ(g)ei = eg(i);
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since the vectors ei are linearly independent, ϕ(g) extends uniquely to a
linear map on their span, which is Rn.

The map ϕ is a homomorphism since a linear map is uniquely defined
by its action on any basis; by the same reason kerϕ is trivial. �

Choosing the standard basis vectors for the n linearly independent el-
ements in the proof of Proposition 2.4, the linear transformations ϕ(g) ∈
GL(n,R) will be represented by permutation matrices—that is, matrices for
which every row and column contains n − 1 entries equal to 0 and a single
entry equal to 1.

Remark. We will see later that linear representation of Sn described
above is not the “most economical”; for example Sn has a faithful represen-
tation in GL(n − 1,R).

Combining Theorem 2.1 and Proposition 2.4, we see that any finite group
can be embedded into a matrix group; to put it another way, every finite
group has a faithful linear representation.

b. Automorphisms: Inner and outer. Not all elements of a group
G are created equal. For example, the identity element is distinct from any
other element in that it leaves all elements unchanged under multiplication.
This property is completely intrinsic to the structure of the group, and is
independent of any particular concrete realisation or representation of the
group which we may choose.

Let us make this notion of “intrinsic property” more precise. An iso-
morphism ϕ : G → G is called an automorphism, and may be thought of as
a “symmetry” of the group G. For example, the map ϕ : Z → Z defined
by ϕ(n) = −n is an automorphism, while the map n 7→ 2n is not. Given
two elements g, h ∈ G, if there exists an automorphism ϕ from G to itself
that maps g to h, we ought to consider g and h as having the same intrinsic
properties.

One may consider a similar notion in the geometric setting. If X denotes
an equilateral triangle, then the three vertices of X have the same intrinsic
geometric properties (for example, the property of “being a vertex at which
the angle is π/3”), while points which lie on a side, but not a vertex, have
different intrinsic geometric properties. This is reflected in the fact that if
x, y ∈ X are both vertices, we can find an isometry f : X → X (such an
isometry is called a symmetry) such that f(x) = y, while no such symmetry
can be found if x is a vertex and y is not. Notice that the situation changes
if one considers triangles that is not equilateral; here not all vertices are
intrinsically the same anymore.

Another geometric example is the circle, for which any two points have
the same intrinsic geometric properties; given any x, y ∈ S1, there exists an
isometry f : S1 → S1 such that f(x) = y. Thus the fact that “no points on
the circle are any more special than any others” is once again reflected in
the presence of a great many symmetries.
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Passing from geometry back to algebra, we replace the notion of sym-
metry with the notion of automorphism. The phenomenon illustrated above
happens here as well; some groups have more automorphisms than others.
Groups with many automorphisms are somehow “more symmetric”, while
groups with fewer automorphisms are “less symmetric”. In the former case,
many elements play very similar roles within the group structure, while in
the latter, there are more “special” elements.

An example of an intrinsic algebraic property is the order of an element.
If ϕ is any automorphism, then g and ϕ(g) have the same order. Thus if g is
the only element of G with order 2 (for example), then it cannot be mapped
to any other element of G by an automorphism, and thus is quite special,
just like the identity element.

Since identity is distinguished from all other elements the most symmet-
ric groups are those where there is an automorphism that maps any given
non-identity element into any other non-identity element. Among abelian
groups there are some such groups.

For example, for the additive group R of real numbers multiplication
by ant non-zero number is an automorphism (this is another formulation
of the distributive property). Among finite groups, all prime cyclic groups
Z/pZ have this property by essentially the same reason: multiplication by
any non-zero element is an automorphism. But there are other examples.

Exercise 2.2. Show that in the direct product of any number of Z/2Z
there exists an automorphism that maps any non-zero element to another
given non-zero element.

It turns out that non-abelian groups have certain automorphisms due to
their non-commutativity.

Example 2.5. Fix h ∈ G, and define a map Ih : G→ G by

(2.3) Ih(g) = h−1gh.

Then Ih(g1g2) = h−1(g1g2)h = h−1g1hh
−1g2h = Ih(g1)Ih(g2); hence Ih is

a homomorphism. The map g 7→ gh and the map g 7→ h−1g are both
bijections, and so Ih is as well. Thus Ih is an automorphism of G.

Definition 2.6. An automorphism of the form (2.3) is called an in-
ner automorphism. An automorphism ϕ which cannot be written in the
form (2.3) is called an outer automorphism.

Of course, if G is abelian then every inner automorphism is trivial, and
so the only possible automorphisms are the outer automorphisms. Thus in
some sense, what we are doing here is using non-commutativity to our advan-
tage, by building symmetries of G which are not present in the abelian case.
This suggests that the presence of a small number of inner automorphisms
corresponds to a large amount of commutativity, while the presence of many
inner automorphisms corresponds to a large amount of non-commutative be-
haviour.
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We have noticed above that some abelian groups are very symmetric.
Now we consider some other cases.

Exercise 2.3. Show that the only automorphisms of Z are n 7→ n and
n 7→ −n.

Now let us find the automorphisms of Z×Z. Since the group is abelian,
there are no inner automorphisms, and so we must turn to other techniques.

Let A be an automorphism of Z×Z, and let A(1, 0) = (a, b) andA(0, 1) =
(c, d). Then A(m,n) = (am+ cn, bm+dn), and we see that A acts on Z×Z
as multiplication by the matrix

(
a b
c d

)
, and so each automorphism of the

group corresponds to a 2 × 2 matrix with integer entries.
What properties does this matrix have? Since A is invertible, this matrix

must be invertible; furthermore, the inverse of A is again an automorphism,
and hence the inverse of the matrix must again have integer entries. If
detX = ±1 this is the case not only for 2 × 2 but for n × n matrices as
well due to the Kramer’s rule: elements of the X−1 are polynomials in the
elements of X with integer coefficients divided by the determinant. But the
inverse is true as well. For 2 × 2 matrices this is particularly easy to see.
If X−1 is an integer matrix then all elements of X divide its determinant
which is possible only if the latter is ±1.

Thus the automorphisms of Z × Z correspond to 2 × 2 integer matrices
with determinant equal to ±1.

Exercise 2.4. Determine necessary and sufficient conditions on (a, b)
and (c, d) in Z × Z for there to exist an automorphism which maps (a, b) to
(c, d).

c. Cosets and factor groups. Moving away from automorphisms for
the moment, let us return to another facet of the internal structure of a group
G—its subgroups. Because of the algebraic structure which is imposed, a
subgroup H ⊂ G is much more than just a subset. Indeed, in the proof
of Lagrange’s Theorem (Theorem 1.13), we introduced the notion of coset,
which is a translation ofH, and saw that the left cosets ofH form a partition
of G (and the same is true of the right cosets).

Remark. If G is abelian, then left and right cosets coincide for every
group, and so we may simply speak of “cosets” without any ambiguity.

Example 2.7.

(1) The real line R is a subgroup of the complex plane C; its cosets are the
horizontal lines

iy + R = {x+ iy | x ∈ R},
where each value of y ∈ R determines a different coset.

(2) The set of multiples of n, denoted nZ, is a subgroup of the integers Z.
Its cosets are the residue classes modulo n, which already appeared in
the definition of the cyclic groups Z/nZ.
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The visual image provided by the first of these examples is that the
cosets are somehow “parallel” images of the subgroup which do not pass
through the origin. The relationship between a subgroup and its cosets is
exactly the same as the relationship between a linear subspace and an affine
subspace, to draw once more upon the language of linear algebra.

Given a subgroup H ⊂ G, we want to examine the group structure of
the part of G which is missed by H—the part which lies “transverse” to H.
This is done by turning the cosets themselves into a group.

First we recall that the binary operation on elements of G defines a
binary operation on subsets of G:

(2.4) AB = {ab | a ∈ A, b ∈ B}.
This is defined for all subsets A,B ⊂ G, whether or not they are subgroups,
cosets, or anything else significant.

We would like to use this binary operation to define a group structure
on the set of (left) cosets of a subgroup H. However, there is a problem.
Why should the set (g1H)(g2H) be a left coset of H? It turns out that we
need to ask a little more of H.

Definition 2.8. A subgroup H ⊂ G is a normal subgroup if gH = Hg
for all g ∈ G; that is, every left coset is also a right coset. Equivalently, we
may demand that gHg−1 = H for all g ∈ G.

Proposition 2.9. If H is a normal subgroup of G, then (2.4) defines a
binary operation on the set of left cosets of H.

Proof. Given any two cosets g1H and g2H, we have g2H = Hg2, and
hence

(g1H)(g2H) = {g1h1g2h2 | h1, h2 ∈ H}
= g1(Hg2)H

= g1(g2H)H

= (g1g2)H.

�

Definition 2.10. Given a normal subgroup H ⊂ G, the factor group
G/H is the set of left cosets of H equipped with the binary operation defined
in Proposition 2.9.

There is a close relation between normal subgroups and homomorphisms.
Namely, the kernel of any homomorphism ϕ : G → H is a normal sub-
groups of G. This follows for the simple fact that identity element commutes
with any other element: if k ∈ kerϕ and g is arbitrary then ϕ(gkg−1) =
ϕ(g)ϕ(g−1) = eH . Furthermore, any homomorphic image of a group is
isomorphic to the factor group by the kernel.

Example 2.11. If G is abelian, then as already noted, left and right
cosets coincide for every subgroup; hence every subgroup is normal. In
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particular, consider the subgroup nZ ⊂ Z. Here, the binary operation on
the set of cosets is simply addition modulo n, and we see that the factor
group Z/nZ is just the cyclic group with n elements, justifying our earlier
notation.

Example 2.12. Recall that the index of a subgroup is the number of
cosets. If H is a subgroup of index 2, then the only cosets are H itself and
the complement G \H. Given g ∈ G, we have gH = Hg = H if g ∈ H, and
otherwise we have gH = Hg = G \ H. Thus H is normal, and the factor
group G/H is isomorphic to Z/2Z.

Example 2.13. Consider the group S3, which comprises symmetries of
an equilateral triangle. It has four non-trivial subgroups, which are of two
types.

First, there is the subgroup of rotations by a multiple of π/3. This
subgroup has 3 elements and has index 2; hence it is normal.

Second, we may consider any reflection r ∈ S3 (recall that there are three
such reflections). Each of these has order 2, and so {Id, r} is a subgroup of
order 2 and index 3. These subgroups are not normal; if we rotate by π/3,
apply r, and then rotate back, we obtain not r, but the reflection through a
different line of symmetry.

d. Permutation groups. We now use the tools from the previous two
sections to study the symmetric groups Sn. These groups are highly non-
abelian, and have many subgroups and inner automorphisms.

An element σ ∈ Sn is a permutation of the set {1, . . . , n}. Consider the
trajectory of 1 under repeated iterates of this permutation: 1, σ(1), σ2(1), . . . .
Eventually we will return to 1; let k1 be the smallest positive integer such
that σk1+1(1) = 1, so the elements 1, σ(1), . . . , σk1(1) are all distinct. These
elements compose a cycle of the permutation σ; let us call it X1.

It may well happen that X1 $ {1, . . . , n}. In this case, we may choose
a ∈ {1, . . . , n} \ X1 and produce another cycle X2 which contains all the
iterates of a under the permutation σ. Continuing in this manner, we can
decompose {1, . . . , n} into disjoint sets X1, . . . ,Xt such that σ acts cyclically
on each Xi.

Example 2.14. Let σ ∈ S6 be defined by the following table:

a 1 2 3 4 5 6
σ(a) 2 3 1 5 4 6

Then X1 = {1, 2, 3}, X2 = {4, 5}, and X3 = 6. We may write the permuta-
tion σ in the following cyclic notation:

(2.5) σ = (1 2 3)(4 5)(6)

This notation means that 1 is mapped to 2, which is in turn mapped to 3,
which is in turn mapped to 1. Similarly, 4 and 5 are interchanged, and 6 is
fixed.
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We will usually ignore cycles Xi which have only a single element; this
allows us to write (2.5) more compactly as

(2.6) σ = (1 2 3)(4 5).

Furthermore, the point at which each cycle is started is arbitrary; thus (2.6)
is equivalent to

σ = (3 1 2)(5 4),

and so on.

Definition 2.15. A permutation σ is cyclic if no more than one of the
sets Xi has more than one element; that is, σ has only one cycle.

The notation (2.5) expresses the permutation in the example as a prod-
uct of cyclic permutations, where these permutations are commuting, since
their corresponding cycles are disjoint. The preceding discussion shows that
any permutation can be expressed as a product of commuting cyclic permu-
tations, and so we will use the notation (2.6) for elements of Sn.

What are the inner automorphisms of Sn? Fix h ∈ Sn; then the inner
automorphism Ih : σ 7→ h−1σh corresponds to a relabeling of the elements
of {1, . . . , n}. Indeed, if h = (1 2)(3 4) is the permutation which exchanges
1 with 2 and 3 with 4, and if σ is the permutation in (2.6), then Ihσ is the
permutation

Ihσ = (2 1 4)(3 5).

Observe that σ and Ihσ have the same cycle structure, but we have moved
around the labels within the cycles according to the permutation h.

This suggests that if we are interested in intrinsic properties of a permu-
tation σ which persist under automorphisms, then we should not look at the
individual elements in the cycles which compose σ, but rather at the cycle
structure as a whole. Thus we let k1(σ), . . . , kt(σ)(σ) denote the lengths of
the cycles X1, . . . ,Xt for σ. For notational convenience, we always assume
that k1 ≥ k2 ≥ · · · ≥ kt.

Proposition 2.16. Fix σ, σ′ ∈ Sn. There exists an automorphism ϕ
such that ϕ(σ) = ϕ(σ′) if and only if σ and σ′ have the same cycle structure;
that is, t(σ) = t(σ′) and ki(σ) = ki(σ

′) for all i.

Proof. If σ and σ′ have the same cycle structure, then we find a suit-
able relabeling h such that Ihσ = σ′. The proof that every automorphism
preserves cycle structure is left as an exercise. �

Definition 2.17. A transposition is a permutation which interchanges
two elements and does nothing else. Using the notation of (2.6), it has the
form (a b) for some a, b ∈ {1, . . . , n}.

Proposition 2.18. Every permutation can be written as a product of
transpositions.
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Proof. Since every permutation can be written as a product of cyclic
permutations, it suffices to show that every cyclic permutation is a product
of transpositions. One way to accomplish this for the cyclic permutation
(1 2 · · · k) is as follows:

(1 2 · · · k) = (1 2)(1 3) · · · (1 k).
A similar technique works for any other cyclic permutation upon relabeling.

�

Transpositions are in some sense the simplest possible permutations. If
we think of the numbers 1, . . . , n as representing books on a shelf, then a
permutation represents a rearrangement of the bookshelf. A transposition
represents the very simple act of interchanging two books, and Proposi-
tion 2.18 states that we can accomplish any rearrangement, no matter how
complicated, by repeatedly interchanging pairs of books.

Definition 2.19. A permutation is even if it can be written as the
product of an even number of transpositions, and it is odd if it can be
written as the product of an odd number of transpositions.

Proposition 2.18 guarantees that every permutation is either even or
odd. However, we have a priori to acknowledge the possibility that some
permutation σ may be both even and odd; perhaps σ can be written as the
product of an even number of transpositions in one way, and as the product
of an odd number of transpositions in another way. To show that this does
not actually happen, we will prove the following lemma:

Lemma 2.20. If σ is a transposition, then σ cannot be written as the
product of an even number of transpositions.



30 1. ELEMENTS OF GROUP THEORY

Lecture 3. Friday, September 4

a. Parity and the alternating group. Parity—the distinction be-
tween even and odd—is an important idea in many areas of mathematics.
We will see later how this appears in geometry. It plays a prominent role in
our study of the symmetric groups. Last time we defined the notion of par-
ity for permutations on n elements, and promised to prove that this notion
is in fact well defined—that a permutation σ cannot be simultaneously even
and odd.

To this end, given any σ ∈ Sn, consider the number

(3.1) N(σ) = |{{i, j} ⊂ {1, . . . , n} | i < j, σ(i) > σ(j)}|.
If we list the numbers from 1 to n and then permute them by the action of
σ, the number N(σ) is the number of pairs {i, j} in the resulting list which
appear in the “wrong” order.

Example 3.1. In S4, let σ = (2 3) and τ = (1 2 4). Then the resulting
lists are as follows:

a 1 2 3 4
σ(a) 1 3 2 4
τ(a) 2 4 3 1

Thus N(σ) = 1, since the pair {2, 3} is backwards and all the other pairs
are in the usual order, while N(τ) = 4, since the pairs {2, 1}, {4, 3}, {4, 1},
and {3, 1} are backwards.

Lemma 3.2. Let σ ∈ Sn be any permutation, and suppose σ can be
written as the product of k transpositions. Then k and N(σ) have the same
parity (k ≡ N(σ) (mod 2)).

Proof. Consider the following basic transpositions in Sn:

Ti =

{
(i i+ 1) i < n,

(n1) i = n.

Observe that an arbitrary transposition (i j), where i < j, can be written
as

(i j) = (i i+ 1)(i + 1 i+ 2) · · · (j − 2 j − 1)(j − 1 j)(j − 2 j − 1) · · · (i+ 1 i+ 2)(i i+ 1)

= TiTi+1 · · ·Tj−2Tj−1Tj−2 · · ·Ti+1Ti.

Thus every transposition can be written as a the product of an odd number
of basic transpositions. We draw two conclusions from this:

(1) Every permutation σ ∈ Sn can be written as a product of basic trans-
positions.

(2) If σ can be written as the product of an even number of transpositions,
then it can be written as the product of an even number of basic trans-
positions. A similar fact holds with “even” replaced by “odd”.
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Without loss of generality, then, it suffices to prove that k and N(σ)
have the same parity whenever σ can be written as the product of k basic
transpositions.

To see this, observe that if we take the product of some τ ∈ Sn with
any basic transposition Ti, then the parity of the number of backwards pairs
changes. That is, we permute the numbers {1, . . . , n} by the action of τ ,
and then the number of backwards pairs in the resulting list is N(τ). The
action of Ti swaps two neighbouring elements of this list; if this pair was
correctly ordered before, it is now backwards, and vice versa, while every
other pair is unchanged. Thus N(τTi) = N(τ) ± 1.

It follows that if σ is the product of an even number of basic transposi-
tions, then N(σ) is even, and if σ is the product of an odd number of basic
transpositions, then N(σ) is odd. �

As a consequence of Lemma 3.2, a permutation σ is even if and only
if N(σ) is even, and odd if and only if N(σ) is odd. It follows that every
permutation is either even or odd, but not both. Furthermore, we see that
the product of two even or two odd permutations is even and the product
of one even and one odd permutation is odd. This fact can be reformulated
by considering the map P : Sn → Z/2Z which takes σ to the residue class of
N(σ). This map is a surjective homomorphism. The kernel of P is the set
of all even permutations, which is a subgroup of Sn with index 2. This is
called the alternating group on n elements, and is denoted An. Since it has
index 2, it follows from Example 2.12 that it is normal.

This can also be seen directly; suppose τ ∈ An can be written as a
product of 2k transpositions and σ ∈ Sn can be written as a product of ℓ
transpositions. Then σ−1 is the produce of those same ℓ transpositions, but
in the reverse order. It follows that στσ−1 can be written as a product of
2k + 2ℓ transpositions; hence it is in An.

In some sense, the alternating groupAn contains all the non-commutativity
present in Sn. To make this statement more precise, we need to introduce
some new notions in an attempt to quantify the degree of non-commutativity
of a group.

b. Solvable groups. Setting aside the symmetric groups for the mo-
ment, let G be an arbitrary group. G may be abelian or non-abelian; in the
latter case, we want to examine the degree to which G fails to be abelian.

To this end, observe that two elements a and b commute if and only if
ab = ba, or equivalently, if aba−1b−1 = e. The expression on the left-hand
side of the equation is called the commutator of a and b, and is denoted

(3.2) [a, b] = aba−1b−1.

We see that G is abelian if and only if [a, b] = e for all a, b ∈ G.
Observe that the property of being a commutator is intrinsic, in the

following sense: If ϕ is any automorphism of G, then

ϕ([a, b]) = ϕ(aba−1b−1) = ϕ(a)ϕ(b)ϕ(a)−1ϕ(b)−1 = [ϕ(a), ϕ(b)].



32 1. ELEMENTS OF GROUP THEORY

That is, the property of being a commutator is invariant under any auto-
morphism of G.

We would like to study the structure of G by looking at the set C of
commutators. However, C itself may not be a subgroup—it may happen
that for some a, b, c, d ∈ G, the product [a, b][c, d] cannot be written in the
form [g, h] for any g, h ∈ G. Thus we consider the subgroup generated by
all commutators:

(3.3) [G,G] =
⋂

{H ⊂ G | H ⊃ C is a subgroup}.
That is, [G,G] is the smallest subgroup of G which contains the set of
commutators in G; we refer to [G,G] as the commutator subgroup of G, or
as the derived group.

At one extreme, we have abelian groups, for which [G,G] = {e}; at the
other extreme, suppose [G,G] = G. Then G is in some sense as non-abelian
as it could possibly be; such a group is called perfect. One may reasonably
ask if any perfect groups exist; we will see examples in a little while.

Remark. A closely related concept is that of a simple group—that is,
a group with no non-trivial normal subgroups. Because the commutator
subgroup is normal, we see that every abelian simple group is cyclic of
prime order, and every non-abelian simple group is perfect.3 Simple groups
are in some sense irreducible, and a major theme in group theory is to build
more complicated groups from simple groups.

The derived group [G,G] may be thought of as the part of G which is left
over when we strip away a small commutative part. (This is made precise
by the statement that the factor group G/[G,G] is abelian.) What happens
if we apply the same procedure to [G,G] and take its derived group?

To this end, letG0 = G, and defineGn inductively byGn = [Gn−1, Gn−1].
In this manner we obtain a sequence of subgroups

(3.4) G = G0 ⊃ G1 ⊃ G2 ⊃ · · · .
If G is finite, this sequence must terminate somewhere; that is, there must
exist n such that Gn+1 = Gn. This follows since if Gn+1 6= Gn, then
|Gn+1| < |Gn|, and there does not exist an infinitely long decreasing sequence
of positive integers.

Now there are two possibilities. If Gn is the group in which the se-
quence (3.4) terminates, then either Gn is trivial (the single-element group)
or it is not. If Gn is trivial, we say that the group G is solvable. If Gn is non-
trivial, then since Gn = Gn+1 = [Gn, Gn], it is an example of a non-trivial
perfect group.

Example 3.3. Let G = S3 be the symmetric group on 3 elements. Then
any commutator is an even permutation, hence [G,G] ⊂ A3. The only even
permutations on 3 elements are the identity permutation and the cyclic

3However, not every perfect group is simple.
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permutations (1 2 3) and (1 3 2); it follows that A3 is a cyclic group of
order 3, and hence that [G,G] is either trivial or equal to A3. Because S3 is
non-abelian, [G,G] is non-trivial; thus G1 = [S3, S3] = A3.

Now A3 = Z/3Z is abelian, so G2 = [A3, A3] = {Id}, and it follows that
S3 is solvable.

The argument in this example is emblematic of the so-called “soft” ap-
proach, which emphasises the use of general principles, rather than ex-
plicit computations. One could also give an explicit computation of the
derived group of S3 and then of the derived group of A3, and avoid invok-
ing general results such as the fact that a cyclic subgroup of prime order
has no non-trivial subgroups. This latter approach—argument by explicit
computation—stands in contradistinction to the “soft” approach, and is re-
ferred to as “hard”. The distinction between “soft” and “hard” arguments
applies in nearly every area of mathematics, not just algebra. Of course,
most arguments lie somewhere in between the two extremes.

With a little more “hard” work, we can show that the alternating group
is the derived group of the symmetric group for any value of n.

Proposition 3.4. [Sn, Sn] = An for every n.

Proof. n = 1 and n = 2 are easy, since Sn is abelian and An is trivial.
For n ≥ 3, we first observe that [Sn, Sn] ⊂ An since any commutator is even.
To get the other inclusion, we begin with a statement on the generators of
An.

Lemma 3.5. Every element of An can be written as a product of (not
necessarily disjoint) cyclic permutations of order 3.

Proof. Given σ ∈ An, we can write σ as a product τ1τ2 · · · τ2k, where
each τi is a transposition, and τi 6= τi+1. Thus it suffices to write every
product of two distinct transpositions as a product of cyclic permutations
of order 3.

If the two transpositions share an element (for example, (1 2) and (1 3)),
then their product is a cyclic permutation of order 3, and we are done.

Finally, observe that (1 2 3)(2 3 4) = (1 3)(2 4), and a similar computa-
tion obtains any product of two disjoint transpositions as a product of two
cyclic permutations of order 3. �

Thanks to Lemma 3.5, it suffices to show that any cyclic permutation
of order 3 can be obtained as a commutator. The following computation
shows the general principle:

[(1 3), (1 2)] = (1 3)(1 2)(1 3)(1 2) = (1 2 3).

Every other cyclic permutation of order 3 can be obtained analogously; it
follows that [Sn, Sn] contains all cyclic permutations of order 3, and hence
contains all even permutations. �
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Example 3.6. We compute the groups Gk for G = S4. Proposition 3.4
shows that G1 = [S4, S4] = A4, which is a non-abelian group with 12 ele-
ments. Aside from the identity element, these fall into two classes:

(1) Products of two disjoint transpositions; for example, (1 2)(3 4).
(2) Cyclic permutations of order 3; for example, (1 2 3).

It turns out (though we do not show it here) that a non-trivial element of
A4 can be obtained as a commutator [σ, τ ], where σ, τ ∈ A4, if and only
if it is the product of two disjoint transpositions. There are three such
elements; together with the identity, they form a group isomorphic to the
Klein four-group V , and so G2 = [A4, A4] = V .

Finally, V is abelian, and so G3 = [V, V ] = {Id}. Thus S4 is solvable.

The present discussion seems quite abstract; aside from some vague no-
tion of being able to “peel away all the non-commutativity”, it is not clear
just what we gain from knowing that a group is solvable. There are various
possible replies to this concern. For the time being, we ignore the more
abstract and general replies, and content ourselves with the following ob-
servation: Historically, group theory did not arise from a Bourbaki-esque
drive towards abstraction, but rather from a specific problem—the solution
of polynomial equations by radicals. Évariste Galois, who was the first to
call groups “groups”, made the following remarkable observation.

Theorem 3.7. To any polynomial f(x) of degree n there can be asso-
ciated a subgroup Gf ⊂ Sn. The roots of the equation f(x) = 0 can be
expressed using radicals if and only if Gf is a solvable group.

Theorem 3.7 can be put more directly as the statement that the equation
is solvable if and only if the corresponding group is solvable. In light of this,
the fact that S3 and S4 (and hence all of their subgroups) are solvable
corresponds to the fact that formulae can be found for the solutions of
cubic and quartic equations. It turns out that for n ≥ 5, the alternating
group is perfect: [An, An] = An. Thus the symmetric group Sn is not
solvable, and coupled with the fact that one can produce polynomials for
which the corresponding group is Sn, this implies that polynomial equations
with degree greater than 4 cannot be solved by radicals.

c. Nilpotent groups. IfH and K are subgroups of a group G, then we
can construct the commutator subgroup [H,K]; this is the smallest subgroup
of G which contains all elements of the form [h, k], where h ∈ H and k ∈ K.
This allows us to form another important series of subgroups of G: Set
G̃0 = G, and define G̃n recursively by G̃n = [G̃n−1, G]. Once again, if G is
finite, the sequence must stabilise eventually; if it stablises by reaching the
trivial group (G̃n = {e}), we say that G is nilpotent.

It follows immediately from the definitions that G̃n ⊃ Gn for all n,
and thus every nilpotent group is solvable. Since every abelian group has



LECTURE 3. FRIDAY, SEPTEMBER 4 35

G̃1 = {e} and hence is abelian, we have

{abelian groups} ⊂ {nilpotent groups} ⊂ {solvable groups}.
At the other end of the spectrum are the simple groups; in between the two
extremes, we can do little more for the time being than proclaim, “Here
there be dragons”.

Example 3.8. Despite the fact that A3 is abelian, its commutator with
the entire symmetric group S3 is non-trivial. In fact,

[(1 2), (1 2 3)] = (1 2)(1 2 3)(1 2)(3 2 1) = (1 2 3),

and so [S3, A3] = A3. Thus S3 is not nilpotent, and neither is S4.

Nilpotent groups will play an important role in this course. Their key
feature is that they are somehow close enough to being abelian that they are
well understood; in particular, they can be classified in a reasonable way.

The distinction between nilpotent and solvable groups illustrates a trade-
off which often occurs in mathematics. In choosing what structures we study,
we must balance two goals; we want to consider general enough objects that
our results will apply to a broad range of examples, but we must consider
a specific enough class of objects that we can obtain meaningful results.
As a class of objects to study, general abstract groups are far too broad
to admit truly useful general results, and thus we restrict our attention to
more specific classes. The class of nilpotent groups is small enough to be well
understood, while the task of classifying the much larger class of solvable
groups is more difficult.





CHAPTER 2

Symmetry in the Euclidean world: Groups of

isometries of planar and spatial objects

Lecture 4. Wednesday, September 9

a. Groups of symmetries. So far we have been doing abstract alge-
bra. Now it is time to throw a little geometry into the mix. As previously
mentioned, one natural way to obtain a group is to consider the set of all
bijections from a set X to itself that preserve a particular structure on X.
Thus we now turn our attention to groups which arise as symmetries pre-
serving a geometric structure.

In order to give a precise definition of a symmetry of X, we must first
decide just what sort of object X is, and then decide just what geometric
properties of X such a symmetry ought to preserve. For now, we return to
the geometry of the ancient Greeks, and consider geometric bodies in either
the Euclidean plane R2 or three-dimensional Euclidean space R3.

Recall that both R2 and R3 are equipped with a notion of distance given
by the Pythagorean formula; the distance between two points x = (x1, x2)
and y = (y1, y2) in R2 is

d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2,

and similarly in R3. Indeed, the formula generalises to any Euclidean space
Rd, but for the time being we will only consider the cases d = 2 and d = 3.

Definition 4.1. Given X ⊂ Rd, a map f : X → X is called isometric if

(4.1) d(f(x), f(y)) = d(x,y)

for every x,y ∈ X. If f is both isometric and a bijection, then f is called an
isometry of X. The set of isometries of X forms a group under composition;
this group is denoted Isom(X).

Of course, distance is only one particular geometric structure. Recall
that if γ1 and γ2 are any two curves in Rd which intersect in a point p,
then the angle between the curves is defined to be the angle between their
tangent vectors at p. We could just as easily consider maps f : X → X
which preserve angles, in the sense that the angle between f(γ1) and f(γ2)
at f(p) is equal to the angle between γ1 and γ2 at p for every two smooth
curves. Such maps are called conformal.

Exercise 4.1. Show that every isometry is conformal.

37
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The converse of the statement in Exercise 4.1 is not true; there are
conformal maps f which are not isometries. An obvious example is the map
f : x 7→ λx, where λ > 0 is fixed; such a map is called a homothety around
the point 0 (one may also consider homotheties around other points, but
the formulae are not as simple).

A composition of an isometry and a homothety is called a similarity
transformation. As H. S. M. Coxeter points out in his Introduction to Ge-
ometry, similarity transformations are in fact the natural group of transfor-
mations to consider on the Euclidean plane, since there is no universal unit
of length, and so any statement in Euclidean geometry which is true for a
particular figure is also true for the image of that figure under an arbitrary
similarity transformation.

f

Figure 2.1. A conformal map which is not a similarity transformation.

Any similarity transformation is conformal. Less obviously, there are
also conformal maps which are not similarity transformations; a geometric
portrait of one such map is shown in Figure 2.1. The map f does not take
lines to lines, but nevertheless it preserves angles. In fact, any holomorphic
map f : C → C is conformal, and so there are many more conformal maps
than there are similarity transformations or isometries.

We now have three different classes of symmetries of R2 (or Rd, for
that matter), which may be categorised according to which structures they
preserve. The broadest class is the class of conformal maps, which preserve
angles. Within the class of conformal maps we find the class of similarity
transformations, which not only preserve angles, but map straight lines to
straight lines.

Exercise 4.2. Show that if f : R2 → R2 preserves angles and maps
straight lines to straight lines, then f is a similarity transformation.

Finally, within the class of similarity transformations we find the class of
isometries, which not only preserve angles and map straight lines to straight
lines, but preserve distances as well. (In fact, the first two properties follow
from this last fact.)

Angles, lines, distances. . . all of these are important geometric notions,
and in fact, we may profitably study any of the three classes of transforma-
tions for various geometric objects X. For the time being, we will focus on
the class of isometries as our symmetries of interest. Since this is the smallest
of the three classes, we may reasonably expect that the study and classifi-
cation of such symmetries will be simpler than for the other two classes.
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b. Symmetries of bodies in R2. Given X ⊂ R2, we want to study the
symmetry group of X—that is, the group of isometries Isom(X). At this
point an issue of semantics arises: do we consider isometries f which are
defined only on X (but not necessarily on the rest of R2), or do we restrict
our attention to isometries of the entire Euclidean plane which happen to
preserve X—for which f(X) = X? Whether there is a difference between
the two approaches hinges on whether or not every isometry f : X → X can
be uniquely extended to an isometry F : R2 → R2.

In fact, every isometry can be so extended; however, this extension may
not be unique. For example, supposeX = {p} is a single point, and consider
the group

Gp = {f ∈ Isom(R2) | f(p) = p}.
Despite the fact that Isom(X) is a single element (since there is only one
possible way to map a single point to itself), this single element extends to
many different isometries of R2. Two sorts of extensions come immediately
to mind:

(1) Rotations around p. Given α ∈ R, let Rα : R2 → R2 denote the map
which rotates the plane counterclockwise around p through an angle α.

(2) Reflections through lines containing p. Given β ∈ R, let ℓβ ⊂ R2 be the
line through p that makes an angle β with the positive x-axis (equiv-
alently, with the horizontal line from p to the right), and write Lβ for
the reflection in the line ℓβ. Observe that Lβ = Lβ+π.

p

x

Rα(x)

(a)

α

p

ℓβ

β

Lβ

(b)

Figure 2.2. Isometries of R2 which fix p.

Are these all the options? Clearly every Rα and Lβ is in Gp, and since
Gp is a group under composition, it must also contain all the products of
rotations and reflections.

Proposition 4.2. Given two reflections Lβ and Lβ′, let α be the angle
between the corresponding lines—that is, the angle through which ℓ′β must be

rotated counterclockwise to reach ℓβ—so α = β − β′. Then Lβ ◦ Lβ′ = R2α.

Proof. The idea of the proof is shown in Figure 2.3, which illustrates
the case β′ = 0. Writing y = Lβ′(x) and z = Lβ(y), all one has to do is
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p
ℓβ′

ℓβ

α
x

y = Lβ′(x)

z = Lβ(Lβ′(x))

θ
θ

θ′
θ′

Figure 2.3. The product of two reflections is a rotation.

to observe that d(x,p) = d(z,p) and that the angle formed by the points
x,p, z is equal to 2α. �

The product of two rotations is easy to handle: one sees immediately
that Rα ◦ Rα′ = Rα+α′ . It remains to determine what the product of a
rotation and a reflection is.

Exercise 4.3. It turns out that the product of Rα and a reflection
through a line ℓ is a reflection through the line ℓ′ through p that makes an
angle of α/2 with ℓ.

(a) Prove this using geometric methods as in the proof of Proposition 4.2.
(b) Prove this using algebraic methods by observing that Rα ◦ Lβ = Lβ′ if

and only if Rα = Lβ′ ◦ Lβ and applying the result of Proposition 4.2.

Thus the set of rotations around p and reflections in lines through p is
closed under composition, and forms a subgroup of Gp. In fact, it is the
entire group.

In this case, the symmetries of X have extensions to R2 which are highly
non-unique. This fact is peculiar to the case where X is a single point; we
will show in the next lecture that the images of three non-collinear points
determine an isometry, and so if X contains three such points, then every
isometry of X has a unique extension to R2.

Example 4.3. Let X be an equilateral triangle with centre p. Then
every symmetry of X fixes p, and thus Isom(X) is a subgroup of Gp. We see
that Rα(X) = X if and only if α is a multiple of 2π/3, and that Lβ(X) = X
if and only if ℓβ is one of the three lines which connects a vertex of X to the
midpoint of the opposite side. Thus

Isom(X) = {Id, R2π/3, R4π/3, Lβ1
, Lβ2

, Lβ3
},

where βi indicates the direction from p to the ith vertex, and the differences
βi − βj are multiples of π/3. Using the result of Proposition 4.2 and Exer-
cise 4.3, one may easily verify that Isom(X) is isomorphic to the symmetric
group S3; the same can be seen by labeling the vertices of the triangle and
observing how they are permuted by each element of Isom(X).
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Example 4.4. Now we add a side and let X be a square. Once again,
every symmetry of X fixes its centre p, so Isom(X) is again a subgroup of
Gp. This time the permissible rotation angles are multiples of π/2, and there
are four possible reflections. Two of these reflections are through the lines
connecting opposite vertices, and two are through lines connecting opposite
midpoints.

Label the vertices clockwise with the numbers 1 through 4, we once
again obtain a one-to-one homomorphism from Isom(X) into the symmetric
group S4. This time, however, the homomorphism is not onto. For example,
the permutation (1 2) cannot be realised by any element of Isom(X), as
any symmetry of the square which interchanges vertices 1 and 2 must also
interchange vertices 3 and 4. Instead, the isomorphic image of Isom(X) is
a subgroup of S4 called the dihedral group on 4 elements, and denoted D4.

Observe that since X has an even number of sides, the set of reflections
can be partitioned into those which fix some vertices of the square and those
which do not. The former (which are reflections through lines connecting
opposite vertices) correspond to the elements (1 3) and (2 4) in S4, while
the latter correspond to (1 2)(3 4) and (1 4)(2 3).

In general, if X is a regular n-gon, then the isometry group of X contains
n rotations and n reflections, and is isomorphic to the dihedral group Dn ⊂
Sn. We have D3 = S3, but since n! > 2n for n ≥ 4, the dihedral group is a
proper subgroup for all larger values of n.

As n goes to infinity, the regular n-gons converge to the circle S1, and
we have Isom(S1) = Gp, since every isometry of R2 which fixes p also maps
a circle centred at p to itself.

c. Symmetries of bodies in R3. Can we obtain the dihedral groups
as symmetries of three-dimensional bodies? Let X ⊂ R2 ⊂ R3 be a regular
polygon lying in the xy-plane (the horizontal plane). Then we see that in
addition to the usual symmetries ofX, we may also consider the composition
of each such symmetry with reflection in the xy-plane. This reflection is
an isometry and fixes X, thus isometries of X do not extend uniquely to
isometries of R3; rather, each isometry of X has two possible extensions.

This ambiguity can be removed by considering a cone over X—that is,
the set

X̃ = {(tx, ty, 1 − t) | (x, y) ∈ X, 0 ≤ t ≤ 1} ⊂ R3.

Then Isom(X̃) is isomorphic to a dihedral group, and every isometry of X̃
extends to a unique isometry of R3.

What about other three-dimensional bodies? The three-dimensional
analogues of the regular polygons are the regular polyhedra—that is, polyhe-
dra whose faces are all congruent regular polygons, and in which the same
number of faces meet at each vertex. Such polyhedra are called Platonic
solids, and there are exactly five of them: the tetrahedron, the cube, the
octahedron, the icosahedron, and the dodecahedron. We examine the sym-
metry group of each of these in turn.
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The tetrahedron. Let X be a tetrahedron, so the faces of X are triangles,
and X has 4 faces, 6 edges, and 4 vertices. Labeling the vertices with the
numbers 1 through 4, it is not difficult to check that any permutation of
these numbers determines a unique isometry of X, and thus Isom(X) is
isomorphic to S4.

The cube. Let X be a cube, so the faces of X are squares, and X has
6 faces, 12 edges, and 8 vertices. By labeling the vertices, we may find an
isomorphic image of Isom(X) in S8; however, it is nowhere close to being
the whole group, and so to understand the structure of Isom(X) we turn
to a more geometric approach. Namely, we observe that as in the two-
dimensional case, every isometry of a cube centred at p must fix p, and that
the isometries of R3 which fix p are precisely the isometries of the sphere
S2 centred at p. Thus Isom(X) is a subgroup of Isom(S2).

The isometries of R3 can be divided into two classes. Recall that a basis
{v1,v2,v3} of R3 satisfies the right-hand rule, or is right-handed, if pointing
your right index finger in the direction of v1 and your right middle finger in
the direction of v2 results in your right thumb pointing in the direction of v3.
We say that f ∈ Isom(R3) is orientation-preserving, or even, if the image
of a right-handed basis is right-handed; otherwise f is orientation-reversing,
or odd.

We will see later on that every orientation-preserving (even) isometry
of R3 which fixes a point p is a rotation around some axis ℓ which passes
through p; furthermore, every odd isometry can be obtained as the product
of an even isometry with the map x 7→ −x. Thus to understand Isom(X),
it suffices to understand the subgroup of even isometries of the cube, which
we denote Isom+(X).

So we ask: What lines ℓ through p can be axes for rotations which
map the cube to itself? We list the possibilities and count the number of
(non-trivial) rotations they yield.

(1) If ℓ passes through the centres of two opposite faces, then rotation by
any multiple of π/2 around ℓ is an isometry of the cube. Thus each axis
yields 3 non-trivial rotations, and since there are 3 such axes, Isom+(X)
contains 9 rotations which are generated by elements of order 4. 6 of
these rotations have order 4 and the other 3 have order 2.

(2) If ℓ passes through the midpoints of two opposite edges, then rotation
by π around ℓ is an isometry of the cube. Thus each axis yields only 1
non-trivial rotation, and since there are 6 such axes, we have found 6
more elements of order 2.

(3) If ℓ passes through two opposite vertices, then rotation by 2π/3 around
ℓ is an isometry of the cube (the rotation acts cyclically upon the 3 edges
which meet this vertex). Thus each axis yields 2 non-trivial rotations,
and since there are 4 such axes, Isom+(X) contains 8 rotations of order
3.
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Adding everything up and remembering to include the identity, we see that
the number of elements of Isom+(X) is

9 + 6 + 8 + 1 = 24.

So far we have met three groups of order 24: the symmetric group S4, the
dihedral group D12, and the cyclic group Z/24Z. Is Isom+(X) one of these?
Or is it something else entirely?

Since every element of Isom+(X) has order ≤ 4, the symmetry group
of the cube cannot be Z/24Z or D12, as both of these contain elements of
higher order. So perhaps it is S4. To show this, we ought to find some
geometric features of the cube which are permuted in an arbitrary way by
the isometries of X.

If we label the main diagonals of the cube (the ones which pass through
p and which connect opposite vertices) with the numbers 1 to 4, we find
that this is exactly the case. This labeling yields the desired isomorphism.

The octahedron. It seems that life is becoming more difficult as we
progress to the more involved Platonic solids. So we might expect that the
symmetry group of the octahedron, which has 8 equilateral triangles as faces,
and which has 12 edges and 6 vertices, might be even more troublesome to
compute.

Fortunately for us, this turns out not to be the case. In fact, we have
already answered this question! Observe that the octahedron is the dual
polyhedron to the cube—that is, if we construct a polyhedron which has one
vertex at the centre of each face of the cube, we obtain an octahedron, and
vice versa. Thus the isometries of the octahedron are exactly the isometries
of the cube, and we see that once again the group of even isometries is S4.
Notice that for tetrahedron the construction gives nothing new since the
dual to it is another tetrahedron.

The icosahedron and dodecahedron. Armed with the realisation that
dual polyhedra have the same isometry group, we can treat the icosahedron
(20 triangular faces, 30 edges, and 12 vertices) and the dodecahedron (12
pentagonal faces, 30 edges, and 20 vertices) in one fell swoop. The technique
is the same as for the cube; every even isometry must be a rotation, and we
can classify the possible axes of rotation according to whether they connect
vertices, midpoints of edges, or centres of faces.

Using the same approach as in the case of the cube we can count even
isometries of the dodecahedron. There are four rotations by the multiples
of 2π/5 around each of the 6 axis connecting the centers of opposite faces,
the rotation by π around each of 15 axis connecting midpoints of the pair of
opposite (symmetric with respect to the center) edges, and two rotations by
multiples of 2π/3 around each of 10 principal diagonals adding the identity
we obtain 24 + 20 + 15 + 1 = 60 even isometries.

Icosahedron is dual to the dodecahedron so the symmetry groups are
the same.



44 2. SYMMETRY IN THE EUCLIDEAN WORLD

Since, the number of odd isometries is equal to the number of even
isometries we obtain the total of 48 isometries for the cube/octahedron and
120 for the dodecahedron/icosahedron.

Exercise 4.4. List all odd isometries of tetrahedron, cube and dodeca-
hedron.

It is interesting to understand algebraic nature of the groups thus ob-
tained. Notice that both the cube and the dodecahedron are centrally sym-
metric and the central symmetry x 7→ −x commutes with all other isome-
tries. This immediately implies that the full isometry group of the cube is
S4 × Z/2Z. For the dodecahedron the group of even isometries has 60 ele-
ments, as many as the alternating group A5. We will see later that, similarly
to the cube, we can find five elements rigidly related to the dodecahedron
such that every even permutation of these elements determines an even isom-
etry. Thus the group of even isometries of the dodecahedron is isomorphic
to A5 and the full isometry group to A5 × Z/2Z but not to S5! Finally
notice that S4, the full isometry groups of the tetrahedron is not isomorphic
to A4 × Z/2Z, an algebraic counterpart of the fact that tetrahedron is not
centrally symmetric.

Notice also that we have Dn×Z/2Z as the symmetry group of a regular
n-gon in R3 or of the rectangular prism based on such a polygon.

d. Isometries of the plane. There is more to life than regular poly-
gons and polyhedra. However, we will not discover any new symmetries
by considering other bounded figures made up of lines and polygons, as
the examples we have already considered are the most symmetric piecewise
linear objects in R2 and R3. In the case of the plane, the statement that
every finite group of isometries is either cyclic or dihedral (attributed to
Leonardo da Vinci, according to Hermann Weyl) will be proved in the next
lecture after the basic properties of planar isometries are established; for
three-dimensional space it will take us a bit longer.

For this and other purposes we consider more systematically the isometry
group of the Euclidean plane, Isom(R2).

We have already encountered rotations (which are even) and reflections
(which are odd). These are all the isometries of R2 which fix a point; if
we consider isometries with no fixed point, we immediately find the trans-
lations. To each v ∈ R2 is associated the translation Tv : x 7→ x + v. Less
immediately evident are the glide reflections; a glide reflection is the product
of a translation Tv and reflection in the line parallel to v.

Is this it? Does every isometry of the plane fall into one of these four
classes? We will begin the next lecture by showing that it does, and indeed
these four classes can be neatly organised according to whether they are
even or odd, and whether or not they have a fixed point:
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even odd
fixed point rotations reflections

no fixed point translations glide reflections

Each of the four classes is closed under conjugation; that is, if f and g
are isometries of R2, then f ◦ g ◦ f−1 is in the same class as g is. Thus a
necessary condition for two isometries to be conjugate is that they be in the
same class.

For reflection, this necessary condition is also sufficient. We will show
soon that any two reflections are conjugate.

In contrast, the even isometries—rotations and translations—have in-
trinsic invariants. For rotations this is the absolute value of the angle of
rotation (but not the centre of rotation!)—two rotations are conjugate if
and only if their angle of rotation is the same or opposite. For transla-
tions this is the distance a point is moved (but not the direction!)—two
translations Tv and Tw are conjugate if and only if v and w have the same
length. For he glide reflections the situation is similar to translations; they
are conjugate if and only if the translational parts have the same length.

Remark. Our discussion here has taken the synthetic approach to ge-
ometry; that is, we have used the sorts of axiomatic arguments which date
back to Euclid, eschewing coordinate systems or any other more modern
tools. We will later see that we can gain further insight into the situation
by using the tools of linear algebra, which will allow us to make use of the
fact that isometries and linear maps are related, and from insights about
the group structure of the latter.

On the whole, the algebraic approach is more algorithmic, it allows to
prove things by more or less routine calculations, while synthetic one is more
elegant and also “invariant” since it does not use auxiliary tools extrinsic to
the Euclidean structure, such as fixing an origin or a coordinate system.
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Lecture 5. Friday, September 11

a. Even and odd isometries. Staying with the synthetic approach
for a little while longer, we now establish the basic properties of isometries
of R2 which are needed to complete the treatment in the previous lecture.
In particular, we prove the classification results stated there. Although our
methods are geometric, we focus on the algebraic structure of Isom(R2), and
use it to our advantage when possible.

The first property which we use to classify isometries is orientation.
Given a point p ∈ R2, there are two directions in which we can rotate
something around p: clockwise and counterclockwise. The choice of which of
these is the positive direction of rotation and which is negative determines an
orientation of the plane. By convention, we usually choose counterclockwise
as the positive direction, and so clocks run in the negative direction (this
turns out not to be a terribly effective method of time travel, though).

An isometry f is orientation-preserving, or even, if it preserves the pos-
itive and negative directions of rotation, and orientation-reversing, or odd,
otherwise. We may think of this as follows: if C is a clock lying in R2 centred
at p, then f(C) is a clock centred at f(p). If C and f(C) run in the same
direction, then f is even; if they run in opposite directions, then f is odd.

Even and odd isometries may also be defined in terms of basis vectors,
as suggested in the previous lecture for isometries of R3.

It is easy to see that the rules for composing even and odd isometries
are the same as the rules for adding even and odd numbers; the product of
two even isometries is even, the product of one even and one odd isometry is
odd, and the product of two odd isometries is even. In particular, the set of
even isometries forms a subgroup of Isom(R2), which we denote Isom+(R2).

A more formal way of stating the above remark is the following: we may
define a homomorphism P : Isom(R2) → Z/2Z by

P (f) =

{
2Z f is orientation-preserving,

1 + 2Z f is orientation-reversing,

where we recall that 2Z is the subgroup of even numbers, and 1 + 2Z is
the coset of odd numbers. Then ker(P ) = Isom+(R2), and we see that the
subgroup of even isometries has just two cosets—itself and its complement.
Thus despite the fact that Isom+(R2) and Isom(R2) are both infinite groups,
the former is a subgroup of finite index—in fact, index 2. It follows from the
remarks in Example 2.11 that Isom+(R2) is a normal subgroup of Isom(R2).

b. Isometries are determined by the images of three points.
With one fundamental tool in hand, we now turn to another question which
arises in the classification of isometries—indeed, of any sort of mathematical
object. If f is an isometry of R2, how much do we have to know about f to
determine it completely?
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Of course if we know the image of every point in R2 then we have de-
termined f completely, and for an arbitrary map this would be necessary.
However, f has extra structure—it is an isometry—and so we may hope to
get away with less, and avoid having to specify uncountably many pieces of
information. Ideally, we would like to determine f uniquely via only finitely
many pieces of information; we begin by observing that this is quite easy to
do if we go down a dimension and consider isometries of the real line.

Note that even and odd isometries of R can be distinguished according
to whether or not they preserve the ordering of the real numbers. That is,
f ∈ Isom(R) is even if and only if f(x) < f(y) whenever x < y.

Proposition 5.1. Given x, x′ ∈ R, there are exactly two isometries
which map x to x′. One of these isometries is even and the other is odd.

Proof. Suppose f ∈ Isom(R) is such that f(x) = x′. Given an arbitrary
y ∈ R, observe that

|f(y) − f(x)| = d(f(y), f(x)) = d(y, x) = |y − x|,
and hence f(y) = f(x) ± (y − x). Thus there are two possibilities for f(y);
one is greater than f(x), the other is less than f(x). One corresponds to an
even isometry, the other to an odd isometry. Writing

fE(y) = y + (f(x) − x),

fO(y) = −y + (f(x) + x),

we see that fE and fO are even and odd, respectively, and that these are
the only two isometries of R which map x to x′. �

Remark. The proof of Proposition 5.1 also shows that every even isom-
etry of R is a translation, and every odd isometry is a reflection. Observe
that a translation y 7→ y + a can be obtained by first reflecting around the
origin 0 and then reflecting around a/2 (or indeed, around any two points
such that the second lies a distance a/2 to the right of the first). Thus every
translation is the product of two reflections, and so the set of reflections
generates the group Isom(R), just as the set of transpositions generates the
symmetric group Sn.

It follows from Proposition 5.1 that every isometry of R is determined
by just two pieces of information: the image of a single point and the parity
of the isometry. If we know the images of two points, then we can determine
the parity, and thus the images of two points suffice to uniquely determine
an isometry.

In the plane, we have an extra dimension to work with, and so we expect
to require more information. It turns out that one more piece of information
is all we need; the images of any two points are enough to uniquely determine
an isometry of R2 up to parity, and so the images of three non-collinear
points determine an isometry uniquely.
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Proposition 5.2. Let x,y, z ∈ R2 be non-collinear, and suppose x′,y′, z′ ∈
R2 are such that

(5.1)

d(x′,y′) = d(x,y) = d1,

d(x′, z′) = d(x, z) = d2,

d(y′, z′) = d(y, z) = d3.

Then there exists a unique isometry I : R2 → R2 such that Ix = x′, Iy = y′,
and Iz = z′.

Proof. We “build up” an isometry I ∈ Isom(R2) which has the spec-
ified action on x, y, and z. Let T be the translation which takes x to x′.
Then Ty and y′ both lie on the circle centred at x′ with radius d1; let R be
the rotation around x′ which takes Ty to y′.

d1

d2

d3

x

yz

Ty

x′

y′

z1

z2
d2

d3

Figure 2.4. Images of three points determine an isometry.

Now R◦T is an isometry; hence R◦T (z) must lie on the circle centred at
x′ with radius d2 and also on the circle centred at y′ with radius d3. These
circles intersect in just two points, z1 and z2 (see Figure 2.4). Since R ◦ T
is orientation-preserving, we have R ◦ T (z) = z1. Let L be reflection in the
line through x′ and y′; then we have L ◦R ◦ T (z) = z2.

It follows from (5.1) that z′ is either z1 or z2. We have exhibited one
isometry which fulfills the former case (R ◦ T ) and one which fulfills the
latter (L◦R ◦T ). This proves existence, and it remains to show uniqueness.

Let I be any isometry which takes x to x′, y to y′, and z to z′. Then
given any point a ∈ R2, the image Ia must lie on the circle centred at x′

with radius d(a,x), and similarly for y′ and z′. These three circles intersect
in exactly one point since their centres are not collinear, and so there is only
one possibility for Ia. �

c. Isometries are products of reflections. The proof of Proposi-
tion 5.2 shows that every isometry of R2 can be written as the product of a
rotation and a translation (if it is orientation-preserving) or of a rotation, a
translation, and a reflection (if it is orientation-reversing).

We saw in the previous lecture that every rotation can be written as
a product of two reflections. The same is true of translations; this was
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mentioned for isometries of R in the remark after Proposition 5.1, and is
true in R2 as well (and indeed, in every Rd). This may easily be seen by
considering the composition of two reflections in parallel lines.

It follows, then, that every isometry of R2 can be written as a product
of no more than five reflections. In fact, we can do even better than this.

Proposition 5.3. Every isometry of R2 can be written as a product of
no more than three reflections.

Proof. Given an arbitrary isometry I, it suffices to consider the action
of I on three non-collinear points x,y, z, as in Proposition 5.2. Let ℓ1 be
the perpendicular bisector of the line segment from x to Ix, and let L1 be
reflection in ℓ1. Observe that L1x = Ix.

Now let ℓ2 be the perpendicular bisector of the line segment from L1y
to Iy. Since both these points are an equal distance from Ix, we see that
Ix ∈ ℓ2. Let L2 be reflection in ℓ2, and observe that L2L1y = Iy and
L2L1x = x.

Now as in the proof of Proposition 5.2, one of the following two things
happens.

(1) I is even, in which case Iz = L2L1z, and we have I = L2 ◦ L1.
(2) I is odd, in which case Iz = L3L2L1z, where L3 is reflection in the line

ℓ3 through Ix and Iy, and we have I = L3 ◦ L2 ◦ L1. �

Remark. Similar results to Propositions 5.2 and 5.3 are available in
higher dimensions. For example, the same method of proof shows that
every isometry of R3 can be written as a product of at most four reflections,
and is uniquely determined by its action on four non-coplanar points.

We can use the result of Proposition 5.3 to provide a proof of the clas-
sification given at the end of the previous lecture. That is, we show that
every even isometry of R2 is either a rotation (if it has a fixed point) or a
translation (if it does not), and that every odd isometry is either a reflection
(if it has a fixed point) or a glide reflection (if it does not).

The even isometries are easier to deal with, since they can be written as
the product of only two reflections. Let I = L2 ◦ L1, where Li is reflection
in the line ℓi. If ℓ1 and ℓ2 intersect, then I is a rotation around their point
of intersection; if ℓ1 and ℓ2 are parallel, then I is a translation.

The odd isometries are trickier, since there are many possible configura-
tions of three lines in R2. Nevertheless, we can reduce everything to the case
of a translation composed with a reflection. To do this, let I = L3 ◦L2 ◦L1.
If ℓ1 and ℓ2 are parallel, then L2 ◦L1 is a translation, and so I has the form
L ◦ T , where L is a reflection and T is a translation.

If ℓ1 and ℓ2 are not parallel, then R = L2 ◦L1 is a rotation by 2θ, where
θ is the angle between ℓ1 and ℓ2. Observe that R can be decomposed as a
product of two reflections in many different ways, as shown in Figure 2.5—ℓ′2
can be chosen arbitrarily, provided ℓ′1 is chosen to make the angle between
the two lines equal to θ. Thus for any such ℓ′1 and ℓ′2 we obtain I = L3 ◦
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ℓ1

ℓ2

θ

ℓ′1ℓ′2

θ

Figure 2.5. Decomposing a rotation as the product of two
reflections in different ways.

L′
2 ◦ L′

1. In particular, we can choose ℓ′2 parallel to ℓ3, so that T = L3 ◦ L′
2

is a translation, and I has the form T ◦ L′
1.

Thus every odd isometry of R2 can be written as the product of a re-
flection and a translation. Let Tv be translation by a vector v, and let L be
reflection in a line ℓ. Decompose v as v1 + v2, where v1 is parallel to ℓ and
v2 is orthogonal to ℓ. Then we have

Tv = Tv1
◦ Tv2

= Tv2
◦ Tv1

.

Observe that since v2 and ℓ are perpendicular, Tv2
◦L is reflection in a line

ℓ′ which is parallel to ℓ (in fact, ℓ′ = Tv2/2ℓ). Similarly, L ◦ Tv2
is reflection

in a line ℓ′′ parallel to ℓ.
It follows that L ◦ T = L ◦ Tv2

◦ Tv1
= L′ ◦ Tv1

, and similarly for T ◦ L.
Thus every odd isometry I can be written as the product of a reflection
around a line ℓ′ and a translation by a vector v1 parallel to ℓ′. If v1 = 0,
then I is a reflection, otherwise I is a glide reflection. This completes the
classification of elements of Isom(R2).

Notice that glide reflections appear as products of commuting pairs of
reflections and translations. Among three basic types of isometries, transla-
tions, rotations and reflections, this is the only case when two representatives
of difference classes may commute.

d. Isometries in R3. A similar approach can be used to classify the
isometries of three-dimensional Euclidean space. Once again, Isom(R3) is
generated by the set of reflections; as before, a reflection is determined by
its set of fixed points, but now this set is a plane instead of a line. Two
planes in R3 are either parallel or intersect in a line ℓ. In the first case, the
product of the corresponding reflections is a translation; in the second case,
it is a rotation around ℓ.

It follows that translations and rotations generate Isom+(R3). This was
also true of Isom+(R2), but in a somewhat trivial way, as every orientation-
preserving isometry of the plane is either a translation or rotation. New
types of isometries appear as products of commuting pairs of basic isome-
tries. Unlike the planar case, in R3 there are such commuting pairs: if R
is a rotation around an axis ℓ and T is a translation by a vector parallel to
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ℓ, then R ◦ T = T ◦ R is an isometry which is neither a translation nor a
rotation, but something new.

There is also a new kind of orientation-reversing isometries. Following
the same principle as before, one should look for commuting pairs of re-
flections with basic orientation preserving isometries. We still have a glide
reflection as the product of a reflection and a translation along a vector
parallel of the plane of reflection. In addition, if R is a rotation around an
axis ℓ and L is reflection in a plane orthogonal to ℓ, then L ◦ R = R ◦ L
is an orientation-reversing isometry which is neither a reflection nor a glide
reflection. In the particular case where R is rotation by π, we obtain the
central symmetry x 7→ −x.

We will show in due time, using a synthetic method based on repre-
sentation of isometries as products of reflections, that every isometry in
R3 belongs to one of the six types described above. This method however
becomes too cumbersome when dimension goes up. In order to give a com-
prehensive classification of isometries in Rn we will resort to linear algebra
instead.

e. The group structure of Isom(R2). So far we have analysed the
structure of the set of isometries of the plane by providing a complete clas-
sification. We now turn our attention to the structure of the group of isome-
tries, which we touched upon in our observation that this group is generated
by the set of reflections.

We begin by considering Isom+(R2), which is a normal subgroup of index
two, as already noted. Let T denote the set of all translations; it is easy to
see that T is a subgroup of Isom+(R2).

Proposition 5.4. T is normal in Isom+(R2).

Proof. It suffices to check that if T is a translation, then so is R ◦ T ◦
R−1, where R is a rotation. To see this, we first define some notation.

ℓ

ℓ′ α(ℓ, ℓ′)

(a)

p

ℓ

Rℓ

θ

(b)

Figure 2.6. Characterising orientation-preserving isometries.

Consider two lines ℓ and ℓ′, and suppose that ℓ and ℓ′ have been “marked”
with a positive direction (indicated in Figure 2.6(a) with an arrow). If ℓ and
ℓ′ are parallel or coincide, write α(ℓ, ℓ′) = 0; otherwise, write α(ℓ, ℓ′) for the
angle from the positive direction of ℓ to the positive direction of ℓ′.
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If T is a translation, then α(ℓ, T ℓ) = 0 for all lines ℓ. If R is a rotation by
θ, then α(ℓ,Rℓ) = θ for all marked lines ℓ (this follows from basic geomet-
ric arguments—see Figure 2.6(b)). Thus if I is any orientation-preserving
isometry, we may define

α(I) = α(ℓ, Iℓ)

by choosing an arbitrary marked line ℓ. α(I) is defined up to multiples of
2π, and in fact, one may easily show that α : Isom+(R2) → R/2πZ is a
homomorphism. Now we see that T = kerα, and since the kernel of any
homomorphism is a normal subgroup, the proposition follows. �

Given a normal subgroup, we can take a factor group; what is the factor
group Isom+(R2)/T ? It is not hard to see that this factor group is iso-
morphic to the group of rotations around a given point p. Such rotations
are in a bijective correspondence with the real numbers modulo 2π, and
this correspondence is homomorphic; thus Isom+(R2)/T is isomorphic to
S1 = R/2πZ.

In fact, the isomorphism is provided by the map α which was constructed
in the proof of Proposition 5.4; this is an example of the general principle
that G/ kerϕ is isomorphic to Imϕ for any homomorphism ϕ.

We can now make a rather strong statement about the group of even
isomorphisms of the plane.

Proposition 5.5. Isom+(R2) is solvable.

Proof. We compute the sequence of derived subgroups and show that
it terminates in the trivial group. Given any two even isometries I1 and I2,
we have

α([I1, I2]) = α(I1I2I
−1
1 I−1

2 ) = α(I1) + α(I2) − α(I1) − α(I2) = 0.

It follows that [Isom+(R2), Isom+(R2)] ⊂ T .

Exercise 5.1. Show that [Isom+(R2), Isom+(R2)] = T .

Now T is isomorphic to R2 via the map v 7→ Tv, and so T is abelian.
Thus [T ,T ] is trivial, and we are done. �

Remark. Proposition 5.5 fails in higher dimensions; Isom+(R3) is not
solvable. This reveals a deep difference between isometries of the plane and
isometries of three-dimensional space.

Remark. It follows from Proposition 5.5 that Isom(R2) is solvable as
well. This is because the commutator of any two isometries is a product of
four isometries, and hence is even, so the derived subgroup of Isom(R2) is
contained in Isom+(R2).

The discussion in this section should be compared with the proof of
Proposition 5.2. We have just shown that the (non-abelian) group Isom+(R2)
can be constructed from the (abelian) groups R2 (the group of translations)
and S1 (the group of rotations around a given point). This corresponds
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exactly to the construction in the proof of Proposition 5.2 of an arbitrary
even isometry as the product of a translation and a rotation.

Before turning our attention to other things, we find the conjugacy
classes of elements of Isom+(R2). Let Tv be translation by v. Then since
T is abelian, Tv can only be conjugated to something different from itself
by using rotations. Furthermore, one may easily check that if R is a rota-
tion, then I = R ◦ T ◦ R−1 is a translation by Rv. The fact that I is a
translation follows since T is normal; thus I is determined by the image of
a single point p. Taking p to be the centre of rotation of R, we see that
Ip = RTR−1p = p +Rv, hence I is translation by Rv.

Now let R = Rp

θ be rotation by θ around a point p, and let I ∈
Isom+(R2) be arbitrary. Then α(IRI−1) = α(R), and hence IRI−1 is also
rotation by θ; the centre of rotation may be different, however. Indeed, one
can check that if T is any translation, then TRT−1 is rotation by θ around
the point Tp.

Remark. Something slightly different happens if we take conjugacy
classes in the whole group Isom(R2). By conjugating Rp

θ with reflection
in a line containing p, we can obtain the rotation Rp

−θ. This illustrates the
fact that passing to a larger group may make conjugacy classes larger.
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Lecture 6. Monday, September 14

a. Finite symmetry groups. In Lecture 4 we examined the groups of
symmetries for regular polygons and polyhedra in R2 and R3; these groups
were finite and contained only rotations and reflections. Then in Lecture 5
we examined the group of all isometries of R2 (and of R3), which we saw
to be much richer; it has infinitely many elements and contains not only
rotations and reflections, but also translations and glide reflections (and in
R3, even more possibilities).

The classification in the previous lecture gives us a complete understand-
ing of individual isometries of R2. We now know that every isometry falls
into one of four categories and we will try to see how can isometries from
these different categories be put together to form subgroups of Isom(R2).

This question may be put another way. Given any geometric pattern
in the plane—that is, a subset X ⊂ R2—the symmetry group of X is a
subgroup of Isom(R2). Thus if we want to understand what patterns of
symmetries a geometric object may have, we should understand the sub-
groups of Isom(R2). In particular, an object with finitely many symmetries
corresponds to a finite subgroup of Isom(R2), an object with only discrete
symmetries corresponds to a discrete subgroup, and so on.1

Let us now focus on objects with finitely many symmetries, such as
polygons, and address the following specific question: What are the finite
subgroups of Isom(R2)?

There are two obvious possibilities. Given a rotation R by an angle
2π/n around some point p, the group Cn = 〈R〉 = {Id, R,R2, . . . , Rn−1} ⊂
Isom+(R2) is a cyclic group of order n. If we let ℓ be a line through p and L
a reflection in ℓ, then Dn = 〈R,L〉 is the dihedral group of order 2n, which
we already encountered as the group of symmetries of a regular n-gon.

In fact, this is it. There are no other finite subgroups.

Theorem 6.1.

(1) Every finite subgroup of Isom+(R2) is cyclic of the form Cn for some
n ∈ N, p ∈ R2.

(2) Every finite subgroup of Isom(R2) is cyclic (if it contains only even
elements) or dihedral (if it contains both even and odd elements).

Proof. Let G be a finite subgroup of Isom(R2). We may immediately
observe that G cannot contain a non-trivial translation or glide reflection,
since every element of a finite group must have finite order. Thus either
G ⊂ Isom+(R2), in which case G contains only rotations, or G 6⊂ Isom+(R2),
in which case G ∩ Isom+(R2) is a subgroup of index 2, and so G contains n
rotations and n reflections.

1A rich variety of geometric patterns corresponding to various symmetry groups in
both the Euclidean and non-Euclidean planes appears in the work of the Dutch twentieth
century artist M. C. Escher.
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Now we must show that all the rotations in a finite group have the
same centre. There is an easy way to see it using the homomorphism
α : Isom+(R2) → R/2πZ constructed in the proof of Proposition 5.4. For,
the commutator of any two rotations is a translation which is trivial if and
only if rotations commute. However rotations around different points never
commute as can be easily seen by looking at the images of centers of those
rotations. Thus the group must contain a non-trivial translation and hence
is infinite. This argument is strictly two-dimensional and we will now present
another proof which illustrates a technique that is applicable in a broader
setting. In particular, it works for isometries of Euclidean spaces of arbitrary
dimension.

Lemma 6.2. If G ⊂ Isom(R2) is a finite group of isometries, then there
exists a point p ∈ R2 such that Ip = p for every I ∈ G.

Proof. The key observation to make is that isometries respect the cen-
tre of mass of a finite set of points; we prove this by induction. Given a
finite set X ⊂ R2, let C(X) denote the centre of mass of X. We will show
that

(6.1) C(I(X)) = I(C(X)).

If X has only two points, x1 and x2, then C(X) is the midpoint y of the
line segment [x1,x2]. The point y is the unique point in R2 such that

d(x1,y) = d(x2,y) =
1

2
d(x1,x2).

If I is an isometry, then we have

d(Ix1, Iy) = d(Ix2, Iy) =
1

2
d(Ix1, Ix2),

and it follows that Iy is the midpoint of [Ix1, Ix2], whence Iy = C(I(X)).

x1

x2

x3y
y′

(a)

z

z′z′′

Iz

Iz′

Iz′′

I

(b)

Figure 2.7. Isometries preserve ratios and centres of mass.

Now supposeX has n points x1, . . . ,xn, and let y = C({x1, . . . ,xn−1})—
the case n = 3 is shown in Figure 2.7(a). Then C(X) is the unique point y′

which lies on the line segment [y,xn] for which

(6.2) d(y,y′) =
1

n
d(y,xn), d(y′,xn) =

n− 1

n
d(y,xn).
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Because I is an isometry, the relationships in (6.2) continue to hold for the
points Iy, Iy′, Ixn. Thus if Iy = C({Ix1, . . . , Ixn−1}), then Iy′ = C(I(X)),
and now induction shows that (6.1) holds for any finite X.

Armed with (6.1), we can complete the proof of the lemma.

Definition 6.3. Given a group G ⊂ Isom(R2) and a point x ∈ R2, the
orbit of x is

Orb(x) = {Ix | I ∈ G}.

Observe that G is finite if and only if Orb(x) is finite for every x ∈ R2.
Now suppose G is finite, and let x ∈ R2 be arbitrary. For every I ∈ G, we
have I(Orb(x)) = Orb(x), since I simply permutes the points of the orbit.
Using (6.1), this gives

I(C(Orb(x))) = C(I(Orb(x))) = C(Orb(x)).

That is, the centre of mass of any orbit is fixed by every element of the
group. Taking p = C(Orb(x)) completes the proof of the lemma. �

Remark. The only property of isometries which we used in the proof
of Lemma 6.2 was the fact that they preserve intervals and ratios. That is,
if z, z′, z′′ are three collinear points as in Figure 2.7(b), then Iz, Iz′, Iz′′ are
still collinear, and furthermore,

(6.3)
d(Iz, Iz′′)

d(Iz′′, Iz′)
=
d(z, z′′)

d(z′′, z′)
.

These properties hold for a more general class of maps, called affine maps.
Thus we have in fact proved that any finite group of affine transformations
in Rn has a fixed point.

Returning to the proof of Theorem 6.1, we see from Lemma 6.2 that if
G ⊂ Isom+(R2), then there exists p ∈ R2 such that every element of G is a
rotation around p. Consider the (finite) set

Θ = {θ ∈ [0, 2π) | Rp
θ ∈ G},

and let α be the smallest positive number in θ. If α 6= 2π/n for some n,
then there exists k such that kα ∈ (2π, 2π + α), and consequently

(Rp
α)k = Rp

kα = Rp

kα−2π ∈ G.

But now 0 < kα − 2π < α, which contradicts the definition of α. Thus
α = 2π/n for some n. Furthermore, every element of G is of the form Rp

kα
for some 0 ≤ k < n. To see this, fix β ∈ Θ, and observe that if β = kα+ β′

for some 0 ≤ β′ < α, then

Rp

β′ = Rp
β ◦ (Rp

α)−k ∈ G,

and hence β′ ∈ Θ as well. It follows that β′ = 0, and so β = kα.
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This completes the proof in the case when G ⊂ Isom+(R2). For the
general result, observe that if I, I ′ ∈ G are orientation-reversing, then Ie =
I−1I ′ ∈ G is orientation-preserving, and it follows that

I ′ = IIe ∈ IG+,

where G+ = G∩Isom+(R2) is the even subgroup of G. Thus G = G+∪IG+,
and so G+ is a subgroup of index 2 in G. We know from above that G+ is
generated by a rotation Rp

2π/n, it follows that G is generated by Rp

2π/n and

L, where L is reflection in a line ℓ—the line ℓ contains p by Lemma 6.2. We
have already seen that the group generated by such a rotation and reflection
is the dihedral group Dn, and this completes the proof. �

Remark. We have already seen that the dihedral groups arise as the
symmetry groups of regular polygons. Can we obtain the cyclic groups as
the symmetry groups of geometric figures? To do so, we must construct a
figure with no reflective symmetry; this may be done by taking a regular
polygon and marking each side asymmetrically, as shown in Figure 2.8(a), to
eliminate reflective symmetries. Another example is given by the triskelion
(or trinacria); this shape, which appears on the flag of the Isle of Man, shown
in Figure 2.8(b), has symmetry group C3.

Figure 2.8. Figures with a cyclic symmetry group.

b. Discrete symmetry groups. Having classified the finite subgroups
of Isom(R2), we now expand our horizons a bit and consider a broader class
of subgroups—the discrete groups.

Definition 6.4. Fix X ⊂ R2. A point p ∈ R2 is an accumulation
point of X if there exists a sequence of points x1,x2, · · · ∈ X such that
limn→∞ xn = p, but xn 6= p for all n.

We say that X is discrete if it does not have any accumulation points.
A group G ⊂ Isom(R2) is discrete if Orb(x) is discrete for every x ∈ R2.

Example 6.5. Any finite set is discrete; consequently, any finite sub-
group of Isom(R2) is discrete. This includes the cyclic groups Cn and the
dihedral groups Dn.
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Example 6.6. The set Z2 = {(a, b) | a, b ∈ Z} ⊂ R2 is discrete. Consider
the group G of translations by integer coordinates:

G = {Tv ∈ Isom(R2) | v = (a, b), a, b ∈ Z}.
Then Orb(x) = x + Z2 is discrete for every x ∈ R2; hence G is discrete but
not finite.

Example 6.7. Suppose G contains a rotation Rp

θ such that θ/2π is
irrational. Then given any x 6= p, Orb(x) is an infinite subset of the circle
centred at p with radius d(p,x). Hence it must have accumulation points
so that G is not discrete.

In fact, with a little extra effort we can show that the orbit is dense in
the circle and hence every point on this circle is an accumulation point of
Orb(x). To see that notice that rotation that maps any point on the orbit
to any other point belongs to the group G. Hence G contains rotations by
angle arbitrary close to zero. Applying iterates of such small rotations to x
we obtain denser and denser subsets of the circle.

Remark. The above definition of a discrete group is extrinsic—that is,
it relies on the action of G on the plane R2 and is given in terms of the orbits
of points. An intrinsic definition can also be given by defining a notion of
convergence in Isom(R2) itself: fixing three non-collinear points x1,x2,x3 ∈
R2, say that a sequence {In} ⊂ Isom(R2) converges to I ∈ Isom(R2) if and
only if Inxi → Ixi for each i = 1, 2, 3. Three points is enough to determine
an isometry, and so this implies that Inx → Ix for every x ∈ R2. Then we
may say that G is a discrete group if and only if it is discrete as a set—that
is, it has no accumulation points.

Observe that this notion of convergence is not determined by the alge-
braic structure of the group. Let T be a translation and R a rotation by an
irrational multiple of 2π. Then both 〈T 〉 and 〈R〉 are isomorphic to Z, but
T is discrete, while R is not.

We see from the above examples that discrete groups form a broader
class of groups than finite groups; however, they are still simple enough that
we may hope to give a complete classification along the lines of Theorem 6.1.

So far we have seen two examples of infinite discrete groups: 〈Tv〉 and
〈Tv, Tw〉, where v and w are linearly independent. In fact, given any discrete
group G ⊂ Isom(R2), one may show that all of its non-finiteness comes from
translations. To make this precise, we need the following definition.

Definition 6.8. Given a subgroup G ⊂ Isom(R2), the translation sub-
group of G is

GT = T ∩G = {I ∈ G | I is a translation}.
The precise statement of the claim that “all of the non-finiteness of G

comes from translations” is that the translation subgroup has finite index.
Since GT is a normal subgroup of G, we may consider the factor group
G/GT , and we will see that this factor group is finite.



LECTURE 6. MONDAY, SEPTEMBER 14 59

This illustrates a general principle in the theory of infinite groups: many
infinite groups can be decomposed by finding a subgroup of finite index
which takes a known form (such as the translation subgroup), and reducing
questions about the whole group to questions about this subgroup (which is
well understood) and about the quotient group (which is finite).2

We now address two questions which arise from the above ideas. First,
what are the possible translation subgroups GT ? Second, what are the
possible factor groups G/GT ?

Proposition 6.9. Given any discrete group G ⊂ Isom(R2), the trans-
lation subgroup GT is one of the following:

(1) The trivial group {Id}.
(2) An infinite cyclic group 〈Tv〉.
(3) A rank-2 abelian group 〈Tv, Tw〉, where v,w are linearly independent.3

Proof. Consider the orbit Orb(0) of the origin under the action of GT .
If Orb(0) = {0}, then GT is trivial; otherwise let v be the element of Orb(0)
closest to the origin. Now nv ∈ Orb(0) for every n ∈ Z, and Orb(0) contains
no other elements of the line ℓ through 0 and v (otherwise one of them would
be closer to 0 than v is).

If these are all the points in Orb(0), then GT = 〈Tv〉; otherwise we may
let w be the closest point in Orb(0) to 0 which does not lie on ℓ. We see
that

(6.4) vZ + wZ = {av + bw | a, b ∈ Z} ⊂ Orb(0).

Let P be the parallelogram whose vertices are 0, v, w, and v + w.
Then if we do not have equality in (6.4), we can find a point p ∈ Orb(0)
which lies inside P . In fact, all four of the points p, p − v, p − w, and
p − v − w are contained in Orb(0) (an immediate consequence of the fact
that p+av+bw ∈ Orb(0) for all integers a and b). One of these four points
is closer to 0 than w is. To see this, notice that p lies on one side of a
diagonal of P , say, the one connecting v and w. then the sum of length of
segments connecting p with v and w is less that the sum of lengths of the
sides of P , i.e lengths of vectors v and w. Hence at least one of the those
segments is shorter than the longer side, i.e w. This contradiction shows
that equality holds in (6.4). This in turn implies that GT = 〈Tv, Tw〉, and
we are done. �

Exercise 6.1. Show that G/GT is isomorphic to a finite group whose
elements are all either rotations around a single point p ∈ R2 or reflections
in lines through p.

2One sometimes says that if a finite index subgroup of G has a property P , then G is
virtually P . For example, since the translation subgroup is abelian and is of finite index,
any discrete subgroup of Isom(R2) is virtually abelian.

3The rank of a group G is the minimal number of generators of G—that is, the
cardinality of the smallest set X ⊂ G such that 〈X〉 = G.
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It follows from discreteness of G that any rotation in G must be by an
angle which is a rational multiple of 2π. If the translation subgroup GT is
trivial, then there are no further restrictions; the cyclic and dihedral groups
provide examples of finite (hence discrete) groups with trivial translation
subgroups in which rotations of any rational angle (with respect to 2π)
appear.

The situation is different if the translation subgroup is non-trivial. In
this case, we have the following theorem, which places significant restrictions
on the angles of rotations in G.

Theorem 6.10 (Crystallographic restriction theorem). Let G be a dis-
crete subgroup of Isom(R2), and suppose that G contains a non-trivial trans-
lation. Suppose furthermore that G contains a rotation Rp

θ . Then θ is of
the form 2π/k, where k = 1, 2, 3, 4, or 6.

Proof. Let X = Orb(p) be the orbit of p under the group G. Then
given q ∈ X, let I ∈ G be such that Ip = q, and observe that IRp

θ I
−1 = Rq

θ ,
and thus Rq

θ ∈ G. This shows that G contains the rotation by θ around every
point in the lattice X.

Because X = Orb(p) is discrete, there exist p 6= q ∈ X such that d(p,q)
is minimal—that is, d(x,y) ≥ d(p,q) for all x 6= y ∈ X. (This is where we
use the requirement that G contains a translation, as this guarantees that
the orbit of p contains a point besides p itself.)

By discreteness, we have θ = 2πa/b, where a and b are relatively prime.
Choosing n such that na ≡ 1 (mod b), we see that G contains (Rp

θ )n =
Rp

2π/b. If b > 6, then we have

d(Rp

2π/bq,q) < d(p,q),

which contradicts the definition of p and q. Thus it only remains to eliminate
the possibility that b = 5. This can be done by observing that in this case,
we get

d(Rp

2π/5
q, Rq

−2π/5
p) < d(p,q),

which is again a contradiction. The result follows. �

Remark. If one considers square, triangular, and hexagonal lattices, it
is not hard to see that each of the remaining possibilities in fact occurs.
Using this observation together with Theorem 6.10, the 19th-century Rus-
sian crystallographer E. S. Fedorov showed that every discrete subgroup of
Isom(R2) with a rank-2 translation subgroup is isomorphic to one of the 17
crystallographic groups.
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Lecture 7. Wednesday, September 16

a. Remarks on Homework #3.

Remark. The group Q = {±1,±i,±j,±k} with multiplication rules
given by i2 = j2 = k2 = ijk = −1 is called the quaternion group. It is
related to the quaternions, which are a sort of four-dimensional analogue of
the complex numbers. To make this more precise, observe that the real num-
bers are a one-dimensional vector space with the structure of a field—that
is, addition and multiplication satisfying commutativity, associativity, and
distributive laws, such that every element has both additive and multiplica-
tive inverses (except for 0). The complex numbers are a two-dimensional
vector space with the structure of a field, and it is reasonable to ask if we can
turn Rd into a field for d ≥ 3. It turns out that this is impossible; however,
R4 can be given a structure which makes it almost a field, by choosing basis
elements {1, i, j, k} and defining multiplication as above. The only thing
that is missing is commutativity of multiplication (we get what is called a
skew field). One can carry out a similar procedure in R8, but in this case
we lose both commutativity and associativity.

Remark. The quaternion group is the last item in complete classifica-
tion of groups of order 8 after three abelian groups and the dihedral group
D4. This is the smallest number n such that there are more than two non-
isomorphic groups of order n. Recall that the possibility of a complicated
internal structure of a group corresponds to a high degree of divisibility of its
order; thus “interesting” orders to consider are numbers that are products
of more than two primes: 8, 12, 16, 18, 20, 24, . . . .

Remark. So far we have considered groups of isometries of objects X
which live in Euclidean space R2 or R3. In the torus R2/Z2 and the elliptic
plane E2, we have objects which do not live in Euclidean space (at least,
not in R3), and so we are in some sense in a more general setting.

b. Classifying isometries of R3. In Lecture 4, on page 42, we defined
the notion of a right-handed basis of R3, and characterised even isometries of
R3 as those isometries which map right-handed bases to right-handed bases.
An alternate definition is to observe that in two dimensions, there were
just two possible configurations for the basis vectors v1 and v2; either v1

is π/2 clockwise from v2, or vice versa. In R3, there are six configurations,
corresponding to the six permutations in S3, and even and odd isometries
correspond to even and odd permutations.

This can be stated most clearly in the language of linear algebra, about
which we will have more to say later on. For now, observe that if I is an
isometry which fixes a point p, then in coordinates centred at p, I defines a
linear map, and hence a 3 × 3 matrix. One may show that I is orientation-
preserving if the determinant of this matrix is positive, and orientation-
reversing if it is negative.

We have analogues of Propositions 5.2 and 5.3 in three dimensions.
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Proposition 7.1. Let x1,x2,x3,x4 ∈ R2 be non-coplanar, and suppose
x′
i ∈ R2 are such that

(7.1) d(x′
i,x

′
j) = d(xi,xj)

for every 1 ≤ i, j ≤ 4. Then there exists a unique isometry I : R2 → R2 such
that Ixi = x′

i for every 1 ≤ i ≤ 4.

Proof. Let P be the plane containing x1, x2, and x3, and let P ′ be
the plane containing x′

1, x′
2, and x′

3. Then there exists an isometry J ∈
Isom(R3) such that J(P ) = P ′: if P and P ′ are parallel, take J to be
a translation, and if they intersect, take J to be a rotation around their
line of intersection. Furthermore, by Proposition 5.2, there exists a unique
isometry I ∈ Isom(P ′) such that I(J(xi)) = x′

i for i = 1, 2, 3.
In fact, Proposition 5.2 shows that the isometry I ◦J is uniquely defined

on P . To determine the extension of I ◦ J to R3, it suffices to know which
side of P and P ′ the points x4 and x′

4 lie on; this determines the orientation
of the isometry. To see that this determines the extension uniquely, observe
that given any y ∈ R3, the image of y must lie on each of the three spheres
centred at x′

i with radius d(y,xi), for i = 1, 2, 3. Because the points x′
i are

non-collinear, these three spheres intersect in at most two points (in fact, in
exactly two points). One point corresponds to an even isometry, the other
to an odd isometry. �

Proposition 7.2. Every isometry of R3 is a product of no more than
four reflections.

Every isometry of R3 with a fixed point is a product of no more than
three reflections.

Proof. The proof is similar to the proof of Proposition 5.3.
Since every isometry is determined by images of four points we will

construct reflections matching additional point without moving those that
have already been matched.

First notice that there is exactly one reflection that maps a given point x
into another point x′ 6= x, namely reflection in the plane Px,x′ perpendicular
to the segment [x,x′] passing through the midpoint of that segment. This
plane may be characterized as the locus of points equidistant from x and
x′. Thus if the points x andx′ are equidistant from one, two or three other
points the plane Px,x′ passes through those points.

These remarks provides an algorithm for constructing reflections as re-
quired. Given quadruples of points as is Proposition 7.1 we first construct
the reflection L1 in Px1,x′

1
, then, if necessary, reflection L2 in the plane

PL1x2,x′

2
(that fixes x′

1), then, if necessary, reflection L3 in PL2◦L1x3,x′

3
(that

fixes x′
1 and x′

2) and finally, if necessary, reflection L4 in PL3◦L2◦L1x4,x′

4
.

Any step can be missed if two points in the corresponding pair coincide. In
particular, if x1 = x′

1 the first step is not needed. �
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Since reflections are odd isometries and the product of reflections in two
parallel planes is a translation, we immediately have

Corollary 7.3. Every even isometry with a fixed point is a product of
two reflections in two non-parallel planes and hence is a rotation whose axis
is the line of their intersection.

Every odd isometry other than a reflection is a product of three reflec-
tions.

Remark. One can see that above arguments extend to higher dimen-
sions in a straightforward way: in Rn at most n + 1 reflections are needed.
Nevertheless synthetic approach to classification of isometries in higher di-
mension becomes rather cumbersome; we will resort to linear algebra to
accomplish that goal.

As mentioned in Lecture 5d, there are isometries of R3 which are qualita-
tively different from anything found in R2. Since every isometry is a product
of reflections, and each reflection is determined by a plane, this corresponds
to the fact that there are arrangments of planes in R3 for which there are
no analogous arrangements of lines in R2.

We saw in Figure 2.5 that given two reflections L1 and L2, there are
many other pairs of reflections L′

1 and L′
2 such that L1 ◦ L2 = L′

1 ◦ L′
2. In

particular, this allowed us to classify all products of three reflections in R2

by assuming without loss of generality that two of the corresponding lines
are parallel.

No such general result is available in R3. To see this, let P1 be the xy-
plane, P2 the xz-plane, and P3 the yz-plane. For i = 1, 2, 3, let Li be the
reflection in Pi, and for i 6= j, let ℓij = Pi ∩ Pj be the line of intersection of
Pi and Pj . Observe that ℓ12 is orthogonal to P3, and similarly for P1 and
P2.

The product L1 ◦L2 is a rotation by π around the line ℓ12. This rotation
can be decomposed as the product L′

1 ◦ L′
2 if and only if the corresponding

planes P ′
1 and P ′

2 meet at a right angle and have intersection ℓ12. Since ℓ12
is orthogonal to P3, we see that neither P ′

1 nor P ′
2 can be made parallel to

P3. It follows that any decomposition of C = L1 ◦ L2 ◦ L3 as a product of
three reflections must use three pairwise orthogonal planes.

The isometry C : x 7→ −x is known as the central symmetry. The anal-
ogously defined map in R2 was an even isometry (rotation by π around 0);
this is not the case here, and we have obtained an isometry which does not
fit into any of the four classes that categorise Isom(R2).

In fact, every odd isometry of R3 is either a reflection, a glide reflection,
or a rotatory reflection—that is, a composition of reflection in a plane P
with rotation around a line ℓ orthogonal to P .

Passing to even isometries, we must categorise the possible configura-
tions of four planes. This will allow us to completely classify even isometries
of R3.
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c. Isometries of the sphere. The first subgroup of Isom(R2) that we
considered was Gp, the group of isometries which fix a given point p. We
saw that this group has a normal subgroup of index two which comprises all
rotations around p; this subgroup is abelian, and so Gp is not a particularly
complicated group. In particular, it is solvable.

It turns out that the situation in R3 is a little more subtle. We can use
the results in the previous section to describe all the isometries which fix
the origin 0 ∈ R3:4

(7.2) O(3) = O(3,R) = {I ∈ Isom(R3) | I0 = 0}.
The group O(3) is called the orthogonal group, for reasons that will become
clear when we consider matrix representations of isometries. Observe that
every isometry I ∈ O(3) is also an isometry of the sphere

S2 = {x ∈ R3 | ‖x‖ = 1}.
Conversely, every isometry I ∈ Isom(S2) can be extended to an isometry of
R3 using Proposition 7.1, and it follows that O(3) is isomorphic to Isom(S2).

We will also be interested in the special orthogonal group

(7.3) SO(3) = SO(3,R) = {I ∈ Isom+(R3) | I0 = 0}.
Since orientation on the surface of the sphere can be defined similarly to
that in the plane we can speak about even isometries of the sphere. Then
SO(3) = Isom+(S2).

What even isometries of R3 have a fixed point? That is, what sorts of
isometries are in SO(3)? One immediately sees that if ℓ is a line through
0, then any rotation Rℓθ around ℓ by an arbitrary angle θ fixes 0, and so

Rℓθ ∈ SO(3). By Corollary 7.3 we immediately see that those are the only
elements of SO(3).

As a cautionary note, we observe that we must actually fix a directed
line ℓ in order to determine the rotation Rℓθ—that is, we must fix a positive
and negative direction along ℓ so that we know which direction of rotation
is positive and which is negative. If we denote by −ℓ the line ℓ with the
opposite orientation, then R−ℓ

θ = Rℓ−θ.

d. The structure of SO(3). Significance of the group SO(3) goes far
beyond geometry, and we seek to understand its algebraic structure. One
way of doing this is to find the conjugacy classes of SO(3); how do we tell
when two rotations in SO(3) are conjugate?

Given Rℓθ ∈ SO(3) and an arbitrary isometry I, we see that IRℓθI
−1 fixes

the line ℓ′ = Iℓ, and indeed, that

IRℓθI
−1 = Rℓ

′

θ .

If ℓ and ℓ′ are any two lines through the origin, then there exists I ∈ SO(3)

such that Iℓ = ℓ′, and it follows that Rℓθ and Rℓ
′

θ are conjugate. Thus

4If we consider isometries fixing an arbitrary point p, we will obtain a subgroup that
is conjugate to the one we now consider.
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the conjugacy classes in SO(3) stand in one-to-one correspondence with the
interval [0, π]; each conjugacy class is of the form

Rθ = {Rℓθ | ℓ is a line through 0}

for some θ ∈ [0, π]. Observe that we do not need to consider θ ∈ (π, 2π),

since Rℓθ = R−ℓ
2π−θ. In particular, every rotation in SO(3) is conjugate to its

inverse.
The two-dimensional analogue of SO(3) is the group of rotations of the

plane around 0, which is abelian, and hence has conjugacy classes which
are single elements. The much larger conjugacy classes in SO(3) corre-
spond to the fact that SO(3) is significantly less commutative than its two-
dimensional counterpart. Indeed, we have the following result.

Theorem 7.4. SO(3) is simple.

Proof. We must show that SO(3) has no normal subgroups besides
the trivial subgroup and SO(3) itself. Recall that a subgroup is normal if
and only if it is a union of conjugacy classes. Thus we must show that any
subgroup G which contains an entire conjugacy class Rθ is in fact the entire
group.

Geometrically, this means that given θ 6= 0, we can obtain any rotation
as the product of rotations by θ around different axes. The idea of the proof
is made clear by considering the particular case θ = π.

Observe that given any two orthogonal planes which contain 0, the prod-
uct of the corresponding reflections is a rotation by π, and hence lies in Rπ.
Let P and P ′ be arbitrary planes which contain 0, and let P ′′ be another
plane which contains 0 and is orthogonal to both P and P ′ (this can be
accomplished by taking P ′′ orthogonal to the line ℓ = P ∩P ′). Let L,L′, L′′

be the corresponding reflections. Then L ◦ L′′ and L′′ ◦ L′ are both in Rπ,
and their product is

(L ◦ L′′) ◦ (L′′ ◦ L′) = L ◦ L′ ∈ 〈Rπ〉.

L and L′ were arbitrary, and hence every rotation is in 〈Rπ〉. It follows that
G = SO(3).

The same technique works for θ 6= π; all that needs to be modified is
that P ′′ should meet the line ℓ at an angle of θ/2. �

This is the first complete proof we have seen that a group is simple;
we encountered the alternating group A5 earlier, but did not prove its sim-
plicity. In fact, A5 is the group of even isometries of the dodecahedron (or
icosahedron), and so can be realised as a subgroup of SO(3).

Theorem 7.4 shows that Isom+(R3) is not solvable, and a similar result
holds in higher dimensions. Thus the result of Proposition 5.5 shows that
the two-dimensional case is somehow exceptional.
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e. The structure of O(3) and odd isometries. Finally, we observe
that the orthogonal group O(3) is generated by SO(3) and the central sym-
metry C that commutes with every reflection in a plane passing through the
origin and hence with every element of O(3).

Definition 7.5. Given a group G, the centre of G is

Z(G) = {g ∈ G | gh = hg for all h ∈ G}.
The center of any group is a subgroup since If g1h = hg1 and G2h = hg2

then g1g2h = g1hg2 = hg1g2

Proposition 7.6. Z(O(3)) = {Id, C} and O(3) is isomorphic to the
direct product of SO(3) and Z/2Z.

Proof. We saw that C ∈ Z(O(3)). If the center contains other elements
it has to contain even isometries other than identity, hence rotations. But
this contradicts simplicity of SO(3).

Now any odd isometry I ∈ O(3) can be written in a unique way as the
product of C and an element of SO(3). Since those commute this provides
desired isomorphism. �

This representation allows us to finish classification of odd isometries of
R3 with fixed points. Every such isometry is conjugate to an element I of
O(3)\SO(3), i.e the product of the central symmetry with a rotation R The
former is the product of reflections in any three mutually orthogonal planes.
One can pick the first two so that their product is rotation by π around the
axis of R. Thus I is the product of a rotation and reflection in the plane
perpendicular to its axis (that commutes with the rotation), what we called
rotatory reflection.
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Lecture 8. Friday, September 18

a. Odd isometries with no fixed points. Having classified all the
isometries of R3 which have fixed points, we turn our attention to isometries
without fixed points. First we consider odd isometries; any odd isometry
with no fixed point is the product of three reflections,

I = L1 ◦ L2 ◦ L3.

Let P1, P2, P3 be the corresponding planes. If P1 and P2 are parallel, then
T = L1 ◦ L2 is a translation and I = T ◦ L3; otherwise consider the line
ℓ = P1∩P2. If ℓ∩P3 6= ∅, then there exists p ∈ P1∩P2∩P3, and we see that
Ip = p. Since I has no fixed point, we conclude that ℓ and P3 are parallel.
Observe that L1 ◦L2 = L′

1 = L′
2 whenever the corresponding planes P ′

1 and
P ′

2 intersect at the appropriate angle in the line ℓ; in particular, we may
take P ′

2 parallel to P3 and obtain

I = L′
1 ◦ L′

2 ◦ L3 = L′
1 ◦ T

for some translation T . Thus every odd isometry with no fixed point is the
product of a translation and a reflection.

As in Lecture 5(c), we may decompose the translation T into parts T ′

and T ′′ which are respectively parallel to and orthogonal to the plane P1,
and hence we obtain L′

1 ◦ T = L′′
1 ◦ T ′ = T ′ ◦ L′

1, where L′′
1 is reflection

in a plane P ′′
1 parallel to P ′

1. A similar decomposition may be done when
I = T ◦L3, and it follows that every odd isometry of R3 with no fixed point
is a glide reflection.

We see now that every odd isometry is one of three things:

(1) a reflection;
(2) the product of a reflection L and a rotation R, where L and R commute;
(3) the product of a reflection L and a translation T , where L and T com-

mute.

Similarly, we will later see that every even isometry is one of three things:

(1) a rotation;
(2) a translation;
(3) the product of a rotation R and a translation T , where R and T com-

mute.

b. Remarks from Thursday tutorial: Solution to Homework
#2, Exercise 11(1).

Proposition 8.1. If G ⊂ Isom(R2) is discrete, then G contains a trans-
lation subgroup of finite index.

Proof. Let G+ = G∩ Isom+(R2) be the subgroup of even isometries in
G, and observe that either G+ = G or G+ is of index 2. Let GT = G∩ T ⊂
G+ be the translation subgroup of G (the group of all translations in G).
Then GT has finite index in G if and only if it has finite index in G+.
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Next notice that if G (and hence G+ is infinite) it contains a transla-
tion. For, the commutator of any two elements of G+ is a translation and
since rotations around different point do not commute there are non-triviual
commutators. (Remember that any group consisting of rotations around one
center is either finite or not discrete).

Now notice that the conjugate of a translation by a rotation is a transla-
tion by the vector of the same length turned by the angle of rotation. Hence
either G contains two linearly independent translations or it can only con-
tain rotations by π. In the latter case the subgroup of translations in G+

has index two.
In the former case we can apply the Crystallographic restrictions Theo-

rem 6.10
Let α : G+ → S1 = R/2πZ be the homomorphism defined in the proof

of Proposition 5.4, so that I ∈ G+ is a translation if α(I) = 0, and otherwise
is a rotation of the form Rp

αI for some p ∈ R2. Consider the subgroup

Θ = Im(α) = {θ + 2πZ | Rp

θ ∈ G for some p ∈ R2},

and observe that GT has finite index in G+ if and only if Θ is finite.
Indeed, every coset of GT in G+ is of the form Rp

θGT for some θ ∈ [0, 2π)
and p ∈ R2, and thus determines a unique θ ∈ Θ. To show that |Θ| is equal
to the index of GT in G+, it suffices to show that two rotations by the same
angle around different points determine the same coset, and so the map
Rp
θ 7→ θ + 2πZ is one-to-one. (It is onto by the definition of Θ.)

This is quite simple. In the first place, Rp

θ and Rq

θ determine the same

coset if and only if Rp
θGT = Rq

θGT—that is, if and only if I = (Rp
θ )−1Rq

θ ∈
GT . We see immediately that α(I) = 0, so I is a translation, and since
both the rotations are in G+, so is I. It follows that I ∈ GT ; hence any two
rotations by the same angle determine the same coset of GT .

By Theorem 6.10 Θ is finite and in fact contains at most six elements. �

c. Finite subgroups of Isom(R3). We continue to ask the same sorts
of questions we did for isometries of the plane, and seek a classification of
all finite subgroups of Isom(R3).

Let G ⊂ Isom(R3) be a finite subgroup, and observe that Lemma 6.2
works in three dimensions as well, so there exists p ∈ R3 such that Ip = p
for all I ∈ G. It follows that G is conjugate (by translation) to a subgroup
of O(3). Furthermore, since every odd isometry in O(3) is the product of
the central symmetry C and an even isometry in SO(3), we may consider
G+ = G∩ SO(3) and observe that either G+ = G or G contains the central
symmetry C and then isomorphic to the direct product of G+ and Z/2Z, or
G is isomorphic to a subgroup of SO(3) that consists of G+ and C(G \G+.
Thus in order to classify the finite subgroups of Isom(R3), it suffices to
classify the finite subgroups of SO(3).
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We have already encountered a number of finite subgroups of SO(3).
For example, given any line ℓ through 0, we have the cyclic group

Cn = {Rℓ2πk/n | 0 ≤ k < n} ⊂ SO(3).

A somewhat surprising fact is that we also have the dihedral group Dn,
as a subgroup of SO(3), which in Isom(R2) contains odd as well as even
isometries. The difference in R3 is as follows. Let L ∈ Isom(R2) be a
reflection in the line ℓ, and embed R2 in R3 as a plane P . Consider the
isometry Rℓπ, which is rotation around the line ℓ by an angle π; this isometry
maps P to itself, and its restriction to that plane agrees with the reflection
in ℓ.5

Thus we may take any line ℓ through 0, and let ℓ1, . . . , ℓn be lines through
0 which are orthogonal to ℓ and whose angles with each other are multiples
of π/n. Then we can realise the dihedral group as

Dn = Cn ∪ {Rℓkπ | 1 ≤ k ≤ n} ⊂ SO(3).

Notice that this is the group of isometries of a regular n-gon in R3 or of the
rectangular prism build over that polygon.

In Lecture 4(c), we investigated the symmetry groups of the five platonic
solids. We return to these groups now and complete the investigations begun
there.

The tetrahedron. LetX be a regular tetrahedron with vertices x1,x2,x3,x4

lying on the sphere S2. For any i 6= j ∈ {1, 2, 3, 4}, let Pij be the plane which
is the perpendicular bisector of the line segment from xi to xj , and let Lij
be reflection in Pij . Then Pij contains the other two vertices of X, and
hence Lij permutes the vertices of X according to the transposition (i j);
it interchanges i and j and leaves the other two vertices fixed. By taking
products of such reflections, we obtain every permutation in S4 as an ele-
ment of Isom(X), and since an isometry is determined by its action on four
points, the action on the vertices determines the isometry. Thus Isom(X) is
isomorphic to S4. Even isometries correspond exactly to even permutation
of vertices. Thus the Isom+(X) is isomorphic to A4.

The cube/octahedron. We saw that there are 24 even isometries of the
cube (or of the octahedron, its dual), and we mentioned they form the
symmetric group S4. To see this more carefully, fix a face of the cube, and
label its vertices as x1,x2,x3,x4. For each 1 ≤ i ≤ 4, let ℓi be the line
passing through xi and −xi (and hence 0 as well).

Now given i 6= j, there are two possibilities; either xi and xj are adjacent,
or they are not. If they are adjacent, then let y be the midpoint of the edge
of the cube that runs from one to the other; if they are not adjacent, then xi
and −xj are adjacent, and we take y to be the midpoint of the edge running
from xi to −xj. Let ℓij be the line through y and −y, and observe that if k

5Another way of thinking of this is that if we rotate a clock around the line ℓ, then
we flip the clock over in the plane P , but we also move our point of observation from one
side of P to the other, so the clock still appears to be running clockwise.
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is neither i nor j, then ℓk is perpendicular to ℓij , and hence Iij acts on the
vertices as the transposition (i j). It follows that every permutation of the
diagonals ℓi can be realised by an isometry I of the cube, and if I is even,
it is unique.

The dodecahedron/icosahedron. We saw that there are 60 even isometries
of the dodecahedron (or of the icosahedron, its dual). To see that they form
the alternating group A5, one partitions the 20 vertices of the dodecahedron
into five classes V1, V2, V3, V4, V5 of four vertices each, with the property that
for each 1 ≤ i ≤ 5, each of the 12 faces of the dodecahedron is adjacent to
exactly one vertex from Vi. One then observes that for each i, the four
points in Vi are the vertices of a regular tetrahedron Xi. Finally, one shows
that every even permutation of the five tetrahedra X1,X2,X3,X4,X5 can
be realised by a rotation in SO(3).

Thus we found finite subgroups of SO(3) which are isomorphic to A4, S4,
and A5. We observe that the subgroups of all isometries of the tetrahedron,
cube, and dodecahedron are isomorphic to S4, S4 × Z/2Z, and A5 × Z/2Z,
respectively. The last two of these have the same sort of structure as O(3),
in that they are generated by their even subgroup and their centre {Id, C},
where C : x 7→ −x is the central symmetry, which is a symmetry of the cube
and dodecahedron (and octahedron and icosahedron), but not the tetrahe-
dron.

Theorem 8.2. Every non-trivial finite subgroup of SO(3) is isomorphic
to Cn, Dn, A4, S4, or A5. In fact, this isomorphism can be realised by a
conjugacy within SO(3): if G ⊂ SO(3) is a non-trivial finite subgroup, then
there exists R ∈ SO(3) such that RGR−1 ⊂ SO(3) is equal to one of the
subgroups described above.

Proof. The proof comes in two stages. First, we use a combinatorial
argument to determine the possible numbers of various types of rotations in
G. Having done this, we then show that the group G “is what we think it
is”—that is, that it corresponds to the group from the list Cn,Dn, A4, S4, A5

which has the same number of rotations of various orders.
The combinatorial part. Let F ⊂ S2 be the set of points x on the sphere

such that the line ℓ(x) through x and 0 is an axis of rotation for some
element of G—that is,

F =
⋃

Rℓ
θ
∈G

ℓ ∩ S2.

Observe that F may also be characterised as

F = {x ∈ S2 | Ix = x for some non-trivial I ∈ G}.

Because G is finite, F is finite as well, and given x ∈ F , every rotation
around x has finite order. In particular, there exists p = p(x) such that the
rotations in G which have ℓ = ℓ(x) as their axis are exactly the rotations
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R
ℓ(x)
2πk/p(x) for 0 ≤ k < p. To simplify notation, we will write

Rx = R
ℓ(x)
2π/p(x),

so that every rotation around the line through 0 and x can be written as
Rkx for some 0 ≤ k < p(x).

Define an equivalence relation on F as follows: x ∼ y if and only if there

exists I ∈ G such that Ix = y. Recall that in this case I◦Rℓ(x)
θ ◦I−1 = R

ℓ(y)
θ ,

and so x ∼ y implies that p(x) = p(y).
Now choose a point z ∈ S2 which is very close to x (but not equal to x or

any other element of F ). In particular, suppose that γ = d(z,x) < d(z,y)/2
for every y ∈ F , y 6= x. Observe that Orb(z) = {Iz | I ∈ G} is a set of
n points, where n = |G|; this is because I1z = I2z for I1 6= I2 would imply
I−1
2 ◦ I1z = z, and hence z ∈ F , since I = I−1

2 ◦ I1 is a non-trivial element
in G.

It follows that for each z′ ∈ Orb(z) there exists a unique I ∈ G such
that Iz = z. Let σ(z′) = Ix, and observe that σ(z′) ∼ x for all z′ ∈ Orb(z).
We show that the map σ : Orb(z) → {y ∈ S2 | y ∼ x} is p-to-1, i.e., that
for each y ∼ x there are exactly p(x) different points z′ ∈ Orb(z) such that
σ(z′) = y. This is easy to see by observing that if Ix = y, then σ(z′) = y if

and only if σ(I−1z′) = x; that is, if I−1z′ = R
ℓ(x)
2πk/p(x) for some 0 ≤ k < p(x).

This counting argument boils down to the following: the orbit of z con-
tains n points, and each point y ∼ x has p = p(x) of these points in its
immediate vicinity. Thus the number of such points y is n/p. (We could
also have observed that the set of rotations in G which fix x is a subgroup
of order p, and that its index n/p—that is, the number of cosets—is exactly
the number of points y ∼ x.)

We now proceed with a counting argument. G contains n−1 non-trivial
rotations, each of which is determined by its axis ℓ and angle of rotation θ.
Each axis ℓ corresponds to two points x,−x ∈ F , and for each such ℓ there
are p(x) − 1 non-zero angles of rotation available; it follows that the total
number of non-trivial rotations is

(8.1) n− 1 =
1

2

∑

x∈F

(p(x) − 1).

Group the points in F by equivalence classes under ∼. That is, fix a subset
{x1, . . .xk} ⊂ F such that every y ∈ F is equivalent to exactly one of the
xi, and let pi = p(xi). Then (8.1) may be written as

2(n − 1) =

k∑

i=1

|{y ∈ F | y ∼ xi}|(p(xi) − 1)

=
k∑

i=1

n

pi
(pi − 1).
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Thus we have reduced the combinatorial part of things to the question
of finding integers p1, . . . , pk such that

(8.2) 2 − 2

n
=

k∑

i=1

(
1 − 1

pi

)
.

Observe that since the left-hand side of (8.2) is strictly less than 2 and since
1 − 1/p ≥ 1/2 for all p ≥ 2, we must have k ≤ 3. Furthermore, since n = 1
corresponds to the trivial group, we may assume that n ≥ 2, and hence the
left-hand side is at least 1, whence we have k ≥ 2.

Case one: k = 2. In this case (8.2) becomes

2 − 2

n
= 1 − 1

p1
+ 1 − 1

p2
= 2 − 1

p1
− 1

p2
,

and hence
n

p1
+
n

p2
= 2.

Since n/p(x) is a positive integer for every x ∈ F , we conclude that p1 =
p2 = n. Thus F contains just two points x1 and x2, which must be antipodal
(x2 = −x1), and is the cyclic group Cn of rotations around the line through
x1 and x2 (and 0).

Case two: k = 3. In this case we have

2 − 2

n
= 1 − 1

p1
+ 1 − 1

p2
+ 1 − 1

p3
= 3 − 1

p1
− 1

p2
− 1

p3
,

which yields

(8.3)
1

p1
+

1

p2
+

1

p3
= 1 +

2

n
> 1.

Observe that if pi ≥ 3 for each i = 1, 2, 3, then the left-hand side is at most
1, a contradiction. Thus without loss of generality we may assume that
p3 = 2, and (8.3) becomes

(8.4)
1

p1
+

1

p2
=

1

2
+

2

n
.

Multiplying through by 2p1p2, we obtain

2p2 + 2p1 = p1p2 +
4p1p2

n
,

which may be rewritten as

4 − 4p1p2

n
= p1p2 − 2p1 − 2p2 + 4 = (p1 − 2)(p2 − 2).

If p1 ≥ 4 and p2 ≥ 4, then the right-hand side is at least 4, a contradiction
since the left-hand side is clearly less than 4. Thus without loss of generality,
we have p2 = 2, in which case p1 = n/2, or p2 = 3, in which case p1 = 3, 4,
or 5.
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Recall that since p3 = 2 in each of these cases, (8.4) yields

n = 2

(
1

p1
+

1

p2
− 1

2

)−1

.

We can now list all the possible solutions of (8.2) with k = 3.

p1 p2 p3 n
n/2 2 2 arbitrary even
3 3 2 12
4 3 2 24
5 3 2 60

At this point it is obvious what groups we think we have our hands on:
the first line appears to correspond to Dn/2, the second to A4, the third
to S4, and the fourth to A5; in all cases not only the abstract isomor-
phism types of the groups are fixed but also conjugacy classes of their
embeddings into SO(3); namely, they are isometry groups of a regular
n/2-gon, regular tetrahedron, regular octahedron/cube and regular icosahe-
dron/dodecahedron correspondingly. That these embeddings actually exist
will be proved next time. �
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Lecture 9. Monday, September 21

a. Completion of the proof of Theorem 8.2. Having completed
the combinatorial part of the proof, we turn now to the task of showing that
the combinatorial properties enumerated last time (see table on p. 73) do in
fact determine the groups we think they do. We use all the notation from
last time.

In each of the four cases which we must examine, there are three equiv-
alence classes of points in F . Thus we may decompose F = X1 ∪X2 ∪X3,
where the sets Xi are disjoint from each other, and where any two points in
the same Xi are equivalent: for every x,y ∈ Xi there exists I ∈ G such that
Ix = y. In particular, every rotation I ∈ G preserves Xi: I(Xi) = Xi.

Recall that we write

Rx = R
ℓ(x)
2π/p(x).

Given i = 1, 2, 3, let Gi denote the set of rotations in G of the form Rkx for
0 ≤ k < pi and x ∈ Xi, and observe that G is the disjoint union of the sets
Gi.

Recall that the number of points in Xi is given by |Xi| = n/p, where n
is the order of G.

Case one: p1 = n/2, p2 = p3 = 2. In this case X1 has just 2 points, and
G contains rotations of order n/2 around each of the corresponding axes.
X2 and X3 both have n/2 points, and G contains rotations of order 2 around
each one.

Fix p ∈ X1, and observe that as long as n > 4, we have p1 6= pi for i 6= 1;
consequently, since p(−p) = p(p), we must have X1 = {p,−p}. Since every
rotation in G preserves X1, and since all rotations in both G2 and G3 are
of order 2, we see that all points in X2 and X3 must lie on the “equator”
between the poles p and −p—that is, the great circle in which the sphere
intersects the plane through 0 perpendicular to ℓ(p).

Let q ∈ X2 be any such point, and observe that since X2 is preserved
by the action of G1, we have

X2 = {Rkpq | 0 ≤ k < n/2}.
Thus the points in X2 form the vertices of a regular n/2-gon; call it Q.
Furthermore, if q′ ∈ X3, then a similar argument implies

(9.1) X3 = {Rkpq′ | 0 ≤ k < n}.
Since X3 is preserved by the rotations in G2, we have

Rqq
′ ∈ X3.

Now R2
q = Id, and so it follows from (9.1) that ℓ(q′) contains the midpoint

of one of the edges of Q. It follows that G is the group of symmetries of a
regular n/2-gon—that is, the dihedral group Dn/2.

Case two: p1 = 3, p2 = 3, p3 = 2, n = 12. In this case X1 and X2 each
have 4 points, and G1 and G2 contain rotations of order 3 around each of
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the corresponding axes. X3 has 6 points, and G3 contains rotations of order
2 around each one.

Fix p ∈ X1, and observe that since X1 has 4 points, there exists q ∈ X1

such that q 6= −p,p. Furthermore, we have Rpq, R
2
pq ∈ X1. Since q /∈

ℓ(p), the four points {p,q, Rpq, R2
pq} are all distinct and lie in the same

equivalence class; hence X1 = {p,q, Rpq, R2
pq}.

Now observe that Rq(Rpq) ∈ X1, and that this point is not equal to
q, Rpq, or R2

pq. It follows that p = Rq(Rpq), or equivalently, the points
p,q, Rpq form the vertices of an equilateral triangle. A similar argument
applies to any three points in X1, and hence the four points in X1 are the
vertices of a regular tetrahedron; call it Q.

Given x ∈ X3 and Rx ∈ G3, observe that Rxp ∈ {q, Rpq, R2
pq}. Since

Rx is rotation by π around the axis ℓ = ℓ(x), it follows that ℓ must pass
through the midpoint of the line segment from p to Rxp, which is one
of the edges of Q. Thus the points in X3 are precisely the points on the
sphere which one obtains by taking the radial projection z 7→ z/‖z‖ of the
midpoints of the edges of Q.

We also see that since X1 does not contain any antipodal pairs y,−y, we
must have X2 = {−p,−q,−Rpq,−R2

pq}. This gives a complete description
of all elements of G, and we see that G is exactly the group of isometries of
the regular tetrahedron Q—that is, S4.

Case three: p1 = 4, p2 = 3, p3 = 2, n = 24. In this case X1 has 6 points
and G1 contains rotations of order 4 around each of the corresponding axes.
X2 has 8 points and G2 has rotations of order 3; X3 has 12 points and G3

has rotations of order 2.
We will show that the points in X1 are the vertices of an octahedron,

for which points in X2 correspond to centres of faces, and points in X3 to
midpoints of edges.

Choose p,q ∈ X1 such that q /∈ ℓ(p). Then as before, Rpq, R2
pq, and

R3
pq are in X1 and are not equal to either p or −p; furthermore, p(−p) =

p(p) = 4, and hence −p ∈ X1. It follows that

X1 = {p,−p,q, Rpq, R2
pq, R

3
pq}.

Observing that Rkqp ∈ X1 for 0 ≤ k < 4, we see that the points in X1 are
the vertices of an octahedron; call it Q. The argument from the previous
case shows that given any x ∈ X3, the line ℓ(x) contains the midpoint of an
edge of Q; there are 12 such points and 12 such edges.

What about X2? Label the 6 vertices of Q as follows: p is “1”; q, Rpq,
R2

pq, R3
pq are “2”, “3”, “4”, and “5”, respectively; and −p is “6”. Observe

that every isometry of the octahedron corresponds to a permutation of the
set {1, 2, 3, 4, 5, 6}, and thus we can identify rotations in G1 and G3 with
elements of S6. It only remains to show that rotations in G2 can be so
identified.
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Let R1 be the rotation around ℓ(Rpq) which accomplishes the permu-
tation (1 2 6 4), and let R2 be the rotation around ℓ(q) which accomplishes
the permutation (1 5 6 3). Then we see that R = R2 ◦R1 is a rotation which
accomplishes the permutation

(1 2 6 4)(1 5 6 3) = (1 2 3)(4 5 6).

(We multiply elements in S6 from left to right.) It follows that R is a
rotation of order 3, and so R ∈ G2; furthermore, the axis of rotation of R
passes through the centre of a face of Q. A similar argument shows that
every line through 0 and the centre of a face of Q is the axis of a rotation in
G2, and since such lines intersect the sphere in 8 points, we have found X2.

Observe that the points in X2 form the vertices of a cube which is dual
to the octahedron just constructed.

Case four: p1 = 5, p2 = 3, p3 = 2, n = 60. In this case X1 has 12 points
and G1 contains rotations of order 5 around each of the corresponding axes.
X2 has 20 points and G2 has rotations of order 3; X3 has 30 points and G3

has rotations of order 2.
The proof here follows the same lines as in the previous case—the points

in X1 form the vertices of an icosahedron, and the points in X2 form the
vertices of a dodecahedron. G can be shown to be the set of isometries of
either of these polyhedra. Details are left as an exercise for the reader. �

b. Regular polyhedra. In fact, in the course of classifying the finite
subgroups of Isom+(R3), we have also done virtually all the work needed
to classify the convex regular polyhedra in R3. Of course, in order to make
this precise we need to define the terms involved.

It is helpful to first consider the two-dimensional case, in order to see
how the definitions work. In two dimensions, each line ℓ divides the plane
into two regions; if we associate a direction to ℓ, then we may say that one
of these half-planes lies to the left of ℓ, and the other lies to the right. Now
given a collection of lines ℓ1, . . . , ℓn, we may consider the set of points in R2

which lie to the right of every ℓi. Call this set X; if X is bounded and non-
empty, we say that the boundary of X is a convex polygon. The segments
of the lines ℓi which intersect the boundary of X are called the edges of X,
and the points of intersection ℓi ∩ ℓj which lie on the boundary of X are the
vertices of X.

Passing to three dimensions, we replace lines with planes. A convex
polyhedron is defined by a collection of planes P1, . . . , Pn in R3. Giving each
plane an orientation—say, painting one side red and the other side blue—we
may consider the set X of points in R3 which see the red side of every Pi.
If X is bounded and non-empty, its boundary is a convex polyhedron. Each
Pi intersects the polyhedron in a convex polygon; these are the faces of the
polyhedron. The edges are the segments of the lines of intersection Pi ∩ Pj
which lie on the boundary—that is, the intersection of two neighbouring
faces—and the vertices are the points of intersection of three or more faces.
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A polyhedron is regular if “all faces look the same”. This can be made
precise in at least two different (non-equivalent) ways.

Definition 9.1. A convex polyhedron Q is combinatorially regular if
there exist integers p and q such that every face of Q has p edges, and every
vertex of Q touches q edges and q faces. The pair (p, q) is known as the
Schläfli symbol of Q.

Theorem 9.2. Every combinatorially regular convex polyhedron has one
of the following five Schläfli symbols: (3, 3), (4, 3), (3, 4), (5, 3), or (3, 5).

Proof. Let F be the number of faces, E the number of edges, and V the
number of vertices. These numbers are related by the Euler characteristic
of a polyhedron:

(9.2) F − E + V = 2.

We will prove this equality (called the Euler theorem) shortly. Since every
edge meets two faces, we have 2E = pF . Similarly, every vertex meets q
faces, and so qV = pF . Write n = pF = 2E = qV , so F = n/p, E = n/2,
and V = n/q. Then (9.2) becomes

(9.3)
n

p
− n

2
+
n

q
= 2.

Observe that this is exactly the equation we obtained as (8.4) in the proof
of Theorem 8.2, where we showed that the only solutions are exactly the
ones listed above.

Now let us prove Euler theorem. 6 Let Σα be the sum of all angles of
all faces of a polyhedron with V vertices, E edges and F faces. Compute
Σα in two different ways:

• by computing the sum of angles of each face and adding them up
to obtain Σα = 2π(E − F );

• by deforming the polyhedron and projecting it to one face to obtain
Σα = 2πV − 4π.

Let faces of a polyhedron have n1, n2, . . . , nF sides. The sum of angles
of the i − th face is π(ni − 2), and the total sum Σα =

∑F
i=1 π(ni − 2) =

2π(E − F ) since each edge was counted twice. To compute Σα in the other
way, we notice that by deforming the polyhedron and projecting it to one
face we do not change the sum of the angle of each face. Let the face we were
projecting to be an n-gon. Then the remaining V −n vertices are inside this
face, and the total sum of the angles at these vertices is 2π(V −n). The sum
of angles of the n-gon should be counted twice, and it is 2π(n − 2). Then
Σα = 2π(V − n) + 2π(n − 2) = 2πV − 4π. Comparing the two expressions
obtain E − F = V − 2.

�

6This elegant proof that did not appear in the lecture was shown to us by Svetlana
Katok.
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The five possibilities in Theorem 9.2 correspond respectively to the tetra-
hedron, the cube, the octahedron, the dodecahedron, and the icosahedron.

Observe that any tetrahedron is a combinatorially regular convex poly-
hedron, whether or not the faces are all equilateral triangles. A similar
statement applies to each of the five polyhedra listed above; although we
are most familiar with their highly symmetric versions, we can deform those
versions without destroying combinatorial regularity.

Notice that all polyhedra with the same Schläfli symbol are combina-
torially equivalent, i.e one can associate faces with those of the standard
model in such a way that this correspondence naturally extend to that be-
tween edges (intersections of adjacent faces) and vertices (intersections of
adjacent edges). This is obvious in the (3, 3) case since all polyhedra with
four faces are tetrahedra. In other cases one proceeds as in glueing of a
paper model of a polyhedron from a flat cutting. For example, for (4, 3)
one starts with a quadrilateral face, attaches four more to its edges, notices
that edges coming from vertices of the original quadrilateral must match
and four remaining edges are the sides of the only remaining face producing
a combinatorial cube. For (3, 4) one proceed in the dual way, starting with
four triangles attached to a vertex, then taking the only vertex that does
not appear among vertices of these triangle, attach four triangles to it and
notice that two “pyramids without bases” must be attached to each other
producing a combinatorial octahedron. The argument for (5, 3) is similar
to the one for cube: Attach five pentagons to a pentagon obtaining a figure
with ten free edges connecting cyclically ten vertices. At five alternating
vertices two pentagons have already been attached; remaining five are free.
Attaching five pentagons to the vertices of the first set one sees that edges
attached to free vertices must match leaving only five free edges that bound
the only remaining face thus producing a combinatorial dodecahedron. We
leave the (5, 3) case as an exercise.

Definition 9.3. A convex polyhedron is geometrically regular if the
isometry group acts transitively on faces edges and vertices—that is, given
any two faces there is an isometry of the polyhedron which takes one to the
other, and similarly for edges and vertices.

Any geometrically regular polyhedron is combinatorially regular. This
would not be the case if we weakened the above definition by only requiring
transitivity on faces or on vertices. To see this, observe that if Q is a tri-
angular prism, then Isom(Q) acts transitively on vertices but not on faces,
and Q is not combinatorially regular, since two faces are triangles and three
are rectangles. Similarly, if Q′ is the dual solid to Q—that is, a “double
tetrahedron” with six faces which are isosceles triangles, then Isom(Q′) acts
transitively on faces but not on vertices, and once again Q′ is not combi-
natorially regular, since two vertices have three adjacent faces, while three
vertices have four such faces.
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Every combinatorial type in Theorem 9.2 has a unique up to a similarity
(isometry and homothety) geometrically regular realization; these are the
five Platonic solids with which we are already familiar.

While existence is self-evident uniqueness requires a proof. First we need
to identify subgroups of full isometry groups of Platonic solids that act tran-
sitively on faces, vertices and edges. Only the full group and the subgroups
of all even isometries have this property. This follows from the fact that
the order of such a subgroup must divide the numbers of faces, edges and
vertices. This implies that the isometry group of a geometrically regular
polyhedron contains subgroups fixing a vertex and cyclically interchanging
faces attached to that vertex. Hence all angles of all faces are equal that
those are regular polygons. After that uniqueness follows as in the argument
for uniqueness of combinatorial type above. Alternatively, one can take a
vertex that must lie on the axis of a rotational symmetry, apply the isome-
try group to obtain all other vertices and see by direct inspection that they
form one of the Platonic bodies.

A peculiar fact is that in the case of tetrahedron transitivity on both
faces and edges does not guarantee regularity. Examples are tetrahedra
with vertices (x, y, z), (x,−y,−z), (−x,−y, z) and (−x, y,−z) for any triple
of non-zero numbers x, y, z.

However, for the remaining Schläfli symbols transitivity on vertices and
faces is sufficient. This distinction is due to the fact that A4 contains a
normal subgroup of four elements (rotations of order two plus identity) that
acts transitively on the vertices and faces but on the edges of a tetrahedron.
In the remaining cases the order of such a subgroup must be a multiple of
6 and 8 (in the (4, 3) and (3, 4) cases) and of 12 and 20 (in the (5, 3) and
(3, 5) cases) and hence be a either the full isometry group (of order 48 and
120 correspondingly) or its index two subgroup of even isometries.

One could generalize the notion of a geometrically regular convex poly-
hedron in various ways. For example, we could weaken the regularity slightly
by allowing the sets of vertices and faces to comprise not one but two orbits
under the action of the symmetry group, and so consider semi-regular poly-
hedra. Or we could consider analogous constructions in higher dimensions,
and study the regular polytopes. We could also do away with the requirement
of convexity and study non-convex polyhedra. . .

c. Completion of classification of isometries of R3. In Lecture
8(a), we completed the classification of odd isometries of R3. We have al-
ready classified even isometries with fixed points; it only remains to describe
even isometries without fixed points.

Aside from translations, we have already seen one such isometry—the
product of a rotation R and a translation T , where R and T commute.
Geometrically, this means that the axis ℓ of the rotation R is parallel to the
direction of the vector v which specifies the translation. The product T ◦R
may be called a screw motion, a twist, or a glide rotation.
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Proposition 9.4. Every element I ∈ Isom+(R3) is a screw motion
T ◦R (if the rotation or translation part is trivial, then I is a translation or
a rotation, respectively).

Proof. Given I ∈ Isom+(R3), we can decompose I as the product of
four reflections by Proposition 7.2:

(9.4) I = L1 ◦ L2 ◦ L3 ◦ L4

Write Pi for the plane corresponding to Li, and write ℓij for the line of
intersection of Pi and Pj . Then we have L1 ◦ L2 = L′

1 ◦ L′
2 whenever the

corresponding planes P ′
1 and P ′

2 intersect at the appropriate angle in the
line ℓ12, and similarly for L3 ◦ L4.

Let P ′
2 be the plane parallel to ℓ34 that contains ℓ12, and let P ′

3 be the
plane parallel to ℓ12 that contains ℓ34 (if ℓ12 and ℓ34 are parallel, rather than
skew, then P ′

2 and P ′
3 are not uniquely determined). Then P ′

2 and P ′
3 are

parallel, and we have

I = (L1 ◦ L2) ◦ (L3 ◦ L4) = (L′
1 ◦ L′

2) ◦ (L′
3 ◦ L′

4) = L′
1 ◦ T ◦ L′

4,

where T = L′
2 ◦ L′

3 is a translation. As in Lecture 5(c), we may decompose
the translation T into parts which are parallel to and orthogonal to the plane
P ′

1, and hence obtain L′
1 ◦ T = L′′

1 ◦ T ′ = T ′ ◦L′′
1 , where L′′

1 is reflection in a
plane P ′′

1 parallel to P ′
1, and T ′ is translation by a vector parallel to P ′′

1 .

p

v2

x = Tv2
(Rℓ

θx)

Rℓ
θx

θ

Figure 2.9. The composition of a translation and a rotation
is a rotation.

It follows that I = T ′ ◦ L′′
1 ◦ L′

4 is either the product of two translations
(if P ′′

1 and P ′
4 are parallel) or of a translation and a rotation (if they are

not). In the former case, I is a translation. In the latter, let ℓ denote the
line of intersection of P ′′

1 and P ′
4, so I = T ′ ◦Rℓθ for some θ.

Let v be the translation vector for T ′, and decompose v as v1+v2, where
v1 is parallel to ℓ and v2 is perpendicular to ℓ. Then Tv2

◦Rℓθ is rotation by
θ in a line parallel to ℓ. To see this, consider Figure 2.9, which shows a plane
P perpendicular to ℓ. The centre of rotation p is the point of intersection
of ℓ with P . The radius of the circle shown is uniquely determined by the
requirement that a chord of length ‖v2‖ subtend an angle θ, and the position



LECTURE 9. MONDAY, SEPTEMBER 21 81

of x on this circle is uniquely determined by the requirement that the vector
from x to Rℓθx be equal to −v2. As an isometry on the plane P , we see that

Tv2
◦Rℓθ is an even isometry with a fixed point x; hence it is rotation around

x by an angle α(Tv2
◦Rℓθ) = θ.

Let ℓ′ be the line through x perpendicular to P ; it follows that

Tv2
◦Rℓθ = Rℓ

′

θ ,

and hence

I = Tv1
◦ Tv2

◦Rℓθ = Tv1
◦Rℓ′θ

is a screw motion. �

Remark. Even though Proposition 9.4 deals with orientation-preserving
isometries, the proof relies on the decomposition of every such isometry into
reflections, which are orientation-reversing. The fundamental role played by
reflections is analogous to the role played by transpositions in Sn. In both
cases the group is generated by odd involutions; we will see this phenomenon
repeated a little later on, when we consider conformal geometry.

d. From synthetic to algebraic: Scalar products. The synthetic
approach we have been pursuing becomes more and more cumbersome when
we pass to higher dimensions. In order to deal with this more general setting,
we will take a more algebraic approach, using tools from linear algebra to
describe and study isometries.

Recall that a linear map from one real vector space to another is a map
A such that A(λv + w) = λA(v) +A(w) for every real number λ and every
pair of vectors v,w. Equivalently, a linear map is a map which fixes the
origin (A0 = 0) and takes lines to lines (for every line ℓ, the image A(ℓ)
is also a line). An affine map is a map with the latter property—lines are
mapped to lines—but not necessarily the former.

Proposition 9.5. Isometries of Rd are affine.

Proof. Given I ∈ Isom(Rd), it suffices to show that the points Ix, Iy, Iz
are collinear whenever x,y, z are. Now y lies on the line segment from x to
z if and only if equality holds in the triangle inequality—that is, if and only
if

(9.5) d(x, z) = d(x,y) + d(y, z).

Thus if x,y, z are collinear, one of them lies on the line segment between
the other two; without loss of generality, suppose y lies between x and z, so
that (9.5) holds. Then since I is an isometry, we have

d(Ix, Iz) = d(Ix, Iy) + d(Iy, Iz),

and hence Ix, Iy, Iz are collinear. �

Isometries have a property that affine maps do not have—they preserve
angles. In fact, they can be characterised using the scalar product, which
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for any two vectors v,w ∈ Rd is the real number

(9.6) 〈v,w〉 =

d∑

i=1

viwi.

The length of a vector is related to the scalar product by the formula ‖v‖2 =
(v,v), and the angle between two vectors is given by the scalar product using
the formula 〈v,w〉 = ‖v‖ · ‖w‖ cos θ, where θ is the angle between v and w.

Thus if I : Rd → Rd preserves scalar products—if 〈Iv, Iw〉 = 〈v,w〉 for
every v,w—then I preserves lengths as well, and hence is an isometry. In
fact, this is a two-way street; every isometry preserves not only lengths, but
scalar products (and hence angles as well). This is a consequence of the
polarisation identity

(9.7) 〈v,w〉 =
1

2
(‖v + w‖2 − ‖v‖2 − ‖w‖2),

which can easily be proved by observing that

〈v + w,v + w〉 = 〈v,v〉 + 〈w,w〉 + 2 〈v,w〉 .
The definition of the scalar product in (9.6) relies on the choice of coor-

dinate system in Rd—that is, on the choice of basis. In another coordinate
system, we would obtain a different scalar product. However, certain ba-
sic properties would still go through, which are encoded in the following
definition.

Definition 9.6. A scalar product (or inner product, or dot product) on
Rd is a function 〈·, ·〉 : Rd × Rd 7→ R such that the following properties hold
for all u,v,w ∈ Rd and λ ∈ R.

(1) 〈v,v〉 ≥ 0, with equality if and only if v = 0.
(2) Symmetry : 〈v,w〉 = 〈w,v〉.
(3) Linearity : 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉.
(4) 〈λv,w〉 = λ 〈v,w〉.

It follows from symmetry and linearity that the scalar product is actually
bilinear—that is, it is linear in its second argument as well. The fourth
condition follows from the third if we require that the scalar product be a
continuous function of its arguments.

Every function Rd × Rd 7→ R which satisfies properties (2)–(4) is of the
form

(9.8) 〈v,w〉 =
d∑

i=1

d∑

j=1

aijviwj ,

where A = [aij ] is a symmetric d × d matrix (aij = aji). This does not yet
guarantee property (1); for example, we might define a bilinear form on R2

by (v,w) = u1v1 − u2v2. This satisfies properties (2)–(4), but for v = (0, 1)
we have 〈v,v〉 = −1, so (1) fails. In the next lecture, we will see what
properties A must have in order to define a genuine scalar product.
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Lecture 10. Wednesday, September 23

a. Convex polytopes. In Lecture 9(b), we defined a convex polyhe-
dron in R3 using a finite collection of planes—that is, affine subspaces of
codimension 1 and taking intersection of certain half-space into which each
plane divides the space. This definition generalizes to higher dimensions.

Definition 10.1. A subset X ⊂ Rn is an affine subspace if there exists
v ∈ Rn such that

v +X = {v + x | x ∈ X}
is a linear subspace.7 In this case we see that w +X is a linear subspace if
and only if −w ∈ X.

If X is an affine subspace, the dimension of X is the dimension of the
linear subspace v +X. If X ⊂ Rn is an affine subspace of dimension d, we
say that n− d is the codimension of X.

The affine subspaces of R2 are lines (which have codimension 1) and
points (which have codimension 2). In R3, an affine subspace of codimension
1 is a plane; codimensions 2 and 3 yield lines and points, respectively.

Definition 10.2. A convex n-polytope is a region Q ⊂ Rn which is
defined by m affine subspaces of codimension 1 also called hyperplanes in
Rn as follows: there exist m such subspaces X1, . . . ,Xm be m such that the
boundary ∂Q is a subset of

⋃m
i=1Xi, and for which Q∩Xi ⊂ ∂Q for every i.

Now we will define k-dimensional faces or k-faces for k = 0, 1 . . . , n − 1
of an n-polytope. While intuitively this notion looks evident, certain care is
needed for a rigorous definition.

First we assume that all hyperplanes X1, . . . ,Xm are essential, i.e. that
removing any one of those increase the intersection.

In this case an n− 1-face of Q is the intersection Q ∩Xi for some i.
Now we proceed by induction. Assume that k-faces are defined for poly-

topes up to the dimension n − 1. Any hyperplane in Rn is an n − 1 affine
space that is of course can be identified with Rn−1. An n − 1-face of an
n-polytope is an n− 1 polytope in the corresponding hyperplane so that its
k-faces for k = 0, 1, . . . , n − 2 have been defined. we define a k-face of Q as
a k-face of one of its n− 1 faces.

One need to prove coherence of this definition: If F ⊂ X − i ∩Xj is a
k-face of Xi, it is also a k-face of Xj . To see that notice that any k-face can
be represented as in intersection

F = Xi1 ∩Xi2 ∩ · · · ∩Xin−k
∩Q

for some set of indices i1, . . . in−k. Furthermore, such an intersection is a
k-face if and only if it does not belong to a k−1-dimensional affine subspace.

7Observe the similarity between the geometric notion of an affine subspace and the
algebraic notion of a coset.
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We see that in the case n = 3, this reduces to our earlier definition of
a convex polyhedron. For example, if X1,X2,X3,X4 are the four planes in
R3 which contain the faces of a tetrahedron Q, then the 1-dimensional faces
of Q are the edges of the tetrahedron, which have the form Xi ∩Xj ∩ ∂Q.
Similarly, the 0-dimensional faces are the vertices, which can be written as
Xi ∩Xj ∩Xk ∩ ∂Q.

An alternate (dual) definition may be given using general notions of
convexity.

Definition 10.3. A set X ⊂ Rn is convex if [x,y] ⊂ X for every
x,y ∈ X, where [x,y] is the line segment

[x,y] = {tx + (1 − t)y | 0 ≤ t ≤ 1}
which comprises all convex combinations of x and y. Given an arbitrary
set X ⊂ Rn (which may or may not be convex), the convex hull of X is
the intersection of all convex sets which contain X. If X = {x1, . . . ,xk} is
finite, the convex hull is

{
t1x1 + · · · + tkxk

∣∣∣ ti ≥ 0,

k∑

i=1

ti = 1

}
.

If X is convex, then an extreme point of X is a point x ∈ X such that x is
not in the convex hull of X \ {x}—that is, x is not the convex combination
of any two distinct points y 6= z ∈ X.

Extreme points play the role of essential planes in the earlier definition.
Now one takes a finite set S of points in Rn that does not lie in a hyperplane
and such that no point belongs to convex hull of the rest and the points.
The convex hull Q of S is a convex n-polytope. Then elements of S are
the vertices of Q and k-faces can be defined as follows. Let K ⊂ S is such
that all points in K lie in ak-dimensional affine subspace but not in any
k − 1-dimensional affine subspace. Furthermore, assume that convex hulls
of L and S \ L are disjoint. Then convex hull of L is a k-face of Q.

b. Transformation groups and symmetries of polytopes. The
notion of transformation group has appeared already in several contexts: as
permutations groups, isometry groups and matrix groups. Let us formalize
this and some related notions.

We say that a group G acts on a set X if every g ∈ G defines a bijection

g̃ : X → X with the property that g̃h = g̃ ◦ h̃. Thus a group action on a set
X may be thought of as a homomorphism from G into S(X), the group of
bijections of X. We will usually write gx, g(x), or g · x in place of g̃(x).

Given x ∈ X, the orbit of x under the action of G is

Orb(x) = Gx = {g · x | g ∈ G}.
We say that G acts transitively on X is Orb(x) = X for every x ∈ X;
equivalently, for every x, y ∈ X there exists g ∈ G such that g · x = y.
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The stationary subgroup S(x) of x is the subgroup of elements that leave
x fixed. For a transitive action stationary subgroups of all elements of X
are conjugate.

Example 10.4. Fix a convex polytope Q generated by the codimension
one affine subspaces X1, . . . ,Xm, and observe that given any isometry I ∈
Isom(Q) and 1 ≤ i ≤ m, there exists 1 ≤ πI(i) ≤ m such that I(Xi) =
XπI(i). Thus Isom(Q) acts on the set {X1, . . . ,Xm}.

Continuing in this vein, let Fk be the set of k-dimensional faces of Q.
Given a face F ∈ Fk, we have

F = Xi1 ∩Xi2 ∩ · · · ∩Xin−k
∩Q

for some set {i1, . . . , in−k}, and hence

I(F ) = XπI(i1) ∩ · · · ∩XπI(in−k) ∩Q
is also a k-dimensional face of Q. It follows that Isom(Q) acts on Fk for
each 0 ≤ k ≤ n− 1. This is nothing more than the fact that any symmetry
of the polytope Q maps vertices to vertices, edges to edges, and so on.

c. Regular polytopes.

Definition 10.5. A convex polytope Q is regular if Isom(Q) acts tran-
sitively on Fk for every 0 ≤ k ≤ n− 1.

One might reasonably ask if it suffices to have a transitive action on Fk
for some values of k. Indeed, there are a number of polyhedra for which
transitivity on vertices and faces implies transitivity on edges. However,
this is not the case in full generality, as we saw in the previous lecture;
if Q is the tetrahedron with vertices (x, y, z), (−x,−y, z), (−x, y,−z), and
(x,−y,−z), where x, y, z are not all equal, then Isom(Q) acts transitively
on F0 (vertices) and F2 (faces), but not on F1 (edges).

Now let us look at regular polytopes in various dimensions.
In R2, the regular polytopes are just the regular n-gons.
In R3, the regular polytopes are the five Platonic solids. Three of those,

the tetrahedron, the cube, and the octahedron, have analogues in any di-
mension, which we may denote by Sn, In, and On, respectively. These can
be constructed either explicitly or inductively.

The n-simplex Sn has n + 1 vertices (faces of minimal dimension) and
n+ 1 faces of maximal dimension. S2 is an equilateral triangle and S3 is a
tetrahedron. Sn can be constructed inductively by taking Sn−1 ⊂ Rn−1 ⊂
Rn and adding one of the two points in Rn which is the same distance from
every vertex of Sn−1 that these vertices are from each other. Alternately, it
can be explicitly given as a subset of Rn+1; the vertices are the tips of the
standard basis vectors taken from the origin.

The n-cube In has 2n vertices and 2n faces of maximal dimension. It
can be constructed inductively as In = In−1 × [0, 1] by considering In−1 ⊂
Rn−1 ⊂ Rn and adding an extra copy of each vertex in the plane xn = 1.
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It can also be explicitly given by taking as the 2n vertices all points x =
(x1, . . . , xn) for which xi = ±1 for every i.

The dual of the n-cube is the analogue of the octahedron, denoted On,
and has 2n vertices and 2n faces of maximal dimension. Inductively, one
takes On−1 ⊂ Rn−1 ⊂ Rn and adds two more vertices—the two points which
are the same distance from every vertex of On−1 as neighbouring vertices in
On−1 are from each other. Explicitly, one can take as the 2n vertices every
point in Rn which lies on a coordinate axis at a distance of 1 from the origin.

The four-dimensional case is special. In addition to three standard poly-
hedra there are two rather big ones, dual to each other. One of them have
dodecahedra for its three-dimensional faces, the other icosahedra for the
vertex figures, convex hulls of points on all edges attached to vertex at a
fixed small distance form the vertex. It is reasonable then to think of those
bodies as “big cousins” of the dodecahedron and the icosahedron.

There is also a sixth, the octacube, not as big as the last two but bigger
that the cube abd the octahedron. It has 24 vertices: 16 of these are of
the form (±1,±1,±1,±1), and are the vertices of a four-dimensional cube;
the other 8 lie on the 4 coordinate axes at a distance of 2 from the origin,
and are the vertices of the four-dimensional analogue of the octahedron.
An imaginative three-dimensional representation of this highly symmetric
object occupies pride of place on the main lobby of McAllister building.

This list is complete turns out to be complete: for n ≥ 4, there are
no regular convex polytopes besides Sn, In, and On. The proofs (both for
dimension 4 and for higher dimension) although not exceeding difficult, lie
beyond the scope of theses lectures.

This outcome is representative of a number of classification results that
one finds in algebra: one wishes to classify every occurrence of a particu-
lar structure (in this case regular convex polytopes), and then finds that
there are certain series or families which include infinitely many “regular”
examples of that structure (in this case Sn, In, and On), and then a finite
list of exceptional cases which include all other examples (in this case the
dodecahedron, the icosahedron, their four-dimensional counterparts, and
the octacube). A similar phenomenon occurs in the classification of com-
plex simple Lie groups (four series of classical groups and five exceptional
groups), and in the more formidable way, for finite simple groups where the
exceptions include the famous (or infamous) “monster”.

d. Back to scalar products. In the previous lecture, we introduced
the general notion of a scalar product, and showed that in the standard
coordinates on Rn, every scalar product can be written in the form (9.8).
We now show that by taking an appropriate choice of basis, every scalar
product can actually be written in the canonical form (9.6). The matrix A
from (9.8) turns out to be the change of basis matrix, as we will see.

Let 〈·, ·〉 be an arbitrary scalar product on Rn, which may or may not
be the standard one. A basis is called orthonormal with respect to a scalar
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product if the scalar product of any two different elements is zero and the
scalar product of any element with itself is one. Let 〈·, ·〉0 be the standard
scalar product, and let E = {e1, . . . , en} be the standard basis. E is or-
thonormal with respect to 〈·, ·〉0, but not with respect to 〈·, ·〉. We construct
an orthonormal basis for 〈·, ·〉 using the following lemma.

Lemma 10.6. Let u1,u2, . . . ,uk be linearly independent vectors in Rn.
Then the set

(10.1) Lk = {v ∈ Rn |
〈
ui,v

〉
= 0 for all 1 ≤ i ≤ k}

is a (n− k)-dimensional subspace of Rn.

Proof. For each 1 ≤ i ≤ k, the set Ki = {v ∈ Rn |
〈
ui,v

〉
= 0} is the

set of all roots of the linear equation

(10.2)
∑

j,k

ajku
i
jvk = 0,

where uij and vj are the coordinates of ui and v in the basis E . It follows that

Ki is a linear subspace of codimension one in Rn, and the set Lk in (10.1)

is the intersection
⋂k
i=1Ki. Observe that for every 1 ≤ i < k, we have

Li+1 = K1 ∩ · · · ∩Ki+1 j K1 ∩ · · · ∩Ki = Li,

with equality if and only if ui+1 lies in the span of {u1, . . . ,uk}. By linear
independence, this never happens, and so the intersection with each new
subspace decreases the dimension by one. The result follows. �

Let u1 ∈ Rn be any unit vector—that is,
〈
u1,u1

〉
= 1. Let L1 be as in

Lemma 10.6, so L1 is a linear subspace of dimension n− 1 which comprises
all vectors orthogonal to u1. Choose an arbitrary unit vector u2 ∈ L1 ⊂ Rn,
and again let L2 be as in the lemma. Continuing in this manner, we obtain
a basis U = {u1, . . . ,un} for which

〈
ui,uj

〉
=

{
0 i 6= j,

1 i = j.

U is the orthonormal basis we promised.
Now given any vector x ∈ Rn, we can write x′j =

〈
x,uj

〉
and obtain

(10.3) x =

n∑

j=1

x′ju
j.
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Using bilinearity of the scalar product, we see that

(10.4)

〈x,y〉 =

〈
n∑

i=1

x′iu
i,

n∑

j=1

y′ju
j

〉

=

n∑

i=1

n∑

j=1

x′iy
′
j

〈
ui,uj

〉

=
n∑

i=1

x′iy
′
i,

and hence 〈·, ·〉 has the standard form (9.6) in the basis U .
It follows that the particular form of any given scalar product (9.8) is

merely a matter of what basis we choose; there is no intrinsic difference
between different scalar products.

To see the relationship between (9.8) and (10.4), let cij =
〈
ei,uj

〉
for

1 ≤ i, j ≤ n, so that ei =
∑n

j=1 ciju
j, and hence

(10.5) x =

n∑

i=1

xie
i =

n∑

i=1

n∑

j=1

xiciju
j.

Comparing this with (10.3), we get the change of coordinates formula

x′j =

n∑

i=1

cijxi,

and it follows that in terms of the coordinates with respect to E , the inner
product 〈·, ·〉 may be written

〈x,y〉 =
n∑

j=1

(
n∑

i=1

cijxi

)(
n∑

k=1

ckjyk

)

=

n∑

i=1

n∑

k=1




n∑

j=1

cijckj


xiyk.

Writing C for the n × n matrix [cij ] and A for the matrix [aij] in (9.8), we
see that A = CCT , where CT is the transpose of C.



CHAPTER 3

Groups of matrices: Linear algebra and symmetry

in various geometries

Lecture 11. Friday, September 25

a. Orthogonal matrices. Returning to the standard scalar product,
let I be an isometry of Rn which fixes 0; thus I is a linear map which pre-
serves the standard scalar product. In particular, the set IE = {Ie1, . . . , Ien}
is still an orthonormal basis, since

〈
Iei, Iej

〉
=
〈
ei, ej

〉
.

Let B be the n× n matrix which represents the linear transformation I
in the basis E—that is, bij =

〈
Iei, ej

〉
, so

Iei =

n∑

j=1

bije
j .

Then the statement that IE is an orthonormal basis is equivalent to the
statement that the row vectors of B are orthonormal, because in this case

〈
Iei, Iej

〉
=

n∑

k=1

bikbjk = 0

for i 6= j, and

〈
Iei, Iei

〉
=

n∑

j=1

b2ij = 1.

Recall from the rules for matrix multiplication that this is equivalent to the
condition BBT = Id, or BT = B−1. This is in turn equivalent to BTB = Id,
which is the statement that the column vectors of B are orthonormal.

Alternately, one may observe that if we let x denote a column vector
and xT a row vector, then the standard form of the scalar product (9.6)
becomes 〈x,y〉 = xTy, and so we have the following general relationship:

(11.1) 〈x, Ay〉 = xTAy = (ATx)Ty =
〈
ATx,y

〉
.

Thus if B is the matrix of I, which preserves scalar products, we have

〈x,y〉 = 〈Bx, By〉 =
〈
BTBx,y

〉

for every x,y ∈ Rn, which implies BTB = Id, as above.

Definition 11.1. A matrix B such that BT = B−1 is called orthogonal.
The group of orthogonal n× n matrices is denoted O(n).

89
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It should come as no surprise by now that the group of orthogonal ma-
trices is identified with the group of isometries which fix the origin. Fur-
thermore, since detBT = detB, we see that any orthogonal matrix has

1 = det Id = det(BTB) = (detBT )(detB) = (detB)2,

and hence detB = ±1. Matrices with determinant 1 correspond to even
isometries fixing the origin and compose the special orthogonal group SO(n);
matrices with determinant −1 correspond to odd isometries fixing the origin.

In SO(3), we saw that the conjugacy class of a rotation contained all
rotations through the same angle θ. In the next lecture, we will sketch a
proof of the analogous result in higher dimensions, which states that given
any B ∈ O(n), there exists A ∈ O(n) such that the matrix A−1BA has the
form

(11.2)




1
. . .

1
−1

. . .

−1
Rθ1

. . .

Rθk




,

where all entries not shown are taken to be 0, and where Rθ is the 2 × 2
rotation matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
,

and the θi may be the same or may be different but not equal to 0 or π.
One can also combines pairs of 1’s into rotations by angle 0 and pairs of

−1’s into rotations by π. Then no more than one “loose” diagonal element
1 and −1 is left. In the even dimension n for an SO(n) matrix no loose
elements remain and for a matrix with determinant −1 there is one 1 and
one −1. in the odd dimension exactly one loose element remains and it is 1
or −1 according tot he sign of the determinant.

Geometrically, this means that Rn can be decomposed into the orthogo-
nal direct sum of a number of one-dimensional subspaces Xi which are fixed
by B, a number of one-dimensional subspaces Yi on which B acts as the map
x 7→ −x (that is, a reflection), and a number of two-dimensional subspaces
Zi on which B acts as a rotation by θi. Since the rotation is a product of
two reflections this also gives a representation of isometry as the product of
at most n reflections.

The isometry determined by the matrix B can be written as the product
of commuting reflections in the orthogonal complements of Yi (reflection is
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always around an affine subspace of codimension one) together with com-
muting rotations in the orthogonal complements of Zi (rotation is always
around an affine subspace of codimension two). The number of subspaces
Yi—that is, the number of times −1 occurs on the diagonal—determines
whether the isometry given by B is even or odd.

The three dimensional case is particularly easy then: there is one rota-
tion block (possibly the identity) and either 1 on the diagonal (resulting in
a rotation or the identity map) or −1 (resulting in a rotatory reflection or a
pure reflection).

b. Eigenvalues, eigenvectors, and diagonalizable matrices. We
stated in the previous lecture that every orthogonal matrix A ∈ O(n) can
be put in the form (11.2) by a suitable change of coordinates—that is, a
transformation of the form A 7→ CAC−1, where C ∈ O(n) is the change of
basis matrix. This is related to perhaps the most important result in linear
algebra, Jordan normal form. In this lecture, we will review the relevant
concepts from linear algebra and show why every orthogonal transformation
can be so represented. Along the way we will learn importance of complex-
ification, when objects defined over the field of real numbers (in our case,
linear spaces, linear transformations and scalar products) are extended to
the complex field.

Before diving into the details, we observe that our mission can be de-
scribed both geometrically and algebraically. Geometrically, the story is
this: we are given a linear transformation L : Rn → Rn, and we wish to find
a basis in which the matrix of L takes on as simple a form as possible. In
algebraic terms, we are given a matrix L ∈ GL(n,R), and we wish to de-
scribe the conjugacy class of L—that is, we want to characterise all matrices
L′ such that L′ = CLC−1 for some C ∈ GL(n,R).1 Ideally, we would like
to select a good representative from each conjugacy class, which will be the
normal form of L.

Definition 11.2. Let L be an n×n matrix with real entries. An eigen-
value of L is a number λ such that

(11.3) Lv = λv

for some vector v ∈ Rn, called an eigenvector of L. The set of all eigenvectors
of λ is a subspace of Rn, called the eigenspace of λ. The multiplicity of λ is
the dimension of this subspace.

Although this definition only allows real eigenvalues, we will soon see
that complex eigenvalues can also exist, and are quite important.

1If L ∈ O(n), then we would like to take the conjugating matrix C to be orthogonal
as well. In this case there is no difference between conjugacy in the group GL(n, R) and
conjugacy in the subgroup O(n), but this is not always the case; recall that rotations Rx

θ

and Rx

−θ are conjugate in Isom(R2), but not in Isom+(R2).
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Exercise 11.1. Let v1, . . . ,vk be eigenvectors of L, and let λ1, . . . , λk
be the corresponding eigenvalues. Suppose that λi 6= λj for i 6= j, and show
that the eigenvectors vi are linearly independent.

It follows from Exercise 11.1 that there are only finitely many eigenval-
ues for any matrix. But why should we be interested in eigenvalues and
eigenvectors? What purpose does (11.3) serve?

One important (algebraic) reason is that the set of eigenvalues of a ma-
trix is invariant under conjugacy.

An important geometric reason is that (11.3) shows that on the sub-
space containing v, the action of the linear map L : Rn → Rn is particularly
simple—multiplication by λ! If we can decompose Rn into a direct product
of such subspaces, then we can legitimately claim to have understood the
action of L.

Definition 11.3. L is diagonalizable (over R) if there exists a basis
v1, . . . ,vn ∈ Rn such that each vi is an eigenvector of L.

Suppose {vi} is a basis of eigenvectors with eigenvalues {λi}, and let
C ∈ GL(n,R) be the linear map such that Cvi = ei for each 1 ≤ i ≤ n.
Observe that

CLC−1ei = CLvi = C(λivi) = λiei;

hence the matrix of CLC−1 is

(11.4) diag(λ1, . . . , λn) =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 .

It follows from Exercise 11.1 that L has no more than n eigenvalues.
So far, though, nothing we have said prevents it from having fewer than n
eigenvalues, even if we count each eigenvalue according to its multiplicity.
Indeed, one immediately sees that any rotation of the plane by an angle not
equal to 0 or π is a linear map with no real eigenvalues. Thus we cannot
expect to diagonalise every matrix, and must look to more general forms for
our classification.

The eigenvalue equation (11.3) characterises eigenvectors (and hence
eigenvalues) geometrically: v is an eigenvector if and only if it is parallel to
its image Lv. An algebraic description of eigenvalues can be obtained by
recalling that given an n×n matrix A, the existence of a vector v such that
Av = 0 is equivalent to the condition that detA = 0. We can rewrite (11.3)
as (L− λ Id)v = 0, and so we see that λ is an eigenvalue of L if and only if
det(L− λ Id) = 0.

The determinant of an n×n matrix is the sum of n! terms, each of which
is a product of n entries of the matrix, one from each row and column.
It follows that p(λ) is a polynomial of degree n, called the characteristic
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polynomial of the matrix L, and that the coefficients of p are polynomial
expressions in the entries of the matrix.

The upshot of all this is that the eigenvalues of a matrix are the roots of
its characteristic polynomial, and now we see the price we pay for working
with the real numbers—R is not algebraically closed, and hence the char-
acteristic polynomial may not factor completely over R! Indeed, it may
not have any roots at all; for example the characteristic polynomial of the
rotation matrix

(
cos θ − sin θ
sin θ cos θ

)
is p(λ) = λ2 − 2 cos θ + 1.

We can resolve this difficulty and ensure that L has “enough eigenvalues”
by passing to the complex numbers, over which every polynomial factors
completely, and declaring any complex root of p(λ) = 0 to be an eigenvalue
of L. Then the Fundamental Theorem of Algebra gives us

(11.5) p(λ) = det(L− λ Id) =

n∏

i=1

(λ− λi),

where {λ1, . . . , λn} ⊂ C are the eigenvalues of L.
The set of all eigenvalues of L is called the spectrum of L.

Exercise 11.2. Given an n × n matrix L and a change of coordinates
C ∈ GL(n,R), show that L and L′ = CLC−1 have the same spectrum, and
that C takes eigenvectors of L into eigenvectors of L′.

At this point, it is not at all clear what geometric significance a complex
eigenvalue has, if any. After all, if λ ∈ C \ R is an eigenvalue of L and v is
a vector in Rn, what does the expression λv even mean?

c. Complexification, complex eigenvectors and rotations. The
difficulty in interpreting the expression λv for λ ∈ C and v ∈ Rn is that
vectors in Rn must have real coordinates. We can solve this problem in
a rather simple-minded way—just let the coordinates be complex! If we
consider vectors v ∈ Cn, the n-dimensional complex vector space, then λv
makes perfect sense for any λ ∈ C; thus (11.3) may still be used as the
definition of an eigenvalue and eigenvector, and agrees with the definition
in terms of the characteristic polynomial.

The same procedure can be put more formally: Cn is the complexification
of the real vector space Rn, and is equal as a real vector space to the direct
sum of two copies of Rn. We call these two copies VR and VI (for real and
imaginary); given vectors x ∈ VR and y ∈ VI , we intertwine the coordinates
and write

(11.6) z = (x1,y1,x2,y2, . . . ,xn,yn) ∈ R2n

for the vector with real part x and imaginary part y. As a vector with n
complex coordinates, we write z as

(11.7) z = (x1 + iy1,x2 + iy2, . . . ,xn + iyn).
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In order to go from the formulation (11.6) to the complex vector space (11.7),
we must observe that multiplication by i acts on R2n as the linear operator

J : (x1,y1, . . . ,xn,yn) 7→ (−y1,x1, . . . ,−yn,xn).

That is, if we decompose R2n as the direct sum of n copies of R2, the action
of J rotates each copy of R2 by π/2 counterclockwise, which is exactly the
effect multiplication by i has on the complex plane.2

Having defined Cn, we observe that since L and J commute, L extends
uniquely to a linear operator LC : Cn → Cn. All the definitions from the
previous section go through for LC, and now the fundamental theorem of
algebra guarantees that (11.5) holds and the characteristic polynomial fac-
tors completely over C. We refer to any eigenvalue of LC as an eigenvalue
of L itself, and this justifies our definition of spectrum of L as a subset of
C. But now we must ask: What do the (complex-valued) eigenvalues and
eigenvectors of LC have to do with the geometric action of L on Rn?

To answer this, we consider an eigenvalue λ ∈ C\R and the correspond-
ing eigenvector z ∈ Cn. Obviously since λ /∈ R we have z /∈ Rn; how do we
extract a real-valued vector from z on which the action of L is related to λ?

Observe that since the entries of the matrix for L are real-valued, the
coefficients of the characteristic polynomial p(λ) are real-valued. It follows
that (11.5) is invariant under the involution λ 7→ λ̄, and hence if λ ∈ C \ R
is an eigenvalue of LC, so is λ̄. Furthermore, one may easily verify that
LCz̄ = λ̄z̄, where z̄ is defined in the obvious way as

z̄ = (z̄1, z̄2, . . . , z̄n) = x− iy,

where z = x + iy for x,y ∈ Rn. Observe that x = (z + z̄)/2 and y =
i(z − z̄)/2; thus the two-dimensional complex subspace of Cn spanned by z
and z̄ intersects VR = Rn in the two-dimensional real subspace spanned by
x and y.

To see how L acts on this subspace, write λ = ρeiθ, where ρ > 0 and
θ ∈ [0, 2π). Then we have

Lx + iLy = LCz = λz

= ρ(cos θ + i sin θ)(x + iy)

= ρ(cos θx− sin θy) + iρ(cos θy + sin θx),

and so L acts on the two-dimensional subspace spanned by x and y as a
spiral motion—rotation by θ scaled by ρ, with matrix

ρRθ =

(
ρ cos θ −ρ sin θ
ρ sin θ ρ cos θ

)
.

2It turns out that there are other settings, beyond that of linear spaces, in which one
can go from a real structure to a complex structure with the help of a linear operator
J with the property that J2 = − Id. The most accessible and of the most important
instance, is the theory of Riemann surfaces.
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Now suppose LC is diagonalisable over C—that is, there exists C ∈ GL(n,C)
such that

CLCC−1 = diag
(
λ1, . . . , λj , ρ1e

iθ1 , ρ1e
−iθ1 , . . . , ρke

iθk , ρke
−iθk

)
,

where λi ∈ R, ρi > 0, θi ∈ (0, π), and j + 2k = n. Then using the above
procedure, one obtains a basis for Rn in which the matrix of L is

(11.8) diag (λ1, . . . , λj , ρ1Rθ1 , . . . , ρkRθk
) .

Thus while L cannot be diagonalised over R, it can at least be put into
block diagonal form, provided LC can be diagonalised over C. But is even
this much always possible?

d. Differing multiplicities and Jordan blocks. Observe that since
the determinant of any upper-triangular matrix is the product of the diag-
onal entries, the characteristic polynomial of an upper-triangular matrix L
is

det(L− λ Id) =

n∏

i=1

(Lii − λ).

Thus the eigenvalues of L are simply the diagonal entries.

Example 11.4. Consider the matrix L = ( 1 1
0 1 ). Its only eigenvalue is

1, and it has (1, 0) as an eigenvector. In fact, this is the only eigenvector
(up to scalar multiples); this fact can be shown directly, or one can observe
that if L were diagonalisable, then we would have CLC−1 = ( 1 0

0 1 ) for some
C ∈ GL(n,R), which would then imply L = Id, a contradiction.

This example shows that not every matrix is diagonalisable over C, and
hence not every matrix can be put in block diagonal form over R. In gen-
eral, this occurs whenever L has an eigenvalue λ for which the geometric
multiplicity (the number of linearly independent eigenvectors) is strictly less
than the algebraic multiplicity (the number of times λ appears as a root of
the characteristic polynomial). In this case the eigenspace corresponding to
λ is not as big as it “should” be. A notion of generalised eigenspace can
be introduced, and it can be shown that every matrix can be put in Jordan
normal form.

We shall not go through the details of this here; rather, we observe that
the non-existence of a basis of eigenvectors is a result of the fact that as
we select eigenvectors v1,v2, . . . , we reach a point where there is no L-
invariant subspace transverse to the subspace spanned by v1, . . . ,vk, and
thus no further eigenvectors can be found. For orthogonal matrices, we
avoid this problem, as follows.

Let V ⊂ Rn be an invariant subspace for L—that is, L(V ) = V—and
let V ⊥ be the orthogonal complement of Rn,

V ⊥ = {v ∈ Rn | 〈v,w〉 = 0 for all w ∈ V }.
Given v ∈ V ⊥, we have 〈Lv, Lw〉 = 〈v,w〉 for all w ∈ V , and hence
Lv ∈ V ⊥. It follows that V ⊥ is invariant, and so there exists an eigenvector
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of L in V ⊥ (or perhaps a two-dimensional space on which L acts as ρRθ).
Continuing in this way, we can diagonalise LC, and hence put L in the
form (11.8).

Finally, we observe that any eigenvalue of an orthogonal matrix must
have absolute value one. This follows since the determinant of L restricted
to any invariant subspace is equal to 1. It follows that (11.8) reduces to
the form given at the end of the previous lecture, and we thus completed
the proof of reducibily of any orthogonal matrix to the form (11.2) by an
orthogonal transformation.
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Lecture 12. Monday, September 28

a. Hermitian product and unitary matrices. One can extend the
scalar product on Rn to a Hermitian product on Cn by

(12.1) 〈z,w〉 =

n∑

j=1

zjwj .

The Hermitian product satisfies similar properties to the scalar product:

(1) 〈w,w〉 ≥ 0, with equality if and only if w = 0.

(2) 〈v,w〉 = 〈w,v〉.
(3) Linearity : 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉.
(4) 〈λv,w〉 = λ 〈v,w〉, 〈v, λw〉 = λ̄ 〈v,w〉.

This devise will allow to find a natural extension of the theory of or-
thogonal matrices to the complex domain.

It may not be immediately apparent why we should use (12.1) instead
of the more natural-looking extension

∑n
j=1 zjwj. One could define a scalar

product on Cn using the latter formula; however, one would obtain a totally
different sort of beast than the one we now consider. In particular, the
Hermitian product defined in (12.1) has the following property: If z = x+iy
and w = u + iv for real vectors x,y,u,v, then

(12.2)

〈z,w〉 =

n∑

j=1

(xj + iyj)(uj − ivj)

=

n∑

j=1

(xjuj + yjvj) + i(yjuj − xjvj).

In particular, the real part of 〈z,w〉 is the real scalar product of the vectors
(x1, y1, . . . xn, yn) and (u1, v1, . . . , un, vn) in R2n. Thus the Hermitian prod-
uct is a natural generalisation of the real scalar product, and we see that
the complex conjugate wj must be used in order to avoid a negative sign in
front of the term yjvj in (12.2).

Furthermore, the presence of the complex conjugate in (12.1) is crucial
in order to guarantee that

〈z, z〉 =

n∑

j=1

zjzj =

n∑

j=1

|zj |2

is a non-negative real number, which vanishes if and only if z = 0. In
particular, the Hermitian product defines a norm on Cn by ‖z‖2 = 〈z, z〉,
with the following properties.

(1) ‖z‖ ≥ 0, with equality if and only if z = 0.
(2) ‖λz‖ = |λ| ‖z‖ for all λ ∈ C.
(3) ‖z + w‖ ≤ ‖z‖ + ‖w‖ for all z,w ∈ Cn.
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The norm provides a notion of length, and the Hermitian product provides
a notion of orthogonality: as in the real case, two vectors w, z ∈ Cn are or-
thogonal if 〈w, z〉 = 0. Thus we once again have a notion of an orthonormal
basis—that is, a basis {z1, . . . , zn} of Cn such that

〈
zj , zk

〉
= δjk,

where δjk is the Dirac delta function, which takes the value 1 if j = k and
0 otherwise.

As in Rn, we have a standard orthonormal basis E = {e1, . . . , en}:
ej = (0, . . . , 0, 1, 0, . . . , 0),

where the 1 appears in the jth position. An orthonormal basis corresponds
to a decomposition of the vector space into one-dimensional subspaces which
are pairwise orthogonal. In both Rn and Cn, we can generate other orthonor-
mal bases from E without changing the subspaces in the decomposition:
simply replace ej with a parallel unit vector. In Rn, the only parallel unit
vector to ej is −ej; in Cn, we can replace ej with λej, where λ ∈ S1 is any
complex number with |λ| = 1.

This distinction is related to a fundamental difference between Rn and
Cn. In the former case, replacing ej with −ej changes the orientation of
the basis, and hence we can distinguish between even and odd orientations.
In Cn, this replacement can be done continuously by moving ej to eiθej

for 0 ≤ θ ≤ π; consequently, there is no meaningful way to say where
the “orientation” reverses. In fact, in Cn we must abandon the notion of
orientation entirely, and can no longer speak of even and odd maps.

Definition 12.1. A linear map A : Cn → Cn is unitary if 〈Az, Aw〉 =
〈z,w〉 for all z,w ∈ Cn. The group of unitary n × n complex matrices is
denoted U(n).

Observe that since the real part of the Hermitian product is just the
usual real scalar product on R2n, every unitary map on Cn corresponds to
an orthogonal map on R2n. The converse is not true; there are orthogonal
maps on R2n which are not unitary maps on Cn. Indeed, such a map may not
even be linear on Cn; it must behave properly with respect to multiplication
by i.

However, unitary maps are a generalisation of orthogonal maps in the
following sense: given an orthogonal linear map L : Rn → Rn, the complex-
ification LC : Cn → Cn is unitary.

Proposition 12.2. If A : Cn → Cn is unitary and λ is an eigenvalue of
A, then |λ| = 1.

Proof. Let z ∈ Cn be an eigenvector for λ, and observe that

〈z, z〉 = 〈Az, Az〉 = 〈λz, λz〉 = λλ 〈z, z〉 ,
and hence

λλ = |λ|2 = 1. �
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Because C is algebraically closed, the general normal form for (complex)
unitary matrices is simpler than the result in the previous lectures for (real)
orthogonal matrices. The proof, however, is basically the same, and relies on
the fact that preservation of the (real or complex) scalar product guarantees
the existence of invariant transverse subspaces.

Lemma 12.3. Every linear map L : Ck → Ck has an eigenvector.

Proof. Because C is algebraically complete, the characteristic polyno-
mial p(λ) = det(L − λ Id) has a root λ0. Thus det(L − λ0 Id) = 0, and it
follows that there exists w ∈ Ck such that (L− λ0 Id)w = 0. This w is an
eigenvector of L. �

Recall that given a linear map L : V → V , a subspace W is invariant if
L(W ) ⊂ W . If W ⊂ Cn is an invariant subspace of L, then we may apply
Lemma 12.3 to Ck = W and obtain the existence of an eigenvector in W .

The relationship between eigenvectors and invariant subspaces may be
made even more explicit by the observation that an eigenvector is precisely
a vector which spans a one-dimensional invariant subspace.

Definition 12.4. Let V be a vector space and W ⊂ V a subspace. A
subspace W ′ ⊂ V is transversal to W if W ∩W = {0} and if V = W +W ′.
Equivalently, W and W ′ are transversal if for any v ∈ V , there exist unique
vectors w ∈W and w′ ∈W ′ such that v = w + w′.

If 〈·, ·〉 is a Hermitian product on Cn and W ⊂ Cn is a subspace, then
the orthogonal complement of W is

W⊥ = {z ∈ Cn | 〈z,w〉 = 0 for all w ∈W}.

Proposition 12.5. Let A : Cn → Cn be unitary and W ⊂ Cn be invari-
ant. Then W⊥ is invariant as well.

Proof. Observe that since A is unitary, A−1 is as well. Thus given
z ∈W⊥ and w ∈W , we have

(12.3) 〈Az,w〉 =
〈
A−1Az, A−1w

〉
=
〈
z, A−1w

〉
.

Furthermore, since A is invertible and W is finite-dimensional, we have
A−1(W ) = W , and hence the quantity in (12.3) vanishes. Since w ∈W was
arbitrary, it follows that Az ∈W⊥. �

Proposition 12.6. Given a linear map L : Cn → Cn, the following are
equivalent:

(1) L is unitary.
(2) If U = {u1, . . . ,un} is any orthonormal basis for Cn, then L(U) is again

an orthonormal basis.
(3) There exists an orthonormal basis U such that L(U) is again an or-

thonormal basis.
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Proof. That (1) implies (2) is immediate from the definition of unitary,
and (2) is a priori stronger than (3). Finally, if (3) holds, then for any
w, z ∈ Cn we may decompose w =

∑
j wju

j and z =
∑

k zku
k, obtaining

〈Lw, Lz〉 =
∑

j,k

wjzk

〈
Luj , Luk

〉

=
∑

j,k

wjzkδjk =
∑

j,k

wjzk

〈
uj,uk

〉
= 〈w, z〉 . �

Now we can state the fundamental theorem on classification of unitary
matrices.

Theorem 12.7. For every A ∈ U(n) there exists C ∈ U(n) such that

(12.4) CAC−1 = diag(λ1, . . . , λn),

where |λj| = 1 for 1 ≤ j ≤ n.

Proof. We apply Lemma 12.3 and Proposition 12.5 repeatedly. First
let u1 ∈ Cn be any unit eigenvector of A, and let W1 be the subspace
spanned by u1. Then W⊥

1 is invariant, and so there exists a unit eigenvector
u2 ∈ W⊥

1 . Let W2 be the subspace spanned by u1 and u2, and continue in
this manner.

Thus we obtain an orthonormal basis {u1, . . . ,un} such that Auj =
λju

j for 1 ≤ j ≤ n. By Proposition 12.2, we have |λj| = 1 for every j.
Furthermore, if we let C be the n× n complex matrix such that Cuj = ej,
then it follows from Proposition 12.6 that C is unitary, and furthermore,

CAC−1ej = CAuj = C(λju
j) = λje

j,

which is enough to establish (12.4). �

For real matrices, we considered the special orthogonal group SO(n)
within the orthogonal group O(n). We can do the same here and consider
the special unitary group

SU(n) = {A ∈ U(n) | detA = 1}.
However, in the complex case, the relationship between SU(n) and U(n) is
much closer to the relationship between SL(n,R) and GL(n,R) than it is
to the relationship between SO(n) and O(n). In particular, observe that
SO(n) is a subgroup of index 2 in O(n), while SL(n,R) and SU(n) both
have infinite index in their respective groups.

b. Normal matrices. We are interested in the class of matrices which
can be diagonalised over C, because such matrices have a simpler geometric
meaning than matrices with no such diagonalisation. We have seen that
this class does not include all matrices, thanks to the existence of matrices
like ( 1 1

0 1 ). Conversely, we have seen that this class does include all unitary
matrices.
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Of course, there are plenty of matrices which can be diagonalised but are
not unitary; in particular, we may consider diagonal matrices diag(λ1, . . . , λn)
for which the eigenvalues λj do not lie on the unit circle—that is, |λ| 6= 1.
Can we give a reasonable characterisation of the class of matrices which can
be diagonalised over C?

Remark. In the present setting, this question may seem somewhat aca-
demic, since any matrix can be put in Jordan normal form, which already
gives us a complete understanding of its action on Cn (or Rn). However,
it turns out to be vital to understanding what happens in the infinite-
dimensional situation, where Cn is replaced with the more general concept
of a Hilbert space, and eigenvalues and eigenvectors give way to spectral the-
ory. In this general setting there is no analogue of Jordan normal form, and
the class of maps we examine here turns out to be very important.

Recall that given a real n × n matrix A (which may or may not be
orthogonal), the transpose of A defined by (AT )ij = Aji has the property
that

〈x, Ay〉 =
〈
ATx,y

〉

for every x,y ∈ Rn. For complex vectors and the Hermitian product, the
analogous matrix is called the adjoint of A; it is denoted A∗ and has the
property that

〈z, Aw〉 = 〈A∗z,w〉
for every z,w ∈ Cn.

Exercise 12.1. Show that the matrix of A∗ is the conjugate transpose
of the matrix of A—that is, that

(A∗)ij = Aji.

Recall that a matrix A is unitary if and only if 〈Az, Aw〉 = 〈z,w〉 for
all z,w ∈ Cn. This is equivalent to the condition that 〈A∗Az,w〉 = 〈z,w〉
for all z and w, which is in turn equivalent to the condition that A∗A = Id.
In particular, this implies that A∗ = A−1, and hence A and A∗ commute.

Definition 12.8. A ∈M(n,C) is normal if A∗A = AA∗.

Every unitary matrix is normal, but there are normal matrices which are
not unitary. This follows immediately from the fact that normality places
no restrictions on the eigenvalues of A; in particular, every scalar multiple
of the identity matrix is normal, but λ Id is only unitary if |λ| = 1.

It turns out that normality is precisely the condition we need in order
to make the argument from the previous section go through (modulo the
statement about the absolute values of the eigenvalues). In particular, we
can prove an analogue of Proposition 12.5, after first making some general
observations.

First we observe that given A ∈M(n,C) and λ ∈ C, we have

〈(A− λ Id)z,w〉 = 〈Az,w〉−λ 〈z,w〉 = 〈z, A∗w〉−
〈
z, λw

〉
=
〈
z, (A∗ − λ Id)w

〉
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for every z,w ∈ Cn, and hence

(12.5) (A− λ Id)∗ = A∗ − λ Id .

Proposition 12.9. If B ∈M(n,C) is normal, then kerB = kerB∗.

Proof. Suppose Bw = 0. Then we have

‖B∗w‖2 = 〈B∗w, B∗w〉 = 〈BB∗w,w〉 = 〈B∗Bw,w〉 = 0,

and it follows that kerB ⊂ kerB∗. Equality holds since B = (B∗)∗. �

Applying Proposition 12.9 to B = A−λ Id and using (12.5), we see that
if w is an eigenvector of A with eigenvalue λ, then it is an eigenvector of A∗

with eigenvalue λ. In particular, if W is the subspace spanned by u1, . . . ,uk,
where each uj is an eigenvector of A, then each uj is an eigenvector of A∗

as well, and hence A∗W ⊂W .
Now we have the following analogue of Proposition 12.5.

Proposition 12.10. Let A ∈M(n,C) be normal, and let W ⊂ Cn be an
invariant subspace spanned by eigenvectors of A. Then W⊥ is an invariant
subspace as well.

Proof. Given z ∈W⊥ and w ∈W , observe that

〈Az,w〉 = 〈z, A∗w〉 = 0,

where the last equality follows since A∗w ∈W (by the above discussion). �

This lets us prove the following generalisation of Theorem 12.7.

Theorem 12.11. An n × n complex matrix A is normal if and only if
there exists C ∈ U(n) and λj ∈ C such that

(12.6) CAC−1 = diag(λ1, . . . , λn).

Proof. One direction is easy; if (12.6) holds for some C ∈ U(n) and
λj ∈ C, then we writeD = diag(λ1, . . . , λn), and observe that A = C−1DC =
C∗DC. Thus we have

A∗ = (C∗DC)∗ = C∗D∗(C∗)∗ = C−1D∗C,

and we see that

AA∗ = (C−1DC)(C−1D∗C) = C−1DD∗C = C−1D∗DC = A∗A,

where the third equality uses the fact that diagonal matrices commute.
The other direction is a word-for-word repetition of the proof of Theo-

rem 12.7, using Proposition 12.10 in place of Proposition 12.5, and omitting
the requirement that |λj| = 1. �

Remark. Normality characterises all matrices which can be diagonalised
over C with an orthonormal change of coordinates. There are matrices that
can be diagonalised with a change of coordinates which is not orthonormal;
such matrices are not normal with respect to the standard Hermitian prod-
uct. Recall that the definition of the adjoint A∗ depends on the Hermitian
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product; if we choose a different Hermitian product on Cn, we obtain a
different adjoint, and hence a different class of normal matrices.

c. Symmetric matrices. We have settled the question of which ma-
trices can be diagonalised over C via an orthonormal change of coordinates.
What about the real numbers? There are plenty of matrices which can be
diagonalised over C but which cannot be diagonalised over R; any normal
matrix with a non-real eigenvalue falls into this class.

Thus we see immediately that any matrix which can be put into the
form (12.6) as a map on Rn must have only real eigenvalues. In particular,
given A ∈M(n,R), let AC : Cn → Cn be the complexification of A, and ob-
serve that AT = (AC)∗. It follows from the remarks before Proposition 12.10
that if λ is an eigenvalue of A, then λ is an eigenvalue of AT , with the same
eigenvectors.

Definition 12.12. A real n × n matrix such that AT = A is called
symmetric; a complex n× n matrix such that A∗ = A is called Hermitian.

If A ∈M(n,R) is symmetric, then for every eigenvalue λ and eigenvector
w ∈ Cn we have

λw = Aw = ATw = λw,

and hence λ = λ. Thus symmetric matrices have only real eigenvalues. In
particular, since real symmetric matrices are normal, every real symmetric
matrix is orthogonally diagonalisable over the real numbers. Furthermore,
the converse also holds: if C is a real orthogonal matrix such that D =
CAC−1 is a diagonal matrix with real entries, then

AT = (CTDC)T = CTDT (CT )T = CTDC = A,

and hence A is symmetric.

d. Linear representations of isometries and other classes of
gtransformations. Our discussion of linear algebra began with a quest
to understand the isometries of Rn. We have seen various classes of matri-
ces, but have not yet completed that quest—now we are in a position to do
so.

We recall the following definition from Lecture 2.

Definition 12.13. A homomorphism ϕ : G→ GL(n,R) is called a linear
representation of G. If kerϕ is trivial, we say that the representation is
faithful.

Informally, a linear representation of a group G is a concrete realisation
of the abstract group G as a set of matrices, and it is faithful if no two
elements of G are represented by the same matrix. Linear representations
are powerful tools, because the group of invertible matrices is general enough
to allow us to embed many important abstract groups inside of it, and yet
is concrete enough to put all the tools of linear algebra at our disposal in
studying the group which is so embedded.
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We were able to represent the group of all isometries of Rn with a fixed
point as O(n). In order to represent isometries with no fixed point, we must
go one dimension higher and consider matrices acting on Rn+1.

Proposition 12.14. Isom(Rn) has a linear representation in GL(n +
1,R). In particular, Isom+(Rn) has a linear representation in SL(n+1,R).

Proof. Given I ∈ Isom(Rn), let b = −I0; then T−b ◦ I0 = 0, and
hence A = T−b ◦ I ∈ O(n). Thus I = Tb ◦ A, and so for every x ∈ Rn we
have

(12.7) Ix = Tb ◦ Ax = Ax + b.

Embed Rn into Rn+1 as the plane

P = {x ∈ Rn+1 | xn+1 = 1}.
To the isometry I, associate the following block matrix:

(12.8) ϕ(I) =

(
A b
0 1

)
.

Here A ∈ O(n), b is an n × 1 column vector, and 0 is a 1 × n row vector.
Observe that ϕ(I) ∈ GL(n + 1,R), and that ϕ(I) maps P to itself; if I ∈
Isom +(Rn), then ϕ(I) ∈ SL(n,R). Furthermore, the action of ϕ(I) on P
is exactly equal to the action of I on Rn, and ϕ is a homomorphism: given
I1, I2 ∈ Isom(Rn), we have

ϕ(I2)ϕ(I1) =

(
A2 b2

0 1

)(
A1 b1

0 1

)
=

(
A2A1 A2b1 + b2

0 1

)
,

which is equal to ϕ(I2 ◦ I1) since

I2 ◦ I1x = I2(A1x + b1) = A2(A1x + b1) + b2.

Finally, we observe that if I is an even isometry, then detϕ(I) = 1. �

The technique exhibited in the proof of Proposition 12.14 embeds Isom(Rn)
in GL(n+ 1,Rn) as (

O(n) Rn

0 1

)
.

Using a the same technique, we can represent the affine group Aff(Rn),
which is the class of all maps which take lines to lines; every such map can
again be written in the form (12.7), but here A may be any matrix, not
necessarily orthogonal. Thus we embed Aff(Rn) into GL(n + 1,Rn) as

(
M(n,R) Rn

0 1

)
.

We may also do this with the group of similarity transformations—maps
of Rn which take lines to lines and preserve angles. Every such map may
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be written as x 7→ λRx + b, where λ ∈ R and R ∈ O(n). Thus the group
embeds into the general linear group as(

R ·O(n) Rn

0 1

)
.

The common thread in all these representations is that all the tools
of linear algebra are now at our disposal. For example, suppose we wish
to classify isometries of Rn, and have forgotten all the synthetic geometry
we ever knew. Then we observe that every isometry can be written as
Ix = Ax + b, and note that I has a fixed point if and only if

Ax + b = x

has a solution—that is, if and only if b lies in the range of A − Id. If 1 is
not an eigenvalue of A, then A− Id is invertible, and I has a fixed point. If
1 is an eigenvalue of A, then b may not lie in the range of A − Id, that is
the orthogonal complement to the eigenspace L1 of vectors with eigenvalue
1 and I then has no fixed points. As before let us decompose b = b1 + b2

where b1 ∈ L1, i.e Ab1 = b1, and b2 orthogonal to L1, i.e. in the range of
A − Id. Then I is the composition of the isometry I ′ : x → Ax + b2 that
has a fixed point and translation Tb1

by b1. I
′ is conjugate via a translation

the to linear isometry A and I to the product of it with the translation Tb1
.

Notice that ATb1
x = A(x + b1) = Ax+Ab1 = Ax + b1 = Tb1

Ax.
Thus any isometry I without fixed points is is the product of a commut-

ing pair of an isometry I0 with fixed many points and a translation along
the fixed set of that isometry. Depending on the dimension of the fixed set
for I0 we obtain different geometric types of fixed point free isometries.

Similar arguments provide for the classification of similarity transforma-
tions and affine transformations without fixed points.
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Lecture 13. Wednesday, September 30

a. The projective line. In the previous lecture we saw that various
linear groups correspond to various “geometries”. Although we have spent
most of our time studying the group of isometries of Rn, we also saw that the
group of affine transformations and the group of similarity transformations
appear as subgroups of GL(n + 1,R). Thus we may go beyond the usual
Euclidean structure of Rn and consider instead the affine structure of Rn,
or perhaps think about Euclidean geometry up to similarity.

There are other matrix groups which are of interest to us, and it turns
out that they too correspond to certain “geometries”. For example, each of
the above examples arose from considering subgroups of the affine transfor-
mations on Rn; that is, subgroups of GL(n+ 1,R) of the form

(13.1)

(
G Rn

0 1

)
,

whereG is a subgroup ofGL(n,R). Such subgroups act on the n-dimensional
subspace P = {x ∈ Rn+1 | xn+1 = 1}.

In this lecture we will broaden our horizons beyond the groups (13.1),
examining instead the action of all of GL(n + 1,R) on P . This will lead us
in the end to projective geometry. We will take our time getting there, how-
ever, because the story is not quite as straightforward as it was before; for
example, observe that most linear transformations of Rn+1 do not preserve
the subspace P , and so it is not at all obvious in what sense they are to
“act” on P .

The fundamental fact that we do know about elements of GL(n+ 1,R)
is that they map lines to lines. Thus it makes sense to consider the action
of GL(n+1,R) on lines in Rn+1; we begin in the simplest case, n = 1. Here
we have GL(2,R) acting on R2, and in particular, on the following object.

Definition 13.1. The real projective line RP (1) is the set of all lines
through the origin in R2.

Clearly if A ∈ GL(2,R) and ℓ ∈ RP (1) is a line, then Aℓ is a line as
well, and so Aℓ ∈ RP (1). Furthermore, multiplying A by a scalar does not
change its action on RP (1), and so we may multiply A by (detA)−1 and
deal only with matrices in SL(2,R).

If one insists on thinking of geometric objects as being things whose
fundamental building blocks are “points”, rather than lines, the following
construction is useful. Fix a line ℓ0 ⊂ R2 which does not pass through the
origin, and then observe that every line ℓ ∈ RP (1) intersects ℓ0 in a unique
point, with one exception: the line through 0 parallel to ℓ0 never intersects
ℓ0. Associating this line to the “point at infinity”, we obtain the following
bijection between RP (1) and ℓ0 ∪ {∞}:

ℓ 7→
{
ℓ ∩ ℓ0 ℓ ∦ ℓ0,
∞ ℓ ‖ ℓ0.
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Upon observing that the unit circle represents all directions that one
might travel along a line from the origin, it is tempting to think of RP (1)
as a circle—don’t do it! Elements of RP (1) are lines, not rays, and do not
carry an orientation; there is no “positive” direction along ℓ, and so ℓ and
−ℓ are equivalent. Every element of RP (1) intersects the circle in not one,
but two points; thus while we can study RP (1) using the unit circle, the
proper model is the unit circle with opposite points identified.3

In particular, the linear map − Id: x 7→ −x (which in R2 is rotation
by π) fixes every element of RP (1), despite having determinant 1 and thus
lying in SL(2,R). Consequently, if we want to describe the possible maps
on RP (1) which are induced by elements of SL(2,R), we should factor out
the two-element subgroup {Id,− Id}, which turns out to be the centre of
SL(2,R). This is analogous to the procedure by which we went from O(3)
to SO(3); in this case we obtain the projective special linear group

PSL(2,R) = SL(2,R)/{id,− Id}.
Every element of PSL(2,R) corresponds to a two-element equivalence class
{A,−A} in SL(2,R)—for the sake of convenience, we will denote this equiv-
alence class simply by A. Each such element induces a projective trans-
formation on RP (1). Furthermore, the action of PSL(2,R) on RP (1) is
faithful—no two elements of PSL(2,R) induce the same projective trans-
formation.

What do these transformations look like? Returning to the model of
RP (1) as ℓ0∪∞, let ℓ0 be the line {(x, y) ∈ R2 | y = 1}. (This corresponds to
the subspace P from the opening discussion.) Given A =

(
a b
c d

)
∈ PSL(2,R)

and (x, 1) ∈ ℓ0, we have

A

(
x
1

)
=

(
a b
c d

)(
x
1

)
=

(
ax+ b
cx+ d

)
.

Thus the line ℓ through 0 and (x, 1) is mapped by A to the line Aℓ through 0
and (ax+b, cx+d). To find the point in which Aℓ intersects ℓ0, we normalise
by the y-coordinate and observe that

Aℓ ∩ ℓ0 =

{(
ax+ b

cx+ d
, 1

)}
.

Thus A acts on R ∪ {∞} as the fractional linear transformation

fA : x 7→ ax+ b

cx+ d
.

Observe that the point at infinity is essential to this picture; we see that

fA(∞) =
a

c
, fA

(
−d
c

)
= ∞,

3It is in fact true that RP (1) and S1 are topologically equivalent—this is a fluke which
happens only in this lowest of dimensions. Already for n = 2, we will see that RP (2) and
S2 are very different.
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and ∞ behaves just like any other point on RP (1). Furthermore, fA(∞) =
∞ (or equivalently, fA(R) = R) if and only if c = 0, in which case the matrix
A takes the form (13.1).

It is natural to ask if there is an intrinsic way to define projective trans-
formations on R ∪ {∞} without resorting to a particular embedding in R2,
which is somehow extrinsic. Obviously there are many maps on R ∪ {∞}
which are not projective transformations—that is, which cannot be writ-
ten as fractional linear transformations. What geometric property sets the
fractional linear transformations apart?

The following seemingly capricious definition turns out to be useful.

Definition 13.2. Given four points x1, x2, x3, x4 ∈ R∪ {∞}, the cross-
ratio of the four points is

(13.2) (x1, x2;x3, x4) =
x1 − x3

x2 − x3
÷ x1 − x4

x2 − x4
,

where expressions involving multiplication or division by ∞ or 0 are evalu-
ated in the obvious way.

Proposition 13.3. A map f : R ∪ {∞} → R ∪ {∞} is projective if and
only if it preserves the cross-ratio—that is,

(13.3) (f(x1), f(x2); f(x3), f(x4)) = (x1, x2;x3, x4)

for every x1, x2, x3, x4 ∈ R ∪ {∞}.
Proof. The fact that (13.3) holds whenever f is a fractional linear

transformation is an easy exercise. To see the converse, observe that any
map preserving the cross-ratio is determined by its action on three points.
In particular, if x1, x2, x3, y1, y2, y3 ∈ R ∪ {∞} are arbitrary, then there is a
unique map f : R ∪ {∞} → R ∪ {∞} such that f(xi) = yi and (13.3) holds.
This follows because the equation

x1 − x3

x2 − x3
÷ x1 − x

x2 − x
=
y1 − y3

y2 − y3
÷ y1 − y

y2 − y

can be solved for y as a function of x, and upon doing so one sees that f is
a fractional linear transformation. �

Figure 3.1. Stereographic projection.
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b. The projective plane. What happens in higher dimensions? As
we did with RP (1), we want to construct some geometric object which is
a compactification of R2. One way to do this is to add a single point at
infinity, as we did before; this corresponds to the stereographic projection
shown in Figure 3.1, which “wraps” the plane around the sphere, covering
every point except the north pole, which is identified with ∞.

We will come back to this construction later; for now we take a different
course and generalise the construction in terms of lines in R2. In particular,
denote by RP (2) the set of all lines ℓ ⊂ R3 which pass through the origin;
this is the projective plane. Let P ⊂ R3 be any plane which does not contain
the origin; then every element ℓ ∈ RP (2) which is not parallel to P intersects
P in exactly one point.

This is where the difference arises. This time around there are many
lines parallel to P , each of which corresponds to a “point at infinity”. In
fact, the set of lines parallel to P is just the set of lines in the plane through
the origin parallel to P ; but we have already characterised the set of lines
in a plane as RP (1)! Thus we see that RP (2) is the plane R2 together with
a copy of the projective line at infinity:

RP (2) = R2 ∪ RP (1) = R2 ∪ R ∪ {∞}.
As before, this is a purely set-theoretic description at this point; the geo-
metric structure of the projective plane is encoded by the action of SL(3,R)
on R3. Taking P = {(x, y, z) ∈ R3 | z = 1}, a similar argument to the one
in the previous section shows that a matrix A = (aij) ∈ SL(3,R) induces
the following action on RP (2):

(13.4) fA(x, y) =

(
a11x+ a12y + a13

a31x+ a32y + a33
,
a21x+ a22y + a23

a31x+ a32y + a33

)
.

Observe that because R3 has odd dimension, the central symmetry x 7→ −x
is not contained in SL(3,R), and thus the action of SL(3,R) on RP (2) is
faithful.

We have described the points in RP (2): they are lines in R3 passing
through the origin. But RP (2) is a two-dimensional object, and so it should
have more internal structure than just points—it should have lines. What
are the lines in RP (2)?

Recall that RP (2) may be represented by the plane P together with the
projective line at infinity. Let ℓ be a line lying in P , and let Qℓ be the plane
in R3 which contains both 0 and ℓ. Then Qℓ is the union of all lines in R3

which pass through the origin and a point of ℓ; thus it may be thought of
as a line in RP (2). That is, lines in RP (2) correspond to planes in R3.

Exercise 13.1. Which plane in R3 corresponds to the projective line at
infinity?

As before, projective transformations of RP (2) are exactly those trans-
formations which are induced by the action of SL(3,R), and hence which
have the form (13.4).



110 3. GROUPS OF MATRICES

However there is an important difference with the one-dimensional case.
Projective transformations can be characterized in purely geometric terms,
somewhat similar to characterization of similarity transformations as those
that preserve lines and angles. There is a whole range of such results char-
acterizing different geometries

Theorem 13.4. A map f : RP (2) → RP (2) is a projective transforma-
tion if and only if it maps projective lines to projective lines.

As in Proposition 13.3, one direction is obvious. To see the converse we
will show that a map which respects projective lines is a projective trans-
formation, is determined by the images of four (projective) points not on
the same (projective) line. This requires a certain geometric construction 4

that we will describe in the next lecture along with a similar construction
in affine geometry.

The action of SL(3,R) on RP (2) describes what is known as projective
geometry. Observe that since every line in RP (2) intersects the unit sphere
S2 in exactly two antipodal points, we can write RP (2) as the factor space
S2/C, where C : x → −x is the central symmetry. This factor space (which
is topologically quite different from the sphere itself) inherits a natural met-
ric from the metric on S2; the distance between two equivalence classes
{x,−x} and {y,−y} is just the smaller of d(x,y) and d(x,−y), where d is
distance along the surface of the sphere.5 The distance may also be com-
puted as the smaller of the two angles made by the lines through the origin
which contain x and y.

When we equip RP (2) with the metric just defined, we refer to it as
the elliptic plane and denote it by E2. As we saw on the homework, the
isometry group of E2 is SO(3), the group of rotations of the sphere. This is
a much smaller group than SL(3,R), the symmetry group of RP (2), and so
elliptic geometry is a more restrictive thing than projective geometry. The
relationship between the two is analogous to the relationship between affine
geometry and Euclidean geometry on Rn; the former has a much larger
symmetry group than the latter, which includes a notion of a metric.

Elliptic geometry can be thought of as spherical geometry with the non-
uniqueness factored out. As mentioned above, projective lines correspond
to real planes. A (real) plane through the origin intersects the sphere S2

in a great circle, and so lines in the elliptic plane are great circles on the
sphere (with antipodal points identified). Thus every pair of (elliptic) lines
intersects in a unique (elliptic) point.

Remark. These constructions generalise to arbitrary dimensions. If
we consider the set of all lines through the origin in Rn+1, we obtain the

4That is in fact algebraic in nature since it can be carried out to projective spaces
constructed over fields other than real numbers.

5Note that d is a different quantity from the usual distance in R3, which corresponds
to being allowed to tunnel through the interior of the sphere. However, one quantity
determines the other, and so they determine the same class of isometries.
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projective space RPn. If we equip this space with a metric inherited from
the sphere with antipodal points identified, we obtain the elliptic space En.
The relationship between the two spaces is just as it was in two dimensions.

c. The Riemann sphere. We return now to the one-point compacti-
fication of the plane, which seems to be a simpler object than the projective
plane we wound up discussing, as it only adds a single point to the usual
plane. It turns out that by viewing the plane as C, rather than as R2, we
can make sense of this.

In particular, recall our construction of the projective line RP (1), and
now construct the complex projective line CP (1): this is the set of all com-
plex lines (each of which is a real plane) through the origin in C2. Writing
Q = {(z,w) ∈ C2 | w = 1}, we once again find that every complex line
az + bw = 0 intersects Q in a single point, with the exception of the line
w = 0, which again corresponds to the point at infinity.

Thus CP (1) = C ∪ {∞}, (called the Riemann sphere) and SL(2,C)
acts on CP (1) in the same way SL(2,R) acted on RP (1)—by fractional
linear transformations. As before, these are characterised by the property of
preserving the cross-ratio, which can be defined for complex numbers by the
same formula (13.2), and the proof is exactly as it was in Proposition 13.3.

Geometrically, it can be shown that the relevant set of geometric objects
in CP (1) is no longer the set of all lines, but the set of all lines and circles.
If γ is a path in CP (1) which is either a line or a circle, then fA(γ) is either
a line or a circle for every A ∈ SL(2,C); furthermore, every f with this
property is a fractional linear transformation, provided f preserves orienta-
tion.6 It may be the case that fA maps a line to a circle and vice versa;
for example, consider the image of the unit circle {z ∈ C | |z| = 1} under
the map fA corresponding to the matrix

(
0 1
1 −1

)
. There are other transfor-

mations of the Riemann sphere that map lines and circles into lines and
circles, for example the complex involution z → z̄ and hence its composition
with any fractional linear transformation that has the form z → az̄+b

cz̄+d . It
turns out that the property of mapping lines and circles into lines and circles
characterizes exactly these two types of transformations. We will prove this
in due time. Not surprisingly, the approach will be similar to the proofs
of characterization of affine and projective transformations: we will show
that images of four points not belonging to a circle uniquely determine a
transformation that maps lines and circles into lines and circles.

To compare this with the geometry of the real projective plane, we recall
that real projective transformations map lines to lines, and remark that
circles may not be mapped to circles. A (projective) circle corresponds to a
(real) cone, and the image of a cone under a linear transformation is again
a cone, but one which may intersect the plane P in a different conic section.

6The map z 7→ z has this property but reverses orientation, and in fact, any
orientation-reversing map with this property may be written as f(z) = (az + b)/(cz + d)
for some ( a b

c d ) ∈ SL(2, C).
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Thus conics are mapped to conics under real projective transformations:
the image of a circle may be either a circle, an ellipse, a hyperbola, or a
parabola.

Of course, the group SL(2,R) is a subgroup of SL(2,C), and so it also
acts on the Riemann sphere CP (1). However, it fixes the real line (together
with the point at infinity), and preserves both the upper and lower half-
planes. In fact, it can be shown to act transitively on each of these half-
planes, and the geometric structure corresponding to this symmetry group
is the hyperbolic plane H2.

While we do not yet see a notion of distance on H2, one will appear
eventually. There are underlying themes here which are also present for R2

and E2. In the case of the Euclidean plane (a two-dimensional object), the
group of isometries is (

O(2) R2

0 1

)
,

which is three-dimensional since O(2) has one degree of freedom. This group
acts transitively on R2, and so R2 ought to possess some property which is
invariant under the group action; this is exactly the notion of distance. A
similar thing occurs for the elliptic plane (also a two-dimensional object),
where the group of isometries is SO(3) (again a three-dimensional group).
The hyperbolic plane is two-dimensional and the symmetry group SL(2,R)
is three-dimensional, and so we will in the end find a notion of distance here
as well.

Finally, notice that the construction of hyperbolic plane can be extended
to higher dimensions similarly to that of Euclidean and elliptic planes. How-
ever, direct connection with complex numbers is lost: in dim three it appears
in a different disguise since the groups of isometries turns out to be SL(2,C),
but in higher dimensions it disappears altogether.
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Lecture 14. Friday, October 2

a. Review of various geometries. We have studied a number of two-
dimensional geometries, each associated to a different group of transforma-
tions. Some of these underlying spaces of these geometries are topologically
distinct, while others are homeomorphic to each other. In each case, we
can give a synthetic characterisation of the elements of the transformation
group; this information is summarised in Table 1.

Group Dimension Space Preserves n-dimensional
SL(3,R) 8 RP (2) lines SL(n+ 1,R), RP (n)
Aff(R2) 6 R2 lines Aff(Rn), Rn)
SL(2,C) 6 CP (1) lines and circles SL(n,C), CP (n− 1)
SO(3) 3 E2 distances SO(n+ 1), En

Isom(R2) 3 R2 distances Isom(Rn), Rn

SL(2,R) 3 H2 distances SO(n, 1), Hn

Table 1. Six different two-dimensional geometries and their
generalizations.

For some of these six examples, we have already investigated some of
the following algebraic properties of the group of transformation—conjugacy
classes, finite and discrete subgroups, normal subgroups, centre of the group,
etc. Fourth column contains geometric information that characterizes trans-
formations from the corresponding group. So far we established this char-
acterization only for R2 and E2 (the latter in a homework problem); we will
shortly do that (with small caveats) for the first three groups in the list. As
for the last one we have not yet defined the distance in the hyperbolic plane,
let alone characterized isometries there. This will also be done in due time.

There are certain issues related to orientation:

• Groups Isom(R2) and Aff(R2) contain index two subgroups Isom+(R2)
and Aff+(R2) of orientation preserving transformations. This sub-
group and its other coset are separated connected components in
the group. Notice drastic differences in the structure of conjugacy
classes in the orientation preserving and orientation reversing cases.

• SL(2,C) is the groups of transformations of the Riemann sphere
preserving lines and circles and also orientation; the full groups of
transformations preserving lines and circles is SL(2,C)×Z/2Z the
second component generated by the complex conjugation.

• The same comment applies to the hyperbolic plane, where as we
pointed out, the group SL(2,R) does not act faithfully but its factor
by the center PSL(2,R) = SL(2,R)/± Id does and constitutes the
groups of orientation preserving isometries.

There are natural embeddings among those six groups that have direct
geometric meaning:
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Isom+(R2) ⊂ Aff+(R2) ⊂ SL(3,R) (isometries are affine transforma-
tions and affine transformations are exactly projective ones that preserve
the line at infinity)

SO(3) ⊂ SL(3,R) (isometries are projective transformations)

SL(2,R) ⊂ SL(2,C) (isometries of hyperbolic plane are fractional linear
transformations of the Riemann sphere preserving the upper half-plane).

Exercise 14.1. Prove that the group SL(2,C) cannot be embedded into
SL(3,R).

Exercise 14.2. Add the line for the group of similarity transformations
of R2 and find natural embeddings involving that group.

Before proceeding to the proofs of geometric characterization of the
first three groups in the table let us make brief comments about higher-
dimensional generalizations.

For the first, second, fourth and fifth lines generalizations are straightfor-
ward and geometric characterizations stand. The only point is orientability
of projective spaces. Since in GN(n,R) det(− Id) = (−1)n odd-dimensional
projective (and hence elliptic) spaces are orientable and their full isometry
groups have two components similarly to Isom(R2) and Aff(R2).

Complex projective space has dimension 2n − 2 and for n ≥ 2 is not
even topologically equivalent to the sphere. Even though it has lots of
complex “lines” that look like the Riemann sphere, its global structure is
quite different.

Geometric construction of the hyperbolic plane as the half plane (the
Poincaré model) extends directly to higher dimension. But the group of
(orientation preserving) isometries of Hn turns out to be SO(n, 1), the group
of linear transformations in Rn+1, preserving the bilinear form

n∑

i=1

xiyi − xn+1yn+1,

that has nothing to do with either SL’s or complex numbers. The form
of this group becomes transparent from a different model, the hyperboloid
model, that is closely related to the Klein model. Isomorphism between
SO(3, 1) and SL(2,R) is a pre-eminent example of the low-dimensional phe-
nomena when early members of various series of matrix groups match, re-
sulting in profound connections between fundamental structures of geometry
and physics.

b. Affine geometry. Recall that the group of affine transformations
can be faithfully represented in GL(3,R) as

(14.1)

(
GL(2,R) R2

0 1

)
,
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where L ∈ GL(2,R) and b ∈ R2 correspond to the affine transformation
A : x 7→ Lx + b. Thus we must specify 6 real numbers to determine an
element of Aff(R2). Four of these determine the linear part L (there is a
restriction on these four, namely that detL 6= 0, but this does not remove
a degree of freedom since we only remove one possible value of the fourth
number to be chosen), while the other two determine the translation part
b. This explains the claim in the second column of Table 1 that Aff(R2) is
a 6-dimensional group.

Theorem 14.1. A bijection A : R2 → R2 is affine if and only if it maps
lines to lines—that is, if and only if Aℓ ⊂ R2 is a straight line whenever
ℓ ⊂ R2 is.

Proof. Let T be a bijection of R2 that takes lines into lines. Notice
that it takes unique intersection point of two non-parallel line to a point,
and hence it maps parallel lines to parallel lines.

Lemma 14.2. For any map T that maps lines into lines maps the mid-
point of any segment [p, q] into the midpoint of the segment [Tp, T q]. For
any point p, vector v and natural number n

(14.2) T (p+ nv) = Tp+ nTv.

Proof. Take any parallelogram P whose one diagonal is [p, q]. The
midpoint is the intersection of diagonals of P. Hence T (p+q2 ) is the point of

intersection of the diagonals of the parallelogram. TP, i.e. Tp+Tq
2 .

Taking the image of the parallelogram with vertices at the origin, p, v
and p + v we see that T (p + v) = Tp + Tv. Now p + v is the midpoint
of the segment [p, p + 2v], hence its image is the midpoint of the segment
[Tp, T (p+ 2v)], so that T (p+ 2v) = Tp+ 2Tv, p+ 2v is the midpoint of the
segment [p+ v, p + 3v], and by induction in n we obtain (14.2). �

Since for any pairs of triples of non-collinear points there is a transfor-
mation S ∈ Aff( R2) that matches the triples (and takes lines into lines) we
may assume that T fixes three points: the origin, (0, 1) and (1, 0). Our goal
is to show that such a map that still maps lines into lines is the identity.
Notice furthermore that it is sufficient to show that it is the identity on the
coordinate axes since any point in the plane is a midpoint of the segment
whose endpoints lie on coordinate axes.

At this point we make an important comment. If we assume that the
map is continuous (along the coordinate axes is sufficient) the proof can
be easily completed. First notice that the integer vectors on the x-axis are
preserved by Lemma 14.2. Then, by induction in n, T ((k/2n, 0) = (k/2n, 0)
for all integers k and n = 1, 2, . . . . Since those numbers are dense in R, T
is the identity on the x-axis and, by the same argument, on the y-axis. It
would also be sufficient to assume that T preserves the order of points on
the x axis.
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But we do not assume continuity or monotonicity so we need another
argument. A remarkable consequence of the proof to follow is its purely
algebraic character until the last step. We use algebraic manipulations with
real numbers that can be made with elements of an arbitrary field.

Since our map preserves the coordinate axes it takes lines parallel to
those axes to parallel lines and thus can be written in the coordinate form:

T (x, y) = (f(x), g(y)),

where f and g are bijections of R.
Since the map fixes the line x+y = 1, it also maps each line x+y = const

into another such line. Hence we immediately see that f = g. As we already
know f(k/2n) = k/2n. Furthermore, by Lemma 14.2 f is an additive map:

f(x+ y) = f(x) + f(y).

Now take the line l through points (x, 0) and (0, y). Any point p ∈ l has
the form (tx, (1 − t)y) for some t ∈ R. The line T l passes through (f(x), 0)
and (0, f(y)) and hence has the form (sf(x), (1−s)f(y)) = (f(tx), f((1−t)y)
for some s ∈ R, Comparing first coordinates we obtain s = f(tx)

f(x) . Subssitut-

ing this into the equality for the second coordinate gives (1 − f(tx)
f(x) )f(y) =

f((1 − t)y) or f(x)f(y) = f(x)f((1 − t)y) + f(tx)f(y). By additivity
f((1 − t)y) = f(y) − f(ty). Substituting this into the last equation we
obtain after cancellations

f(tx)f(y) = f(ty)f(x).

Since for x = 1, f(x) = 1 we deduce multiplicativity of the map f :

f(ty) = f(t)f(y).

Since f is also additive it is an automorphism of the field of real numbers.
Up to here the argument works for any field.

But now if t = s2 > 0 it follows that f(t) = (f(s))2 > 0 hence by
additivity f is monotone. But any monotone additive function is obviously
linear since it is linear on a dense set. In out case f = Id. �

The affine plane has natural analogues in higher dimensions: by replac-
ing GL(2,R) and R2 in (14.1) with GL(n,R) and Rn, we obtain the group
of affine transformations Aff(Rn) acting on Rn.

The proof given above extends by a straightforward induction to ar-
bitrary dimension after noticing that bijectivity and preservation of lines
implies preservation of affine subspaces of any dimension.

c. Projective geometry. Returning to the first row of the column,
we examine the projective plane RP (2). The group of transformations is
SL(3,R), which is 8-dimensional because the 9 entries of an element of
SL(3,R) can be any real numbers subject to a single constraint, that the
determinant (which is a polynomial in the entries) be 1.
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Projective transformations admit a similar characterisation to affine
transformations.

Theorem 14.3. A bijection of RP (2) is a projective transformation if
and only if it maps (projective) lines to (projective) lines.

Proof. Recall that as a set, the projective plane RP (2) is just the plane
R2 together with a projective line RP (1) at infinity. With the exception of
the line at infinity, which we shall denote ℓ∞, every projective line is a real
line in R2 together with a single point at infinity.

One direction is immediate. For the other direction, let T : RP (2) →
RP (2) be a bijection which maps lines to lines; we prove that T is a projective
transformation. Let ℓ = Tℓ∞ be the image of the line at infinity under the
action of T ; thus ℓ is again a projective line, and there exists a (non-unique)
projective transformation R ∈ SL(3,R) such that R(ℓ) = ℓ∞.

Figure 3.2. Sending a projective line to infinity.

To see this explicitly, observe that if we think of RP (2) as the set of
all lines through the origin in R3, then projective lines correspond to real
planes containing the origin. Taking the plane P = {x ∈ R3 | x3 = 1}
as our representative of R2, the line at infinity ℓ∞ corresponds to the xy-
plane P1, and the line ℓ corresponds to the plane P2 which contains ℓ and 0
(see Figure 3.2). The planes P1 and P2 both contain the origin, thus they
intersect in a (real) line ℓ0. Let R ∈ SO(3) ⊂ SL(3,R) be the rotation
around ℓ0 such that R(P2) = P1. In projective terms, this means that
R(ℓ) = ℓ∞.

Now we observe that R′ = R ◦ T is again a bijection of RP (2) which
takes projective lines to projective lines. Furthermore, R′(ℓ∞) = ℓ∞, and
so R′ also acts as a bijection of R2 which takes lines in R2 to lines in R2.
It follows from Theorem 14.1 that R′ is an affine map; but affine maps are
also projective. Hence we have obtained to projective maps R and R′ such
that T = R−1 ◦R′, and it follows that T itself is projective. �

As with affine geometry, the generalisation of projective geometry to
higher dimensions is straightforward. The projective space RP (n) is once
again defined as the set of all lines through the origin in Rn+1, and SL(n+
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1,R) once again gives all the projective transformations. The only slight
complication is that if n is odd, then SL(n+1,R) does not act faithfully since
it contains the central symmetry; in this case the group of transformations
is PSL(n+ 1,R).

Notice that again projective space can be viewed as Rn with added
(n−1)-dimensional hyperplane at infinity so Theorem 14.3 extends to higher
dimensions.

d. The Riemann sphere and conformal geometry. An element
of the group SL(2,C) is specified by three of the (complex) entries of the
matrix; the fourth is determined by these three. Thus the group has three
(complex) dimensions, and as a real object is 6-dimensional.

To characterise fractional linear transformations of the Riemann sphere,
we use the fact that these transformations (also called Möbius transforma-
tions) preserve the cross-ratio, together with the following exercise.

Exercise 14.3. Show that four points z1, z2, z3, z4 ∈ C ∪ {∞} lie on a
single circle or line (where ∞ lies on every line) if and only if (z1, z2; z3, z4) ∈
R.

The rather vague statement that “∞ lies on every line” may be compared
with the (equally vague) statement that “lines are just circles that pass
through ∞”, which is illustrated in Figure 3.3 using stereographic projection.
Or one can notice that the transformation z → 1/(z−w0) takes all lines not
passing through w0 into bounded objects that hence must be circles.. We
will use this fact soon.

Figure 3.3. Circles through ∞ are lines.

Theorem 14.4. A bijection on the Riemann sphere is a fractional linear
transformation (or the composition of such a transformation with the map
z 7→ z if and only if it maps lines and circles to lines and circles.

Proof. That any such transformation maps lines and circles to lines
and circles follows from Proposition 13.3 (fractional linear transformations
preserve cross-ratios) and Exercise 14.3.

Given such a bijection T , let w0 = T∞, and suppose w0 ∈ C (that is,
w0 6= ∞). Then the fractional linear transformation F1 : z 7→ 1/(z − w0)
maps w0 to ∞, and we see that F2 = F1 ◦ T is a bijection of the Riemann
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sphere which maps lines and circles to lines and circles, and which fixes
∞. Because it fixes ∞, it does not map any lines to circles or circles to
lines; consequently, the restriction of F2 to R2 is a bijection of the plane
which maps lines to lines and circles to circles. We emphasise that this is
a stronger property than what was originally assumed, since now lines and
circles cannot be interchanged by the action of the map.

Since F2 maps lines to lines, it must be affine by Theorem 14.1. Thus
there exist A ∈ GL(2,R) and b ∈ R2 such that for every x ∈ R2 = C, we
have F2x = Ax+b. Since F2 maps circles to circles, there exists r ∈ R such
that r−1A ∈ O(2), otherwise F2 would map the unit circle to an ellipse.

By composing F2 with the map z 7→ z if necessary, we may assume that
r−1A ∈ SO(2), and hence A acts on x ∈ R2 as rotation by some angle θ
followed by dilation by r. Let w1 = reiθ ∈ C and observe that identifying
x ∈ R2 with z ∈ C, the action of A has the same effect as multiplication
by w1. Let w2 ∈ C correspond to b ∈ R2; then we see that F2 acts on C
as F2(z) = w1z +w2. In particular, F2 is a fractional linear transformation,
and hence T = F−1

1 ◦ F2 is a fractional linear transformation as well. �

The group of isometries is generated by reflections in lines; a similar
result holds for transformations of the Riemann sphere using reflections in
circles. More precisely, given a circle C of radius r centred at x, the circle
inversion in C is the map from R2 ∪ {∞} to itself which takes the point
y ∈ R2 to the point y′ such that:

(1) x, y, and y′ are collinear;
(2) d(x,y) · d(x,y′) = r2.

If the circle of inversion converges to a circle through infinity—that is, a
line—then the inversion converges to reflection in that line. This geometric
characterization of fractions-linear and anti-fractional linear transformations
( i.e. their compositions with inversions) extends to higher dimensions where
no complex structure is available. Notice that the Riemann sphere general-
izes striaghtforwardly to Rn∪{∞}, that is indeed a sphere via stereographic
projection, and has nothing to do with higher-dimensional projective spaces.
The coincidence in real dimension two (and complex dimension one) is an-
other instance of the low-dimensional phenomena. This construction is also
a basis for a higher-dimensional generalization of the hyperbolic plane.

Exercise 14.4. Decompose the similarity transformation x 7→ λx as a
composition of circle inversions.

Remark. Any bijection of R2 which preserves angles is a similarity
transformation (that is, an isometry composed with a homothety x 7→ λx).
This is not true locally; given a domain D ⊂ R2, there are generally many
holomorphic (hence conformal) maps from D to itself which are not frac-
tional linear transformations. Writing the Taylor series expansions of these
maps, we see that they are determined by infinitely many parameters, unlike
the transformation groups we have seen so far, which only require finitely
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many parameters to specify. However, it follows from results of complex
analysis that an entire bijection (that is, a holomorphic bijection from C to
C) is linear, and hence a similarity transformation.

An amazing fact is that in higher dimension preservation of angles forces
transformations to be Möbius (up to an inversion). This is a first manifes-
tation of a remarkable series of rigidity phenomena in higher-dimensional
geometry and group theory.

Lecture 15. Friday, October 9

a. Comments on Theorem 14.1. A few remarks on the proof of
Theorem 14.1 are in order. The proof of the theorem goes more or less as
follows:

(1) Suppose that F : R2 → R2 is a bijection which maps lines to lines,
and without loss of generality, assume that F fixes the three points
(0, 0), (1, 0), and (0, 1), by composing F with an affine transformation
if necessary.

(2) Use the fact that F respects parallel lines to show that F (x, y) =
(f(x), f(y)) for some map f : R → R.

(3) Show that f(x+ y) = f(x) + f(y) and f(xy) = f(x)f(y)—that is, f is
a field automorphism.

(4) Show that the only field automorphism of R is the identity map.

One can consider the affine geometry of other fields besides R. To do
this, we emphasise not the geometric definition of a line in R2, but rather
the algebraic definition as the set of points which satisfy a linear equation
ax+ by = c. In this way we can define “lines” in F 2 for an arbitrary field F ,
and then consider all bijections from F 2 to itself which map lines to lines.

This is the idea behind algebraic geometry : translate geometric notions
into algebraic language, so that they can be worked with in the most general
setting possible. The first two steps of the above proof go through in this
more general setting; however, other fields may have non-trivial automor-
phisms. For example, the field C has the non-trivial automorphism z 7→ z.
Thus for such fields, the analogue of Theorem 14.1 states that every bijec-
tion of F 2 which takes lines to lines has the form x 7→ AΦ(x) + b, where
b ∈ F 2 and A ∈ GL(2, F ) are fixed, and Φ(x1, x2) = (φ(x1), φ(x2)) for some
automorphism φ of F .

We also point out that the difficult part of the proof of Theorem 14.1
is going from the statement that f is additive (f(x + y) = f(x) + f(y))
to the statement that f is linear, which also requires that f(λx) = λf(x)
for all λ ∈ R. This implication does not hold in general; viewing R as a
vector space over Q (of uncountably infinite dimension) and using the fact
that every vector space has a basis (which is a consequence of the Axiom of
Choice), one can construct an additive map of R which is not linear.

However, the implication does hold under any one of a number of rela-
tively small additional assumptions; for example, one needs only to require
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that f is continuous at a single point, or is monotonic, or is measurable, etc.
If the real line is considered only as a field (a purely algebraic object), none
of these conditions can be formulated correctly, as they require additional
structure on R—a topology, an order, a σ-algebra, etc.

b. Hyperbolic geometry. Recall that SL(2,C) acts on the Riemann
sphere C∪{∞} via fractional linear transformations. Suppose that a, b, c, d ∈
C are such that the fractional linear transformation f(z) = az+b

cz+d preserves

the real line (together with ∞)—that is, f(x) ∈ R∪{∞} for all x ∈ R∪{∞}.
Then in particular, we have

f(0) =
b

d
∈ R∪{∞}, f(∞) =

a

c
∈ R∪{∞}, f(1) =

a+ b

c+ d
∈ R∪{∞}.

Writing these three quantities as λ1, λ2, λ3, respectively, we have b = λ1d,
a = λ2c, and hence

a+ b = λ1d+ λ2c = λ3d+ λ3c.

Rearranging, we obtain

(λ1 − λ3)d = (λ3 − λ2)c,

which together with the above equalities implies that

a = λ2c = λ2
λ1 − λ3

λ3 − λ2
d =

λ2

λ1

λ1 − λ3

λ3 − λ2
b.

Thus writing w = a/ |a| and a′ = a/w, b′ = b/w, c′ = c/w, and d′ = d/w,
we obtain a′, b′, c′, d′ ∈ R ∪ {∞}, and furthermore, we can compute the
determinant and see that 1 = ad− bc = w2(a′d′ − b′c′), whence w ∈ R and
so a, b, c, d ∈ R ∪ {∞}.

This shows that any fractional linear transformation of the Riemann
sphere which preserves the real line is determined by a matrix in SL(2,R),
and then acts on the upper half-plane H2. Finally, we observe that an
element of SL(2,R) is determined by three parameters. Thus, if we consider
two points w, z ∈ H2, we have only three degrees of freedom in selecting
their images f(w), f(z) under some Möbius transformation f . However, the
collection of all pairs of points has four degrees of freedom; and so there
must be some constraint satisfied by the pair (f(w), f(z)). This constraint
is precisely the notion of distance in the hyperbolic plane, which is preserved
by any Möbius transformation, and which we will address in the next lecture.
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Lecture 16. Monday, October 12

a. Ideal objects. Before introducting the notion of distance on the
hyperbolic plane H2, we pause to make a few remarks about “ideal” objects.
In a number of the two-dimensional geometric objects we have studied so
far, one is concerned not only with points in the plane, but also with points
which lie “at infinity” in some sense. Such points may be referred to as
ideal.

If we begin with the (complex) plane and add a single ideal point, we
obtain the Riemann sphere CP (1) = C ∪ {∞}. If we take the (real) plane
and instead add an ideal line, we get the real projective plane RP (2) =
R2 ∪ {RP (1)}—in this case there are an uncountable number of points at
infinity. In both these cases, the points at infinity may be obtained as limits
of sequences of points in the plane.

Now consider the hyperbolic plane

H2 = {z ∈ C | Im z > 0} = {(x, y) ∈ R2 | y > 0}.
A convergent sequence of points in H2 (where convergence is understood in
the sense of CP (1)) may converge to one of two places: to a real number
x ∈ R, or to ∞. The set of points R ∪ {∞} is called the ideal boundary of
H2.

At this point we see an important distinction between H2 and the first
two examples. In the first two examples, the ideal points are part of the
geometric object (CP (1) or RP (2)), and furthermore, there is no intrinsic
difference between ideal points and “finite” points—that is, one can find a
Möbius transformation which takes ∞ to an arbitrary point in C = CP (1)\
∞, and one can find a projective transformation which takes RP (1) to any
projective line in RP (2).

The situation with H2 is quite different: here the ideal boundary is not
part of the hyperbolic plane, and is preserved by Möbius transformations
with real coefficients. Thus while it is an important part of descriptions of
the geometry of the hyperbolic plane, it is not part of H2 itself. We point
out, however, that while the ideal boundary R ∪ {∞} is distinct from the
hyperbolic plane, any two points within the ideal boundary are intrinsically
equivalent. In particular, given x ∈ R, there exists a Möbius transformation
f of H2 such that f(∞) = x; thus the point ∞ is just like any other point
on the ideal boundary as far as hyperbolic geometry is concerned.

b. Hyperbolic distance. Recall the definition of the cross-ratio in (13.2),
and recall the following results regarding the action of PSL(2,C) on H2 via
fractional linear transformations.

(1) Proposition 13.3: A map of CP (1) is a Möbius transformation if and
only if it preserves the cross-ratio.

(2) Theorem 14.4: A bijection of CP (1) is a Möbius transformation if and
only if it preserves lines and circles.
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(3) Previous lecture: A Möbius transformation f(z) = (az + b)/(cz + d)
preserves H2 if and only if a, b, c, d ∈ R.

Putting all these together, we see that the following conditions are equiv-
alent for a map f : H2 → H2:

(1) f is a fractional linear transformation.
(2) f preserves the cross-ratio.
(3) f maps lines and circles to lines and circles.

z1
z2

z3 z4
α

β

Figure 3.4. Interpreting the cross-ratio of four numbers.

We remark that Exercise 14.3, which is crucial to the above results, can
be proved via the observation that the angles α and β in Figure 3.4 are the
arguments of the complex numbers z2−z3

z1−z3
and z2−z4

z1−z4
, respectively. Thus the

argument of the cross-ratio (z1, z2; z3, z4) given in (13.2) is exactly α− β (if
the points are arranged as shown) or α + β (if z4 lies on the other side of
the line through z1 and z2), and the condition that the four points lie on a
circle or a line is exactly the condition that this quantity be a multiple of π,
which is thus equivalent to the cross-ratio being real.

Möbius transformations also have the important property of being con-
formal—that is, they preserve angles. This can be proved synthetically, by
observing that every Möbius transformation is a composition of linear maps
z 7→ az + b (a, b ∈ C) with inversions z 7→ 1/z, and that each of these maps
preserves angles—this is immediate for linear maps, and for the inversion
follows from the fact that circle inversion (z 7→ 1/z) and reflection in the
real axis (z 7→ z) both preserve angles.

An analytic proof, which has the virtue of being given by a local argu-
ment, uses the fact that Möbius transformations are holomorphic, and thus
conformal. Indeed, holomorphic functions are precisely those that can be
locally approximated by linear functions: f(z + w) = f(z) + Lz(w) + o(w),
where Lz is a linear map which preserves angles, and o(w) is of higher order.

We have now collected several significant features of the action of PSL(2,R)
on H2—in particular, we have four things that are preserved by this action,
namely the cross-ratio, the ideal boundary, the collection of lines and circles,
and the angle between any two curves. The definition of distance uses all
four.

Given two points z1, z2 ∈ H2, we want to define a distance. This distance
should be preserved by the action of PSL(2,R). The two preserved quanti-
ties are the cross-ratio and angles. Of these two, the angle between any two
curves is bounded, while H2 is unbounded, and so we expect our distance
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w2w1

z1

z2z3

w0

Figure 3.5. Defining distance in H2.

function to be unbounded. Thus we suspect that the distance between z1
and z2 ought to be defined in terms of the cross-ratio.

But the cross-ratio is defined in terms of four points, and we only have
two! The other two points w1 and w2 will be chosen to lie on the ideal
boundary, as shown in Figure 3.5. In particular, we choose w1, w2 ∈ R such
that the four points w1, w2, z1, z2 all lie on the same circle.

Actually, we require slightly more than that. There are certain circles in
C ∪ {∞} which are distinguished under the action of PSL(2,R)—namely,
circles whose centre lies on the (extended) real line R ∪ {∞}, and which
intersect R orthogonally. If the centre is at ∞, such a circle in C ∪ {∞} is
just a vertical line in C (parallel to the imaginary axis).

Since fractional linear transformations preserve angles and the (extended)
real line, they also preserve the collection of lines and circles which intersect
R orthogonally. Let us denote this class of curves in H2 by G; the curves
in G play a fundamental role in hyperbolic geometry. Given any two points
z1, z2 ∈ H2, there exists a unique curve γ ∈ G which passes through z1 and
z2. If z1 and z2 have the same real part, γ is just the vertical line passing
through them. If they do not have the same real part, γ is the semi-circle
constructed in Figure 3.5: the perpendicular bisector of the line segment
from z1 to z2 comprises all centres of circles containing both z1 and z2, and
it intersects the real line in a unique point w0. The circle centred at w0 that
contains z1 and z2 lies in G.

To define the distance between z1 and z2, we let w1 and w2 be the
endpoints (on the ideal boundary R∪{∞}) of the curve γ ∈ G that contains
z1 and z2. Then the distance is given in terms of the cross-ratio

(16.1) (z1, z2;w1, w2) =
z1 − w1

z2 − w1
÷ z1 − w2

z2 − w2
.

The distance cannot be the cross-ratio itself, for the following reason. A
true distance function should be additive, in the sense that given a point z3
lying “between” z1 and z2 (where in this case “between” means on the curve
γ ∈ G), we have d(z1, z2) = d(z1, z3) + d(z3, z2). However, it may easily be
seen from (16.1) that the cross-ratio is multiplicative:

(16.2) (z1, z2;w1, w2) = (z1, z3;w1, w2)(z3, z2;w1, w2).
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Thus in order to obtain a quantity which behaves like a distance function,
we must take the logarithm of the cross-ratio, obtaining

(16.3) d(z1, z2) = log |(z1, z2;w1, w2)| =

∣∣∣∣log
(z1 − w1)(z2 − w2)

(z1 − w2)(z2 − w1)

∣∣∣∣ .

If z1 and z2 have the same real part, then we have z1 = x+ iy1, z2 = x+ iy2,
w1 = x, x2 = ∞, and obtain the following special case of (16.3):

(16.4) d(x+ iy1, x+ iy2) =

∣∣∣∣log
(
y2

y1

)∣∣∣∣ .

We take the absolute value in (16.3) and (16.4) so that distance remains
non-negative when z1 and z2 are interchanged.

Of course, we have not yet given a proof that the quantity defined
in (16.3) satisfies the axioms of a metric. In particular, it is not obvious
why the triangle inequality holds. One can prove the triangle inequality by
first defining the length of a curve γ : [0, 1] → H2 using d, and then showing
that the lines and circles in G are precisely the geodesics—that is, curves of
minimal length between z1 and z2. However, we shall not use this fact.

Because fractional linear transformations preserve the cross-ratio and
map lines and circles in G to lines and circles in G, they preserve the hy-
perbolic distance d(z1, z2). In particular, d is invariant under the following
maps:

(1) Horizontal translations z 7→ z + x, where x ∈ R.
(2) Homotheties z 7→ λz, where λ ∈ (0,∞).
(3) Circle inversions such as z 7→ 1/z.

We can use the first two of these to illustrate the similarities and differ-
ences between the hyperbolic metric on H2 and the familiar Euclidean met-
ric. Consider the sequence of points zn = n+ i; in the Euclidean metric, the
distance between any two successive points is 1. In the hyperbolic metric, we
see that d(zn, zn+1) = d(z0, z1) for every n, since horizontal translation does
not change the hyperbolic distance. Thus although the hyperbolic distance
between two successive points is not the same as the Euclidean distance,
the sequence still has the property that the distance between two successive
points is constant.

Now consider the sequence of points zn = ie−n. In the Euclidean metric,
the points zn converge to 0, and so the distance between them goes to 0. In
the hyperbolic metric, however, we have

d(zn, zn+1) =

∣∣∣∣log
(

e−n

e−(n+1)

)∣∣∣∣ = 1

for every n, and so successive points are always a distance 1 apart. This
illustrates the fact that the hyperbolic metric distorts the usual one by a
factor of 1/y at the point z = x + iy, so the distortion becomes more and
more pronounced as we approach the real line, which is the ideal boundary.
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c. Isometries of the hyperbolic plane. We have now seen three
two-dimensional metric geometries: the elliptic plane, the Euclidean plane,
and the hyperbolic plane. In the first of these, every even isometry was a
rotation, with a single fixed point (or in the case of rotation by π, a fixed
point and a fixed line). In the second, we had two possibilities, contingent
on the presence of a fixed point: every even isometry is either a translation
or a rotation.

What happens in H2? Do we have a similar classification? Are there
new classes of isometries? To answer this, we use the algebraic description
of even isometries of H2 as fractional linear transformations, which gives us
an efficient way of determining whether or not an isometry has fixed points,
and where they lie.

Consider an isometry f(z) = (az + b)/(cz + d), where ad − bc = 1, and
a, b, c, d ∈ R. A point z ∈ C is fixed by f if and only if z = (az+b)/(cz+d)—
that is, if and only if

cz2 + dz = az + b.

Collecting all the terms on one side and using the quadratic formula, we
obtain

(16.5)

z =
a− d±

√
(a− d)2 + 4bc

2c

=
a− d±

√
(a+ d)2 − 4ad+ 4bc

2c

=
a− d±

√
(a+ d)2 − 4

2c
,

where the last equality uses the fact that ad− bc = 1. Thus we see that the
number and type of the fixed points of f is determined by the absolute value
of a+ d, which is the trace of ( a bc d ), and hence is invariant under conjugacy.
There are three possibilities.

Hyperbolic transformations. If |a+ d| > 2, then f has two fixed points
on the ideal boundary. If c 6= 0, these are given by (16.5); if c = 0, one
fixed point is b/(a − d), and the other is ∞. Denote the fixed points by
w1 and w2, and let γ be any circle (or line) in H2 (not necessarily a circle
or line in G) with endpoints w1 and w2. Every point in H2 lies on exactly
one such curve, and each such curve is preserved by f , which is in some
sense a “translation” along γ. Thus hyperbolic transformations are as close
counterparts of translations in the Euclidean plane as one can get: such a
transformation has an invariant line (connecting two fixed points at infinity),
the “axis”, and the “translation vector” of a particular length along this line.
However, since the notion of parallelism in hyperbolic geometry is quite
different from the Euclidean geometry one cannot say that any point moves
parallel to the axis. Instead of the family of invarant parallel lines there is
a family of equidistant curves represented by arcs of circles connecting the
fixed points at infinity. Such a curve is indeed a locus of points lying on
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Figure 3.6. A homothety acting on circles centred at the origin.

one side of the axis and at a fixed distance from it. but unlike the case of
Euclidean geometry it is not a line itself.

The easiest model of a hyperbolic transformation to visualise is the one
corresponding to the matrix ( λ 0

0 λ−1 ), which acts on H2 as z 7→ λ2z (see
Figure 3.6).

Parabolic transformations. If |a+ d| = 2, then f has exactly one fixed
point on the ideal boundary. The easiest model of a parabolic transformation
comes when we take this point to be ∞, and consider the map z 7→ z + 1.

Elliptic transformations. If |a+ d| < 2, then f has two fixed points in C,
which are conjugate and non-real. One of these lies in the upper half-plane,
the other in the lower half-plane. Thus f has exactly one fixed point in
H2, and acts as “rotation” around this point in a certain sense. Using the
upper half-plane model of hyperbolic geometry, the image of f as a rotation
appears distorted; however, there is another model of hyperbolic geometry,
the unit disc, in which f becomes a genuine rotation in the Euclidean sense.

To describe the conjugacy classes in Isom+(H2), we need to give the
conjugacy invariants within each class of isometries. Recall that Isom+(H2)
is isomorphic to PSL(2,R), and that the conjugacy invariants in the latter
group are the eigenvalues of A ∈ PSL(2,R). If the eigenvalues are real (λ
and 1/λ), then fA is a hyperbolic transformation; if they are complex (eiθ

and e−iθ), then fA is an elliptic transformation. If they are unity (λ1 = λ2 =
1), then fA is either the identity (if A = Id) or a parabolic transformation.
Furthermore, all matrices of the form ( 1 t

0 1 ) with t 6= 0 are conjugate, and
so all parabolic transformations are conjugate.

Exercise 16.1. Express the hyperbolic length of translation along the
axis of a hyperbolic transformation through the eigenvalues of the matrix.
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Lecture 17. Wednesday, October 14

a. Matrix groups. A linear group is an abstract group which admits
a faithful representation as a matrix group—that is, a subgroup of GL(n,R)
for some n. We have already seen a number of important examples of linear
groups, such as the six groups in Table 1 (Lecture 14). Each of these groups
corresponded to a particular sort of two-dimensional geometry; for the time
being, we will set immediate geometric applications aside and broaden our
horizons by considering other linear groups.

Recall that an n × n matrix A is upper-triangular if Aij = 0 whenever
i > j. The determinant of an upper-triangular matrix is the product of
its diagonal entries Aii, which are the eigenvalues of A; in particular, A is
invertible if and only if all its diagonal entries are non-zero. Let UT (n)
denote the group of all invertible upper-triangular n× n matrices with real
entries.

Given A ∈ UT (n), let D be the diagonal matrix D = diag(A11, . . . , Ann),
and let N be the matrix N = A −D. Observe that Nij = 0 for all i ≥ j;

it follows from the formula for matrix multiplication that (Nk)ij = 0 for all
i > j − k. More visually, one may say that the main diagonal of N contains
only zeros, that the diagonal above the main diagonal of N2 contains only
zeros, and in general, that every diagonal less than k spaces above the main
diagonal of Nk contains only zeros. In particular, Nn = 0; a matrix N with
this property is called nilpotent.

The upshot of all this is that any upper-triangular matrix A can be
written as

(17.1) A = D +N,

where D is diagonal and N is nilpotent. Of course, the binary operation in
the group UT (n) is multiplication, not addition; by decomposing A as the
sum of two matrices with special forms and properties, we are making use
of the fact that matrix groups have an additive structure which is in some
sense extrinsic to the group structure.

To illustrate why this additive structure is not captured by the group
structure, we observe that in the first place, UT (n) is not closed under
addition (the sum of two invertible matrices may not be invertible), and in
the second place, the nilpotent matrices used in the above decomposition do
not actually lie in UT (n), as they are not invertible.

The analogues of the nilpotent matrices within the group UT (n) are
the unipotent matrices—that is, matrices of the form I + N , where N is
nilpotent. Given two unipotent matrices I +N and I +N ′, we observe that

(I +N)(I +N ′) = I +N +N ′ +NN ′

is unipotent as well, which follows from the fact that

(N +N ′ +NN ′)ij = Nij + (N ′)ij +
n∑

k=1

NikN
′
kj = 0
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for all i ≥ j. Furthermore, recalling the geometric series

(1 + x)−1 = 1 − x+ x2 − x3 + x4 − · · ·
and using the fact that Nk = 0 for all k ≥ n, we see that

(17.2) (I +N)−1 = I −N +N2 −N3 + · · · + (−1)n−1Nn−1

is again a unipotent matrix. It follows that the set of unipotent matri-
ces forms a subgroup of UT (n), which we denote Un. Writing Dn for the
subgroup of all diagonal matrices, we see that (17.1) leads to the group
decomposition

(17.3) UT (n) = DnUn,
since writing N ′ = D−1N gives D +N = D(I +N ′).

b. Algebraic structure of the unipotent group. We now investi-
gate the algebraic properties of the group UT (n); we will do this by stating
a general result (for all n), and then doing the calculations in the specific
case n = 3, which is representative of the general case but easier on the eyes
notationally.

First we need a little more notation. Writing Nn for the collection of all
n× n upper-triangular nilpotent matrices, we consider the following classes
of nilpotent matrices for 1 ≤ k ≤ n:

(17.4) N k
n = {N ∈ Nn | Nij = 0 for all j < i+ k}.

That is, N k
n is the set of all upper-triangular nilpotent matrices with k empty

diagonals (including the main diagonal); equivalently, N k
n = {N ∈ UT (n) |

Nn+1−k = 0}. We see that

Nn = N 1
n ⊃ N 2

n ⊃ · · · ⊃ N n−1
n ⊃ N n

n = {0}.
Given N ∈ N k

n and N ′ ∈ N k′
n , we have

(NN ′)ij =

n∑

m=1

NimN
′
mj ,

and we see that the only non-vanishing terms are those for which m ≥ i+ k
and j ≥ m+ k′. In particular, (NN ′)ij = 0 unless there exists m such that
j ≥ m+ k′ ≥ i+ k + k′, and so we have (NN ′)ij = 0 for all j < i+ k + k′,

whence NN ′ ∈ N k+k′
n . Thus the sets N k

n have the following property:

(17.5) N k
n · N k′

n ⊂ N k+k′
n .

Let Ukn be the set of all unipotent matrices of the form I+N , whereN ∈ N k
n .

Equivalently

Ukn = {A ∈ UT (n) | (A− I)n+1−k = 0}.
It follows from (17.2) and (17.5) that Ukn is a subgroup of UT (n), and we
have

Un = U1
n ⊃ U2

n ⊃ · · · ⊃ Un−1
n ⊃ Unn = {I}.
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Visually, Ukn is the set of all unipotent matrices with at least k − 1 blank
diagonals above the main diagonal.

Proposition 17.1. The commutator subgroup of the group of upper-
triangular matrices is the subgroup of unipotent matrices:

(17.6) [UT (n), UT (n)] = Un.

Furthermore, for every 1 ≤ k < n, we have

(17.7) [Un,Ukn ] = Uk+1
n .

Thus Un is a nilpotent group, and UT (n) is a solvable group.

Proof of (17.6). Let ϕ : UT (n) → Dn be the map which takes A ∈
UT (n) to the diagonal matrix diag(A11, . . . , Ann), and observe that ϕ is
a homomorphism, since for upper-triangular matrices A and B we have
(AB)ii = AiiBii. It follows that ϕ([A,B]) = ϕ(ABA−1B−1) = I, and hence
[A,B] ∈ kerϕ = Un for every A,B ∈ UT (n), which establishes the inclusion
[UT (n), UT (n)] ⊂ Un.

The proof that every unipotent matrix can be obtained as the commu-
tator of two upper-triangular matrices is left as an exercise. �

Remark. Thanks to Proposition 17.1, we can construct many non-
trivial examples of nilpotent groups. It should be observed that the word
“nilpotent” may be used to describe a group or a matrix, and that the mean-
ing in the two cases is somewhat different, although the two are certainly
related.

c. The Heisenberg group. We prove the second half of Proposi-
tion 17.1 in the case n = 3; the same arguments go through in the more
general setting. The group U3 is called the Heisenberg group; we have

U3 =








1 x z
0 1 y
0 0 1


 | x, y, z ∈ R



 .

The Heisenberg group U3 joins Isom(R2), SO(3), and SL(2,R) on our list
of interesting three-dimensional groups. Unlike its counterpart U2 (which
is isomorphic to the real numbers with addition), it is non-abelian, but the
non-commutativity enters in a relatively simple way. To wit, we see that

(17.8)




1 x1 z1
0 1 y1

0 0 1






1 x2 z2
0 1 y2

0 0 1


 =




1 x1 + x2 z1 + z2 + x1y2

0 1 y1 + y2

0 0 1


 ,

and the only term that gets in the way of commutativity is x1y2.
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To compute the inverse of an element I +N ∈ U3, we use (17.2):

(I +N)−1 = I −N +N2

=




1 −x −z
0 1 −y
0 0 1


+




0 0 xy
0 0 0
0 0 0




=




1 −x −z + xy
0 1 −y
0 0 1


 .

Proof of (17.7) for n = 3. We could show that [U3,U3] = U2
3 by di-

rectly computing the entries of [I+N, I+N ′]. Instead, we opt to once again
use (17.2), and expand the following expression:

[I +N, I +N ′] = (I +N)(I +N ′)(I −N +N2)(I −N ′ +N ′2).

We get a polynomial in N and N ′; using (17.5), we see that every term of
cubic or higher order vanishes, and so

(17.9)

= (I +N +N ′ +NN ′)(I −N +N2 −N ′ +NN ′ +N ′2)

= (I +N +N ′ +NN ′) − (N +N2 +N ′N) +N2

− (N ′ +NN ′ +N ′2) +NN ′ +N ′2

= I +NN ′ −N ′N.

It follows that [U3,U3] ⊂ U2
3 . Once again, the reader may verify that we in

fact have equality.
To see that [U3,U2

3 ] = U3
3 = {I}, it suffices to observe that U2

3 is the
centre of U3. This follows from either (17.8) or (17.9), by observing that
NN ′ −N ′N vanishes for every N ′ if and only if N2 = 0. �

The general procedure for n > 3 is similar: one shows that [I + N, I +
N ′] = I + P (N,N ′), where P is a polynomial with no linear terms, which
thus outputs nilpotent matrices of lower degree than its inputs.

Remark. The expression NN ′ −N ′N in (17.9) is also called a commu-
tator, this time in the ring theoretic sense. This relates the ring structure
of nilpotent matrices to the group structure of unipotent matrices.
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Lecture 18. Friday, October 16

a. Groups of unipotent matrices. We claimed in the last lecture
(Proposition 17.1) that the group of unipotent matrices Un is nilpotent,
which gives us our first general class of examples of non-abelian nilpotent
groups. Before completing the proof in the general case, we observe that the
converse statement is not true: there are plenty of nilpotent matrix groups
which are not contained in Un. For example, the diagonal subgroup Dn is
abelian, and hence nilpotent.

Proof of Proposition 17.1. To complete the proof, we continue to
use the fact that nilpotent matrices have an additive structure alongside the
multiplicative one.

Given 1 ≤ i, j ≤ n, let eij ∈ Nn be the matrix which has a 1 in the ith
row and jth column, and all other entries are 0. Observe that Nn is a real
vector space of dimension (n2 − n)/2 with basis {eij , 1 ≤ i < j ≤ n}.

A simple calculation shows that eijekl = δjkeil, where δjk is the Kro-
necker delta—it is equal to 1 if j = k, and 0 otherwise. The geometric
meaning of all this is that if we write {ei} for the standard basis vectors in
Rn, then eij acts on Rn as a linear operator, taking ej to ei, and all other
basis vectors to 0. In particular, the only way that eij and ekl can have a
non-zero product is if the range of ekl (which is spanned by ek) is in the
complement of the kernel of eij (this complement is spanned by ej).

For the corresponding unipotent matrices, we have the following multi-
plication rule:

(18.1) (I + seij)(I + tekl) = I + seij + tekl + stδjkeil.

In particular, since i < j, we have

(I + eij)(I − eij) = I + eij − eij = I,

and so (I + eij)
−1 = I − eij. Indeed, one has the more general formula

(I + eij)
t = I + teij

for every t ∈ Z.7 Now assume that at least one of the inequalities holds:
i 6= ℓ or j 6= k. The formula for the inverse lets us write the commutator of
two basic unipotent matrices:

(18.2)

[I + eij, I + ekl] = (I + eij)(I + ekl)(I − eij)(I − ekl)

= (I + eij + ekl + δjkeil)(I − eij − ekl + δjkeil)

= (I + eij + ekl + δjkeil) − (eij + δilekj)

− (ekl + δjkeil) + (δjkeil)

= I + δjkeil − δilejk.

Thus we have three cases:

7Actually this holds for all t ∈ R, but to make sense of it in the more general setting
we need to say what is meant by At when A is a matrix and t /∈ Z.



LECTURE 18. FRIDAY, OCTOBER 16 133

(1) j 6= k and i 6= l. In this case I + eij and I + ekl commute.
(2) i 6= ℓ, j = k. In this case [I + eij, I + ekl] = I + eil.
(3) k 6= j, i = ℓ. In this case [I + eij, I + ekl] = I − ekj.

8

Now assuming that i < j and k < ℓ we see that these three cases cover all

possibilities and in every case, the commutator lies in U (j−i)+(l−k)
n . This is

the prototype for the result that

(18.3) [Ukn ,Uk
′

n ] = Uk+k′n ,

which is a stronger version of (17.7). To see (18.3), we fix N ∈ N k
n and

N ′ ∈ N k′
n , and then write for every j ≥ 0

σj = N j +N j−1N ′ +N j−2N ′2 + · · · +NN ′j−1 +N ′j.

Observe that (I +N)(I +N ′) = I + σ1 +NN ′, and that

(18.4) σ1σj = σj+1 +N ′Nσj−1.

Furthermore, we have

(I +N)−1(I +N ′)−1 = (I −N +N2 −N3 + · · · )(I −N ′ +N ′2 −N ′3 + · · · )
= I − σ1 + σ2 − σ3 + · · · .

This allows us to compute the commutator by applying (18.4):

(18.5)

= (I + σ1 +NN ′)(I − σ1 + σ2 − σ3 + · · · )
=
∑

j≥0

(−1)j(I + σ1 +NN ′)σj

=
∑

j≥0

(−1)j(σj + σj+1 +N ′Nσj−1 +NN ′σj

= I + (NN ′ −N ′N)
∑

j≥0

(−1)jσj .

It follows from (17.5) that [I + N, I + N ′] ∈ N k+k′
n , which establishes one

inclusion in (18.3). The other inclusion follows from the fact that given
t ∈ R, 1 ≤ i ≤ n and m = i + k, j = m + k′, we have I + teim ∈ Ukn ,

I + emj ∈ Uk′n , and

[I + teim, I + emj ] = I + teij .

Since every element of Uk+k′n can be written as a product of matrices of the
form I + teij for j = i+ k + k′, this establishes (18.3). �

The groups Ukn are natural examples of non-abelian nilpotent groups.
There are also other interesting subgroups of Un, which are automatically
nilpotent.

8The reader can easily write the formula for [I + eij , I + eji] that is more complicated
and will not be used directly in these lectures.
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Example 18.1. Consider the generalised Heisenberg group

Hn = {I +N | N ∈ Nn has Nij = 0 if i > 1 and j < n},
which is the set of unipotent matrices whose non-zero entries are all in either
the first row or the last column. Of particular importance are the matrices
hk = I + e1k and h′k = I + ekn, and also c = I + e1n. One has that
[hk, h

′
k] = c, and furthermore, c ∈ Z(Hn). It follows that Hn is a nilpotent

group of nilpotent length 2.

Why are we interested in nilpotent groups? What is the point of the
seemingly arbitrary condition that the sequence Gn defined by Gn+1 =
[G,Gn] eventually terminates in the trivial group? There are (at least)
two answers to this question. In the first place, nilpotent groups are the
next easiest target after abelian groups: since “groups” as a general class
are far too complex to understand completely, we must proceed by studying
particular classes of groups. Abelian groups are fairly well understood, but
once we move into the non-abelian world, things can become quite difficult.
Nilpotent groups are “close enough”’ to being abelian that we can still prove
powerful results. This is related to the second answer, which is that many
groups which are very intricate and complicated can be meaningfully stud-
ied by understanding their nilpotent subgroups. This gives us a window into
the internal structure of objects which might otherwise be inaccessible.

b. Matrix exponentials and relationship between multiplica-
tion and addition. The computations in the previous section indicate a
relationship between multiplication of certain matrices (unipotent matrices)
and addition of others (nilpotent matrices). This is made explicit in (18.5),
which relates the group commutator ABA−1B−1 to the ring commutator
AB −BA.

The most familiar object which relates multiplication and addition is
the exponential map, and it turns out that we can apply this to matrices as
well as to numbers. In particular, given a matrix A, we define the matrix
exponential of A by the power series

(18.6) eA =

∞∑

k=0

1

k!
Ak.

Observe that this series is absolutely convergent since ‖Ak‖ ≤ ‖A‖k, which
grows much slower than k!.

Exercise 18.1. Show that the matrix exponential may be equivalently
defined by

(18.7) eA = lim
k→∞

(
I +

A

k

)k
.

The matrix exponential may also be defined using a differential equa-
tion, although it is not immediately obvious how this ought to be formulated.



LECTURE 18. FRIDAY, OCTOBER 16 135

The solution is to look for matrix functions f(t) = etA and consider differ-
entiation with respect to the parameter t. Using (18.6) one sees from a
straightforward calculation that

(18.8)
df

dt
= Af(t).

and in particular

df

dt |t=0
= A.

One can show that the equation 18.8 with initial condition f ′(0) = A has
unique solution etA.

Observe that eA may be efficiently computed using normal forms: if
A = TDT−1, where T ∈ GL(n,C) and D = diag(λ1, . . . , λn), then it follows
from (18.6) that

eA = TeDT−1 = T diag(eλ1 , . . . , eλn)T−1.

Exercise 18.2. What happens if D is not diagonal, but contains a
Jordan block?

If A and B commute, then the same proof as for real numbers shows
that

(18.9) eA+B = eAeB .

Considering the scalar multiples tA of A, we have a one-parameter family
of matrices

ϕA(t) = etA,

where t is any real number. Since tA and sA commute for all s, t ∈ R, it
follows from (18.9) that

(18.10) ϕA(t+ s) = ϕA(t)ϕA(s).

Thus we see two things: in the first place, ϕA(−t) = ϕA(t)−1, and so ϕ
maps R into GL(n,R), and in the second place, ϕ : R → GL(n,R) is a
homomorphism. The image {etA | t ∈ R} is a one-parameter subgroup of
GL(n,R).

As we mentioned above that d
dte

tA = AetA, and in particular, ϕ′
A(0) = A.

This leads to the observation that every continuous one-parameter subgroup
(that is, every homomorphic image of R) in GL(n,R) is obtained via a
matrix exponential: given a homomorphism ϕ : R → GL(n,R), we let A =
ϕ′(0), and observe that ϕ(t) = etA. One needs to prove of course that any
continuous homomorphism is differentiable.
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What happens if we consider two one-parameter subgroups of GL(n,R)?
Given A,B ∈Mn(R), we see that

eAeB =

(
I +A+

1

2
A2 + · · ·

)(
I +B +

1

2
B2 + · · ·

)

= (I +A+
1

2
A2 + · · · ) + (B +AB + · · · ) +

1

2
B2 + · · ·

= I +A+B +
1

2
(A2 + 2AB +B2) + · · ·

= I + (A+B) +
1

2
(A+B)2 +

1

2
(AB −BA) + · · · ,

where all omitted terms are of cubic or higher order. Thus if we consider
matrices tA and tB, we have

(18.11) etAetB = et(A+B) +
t2

2
(AB −BA) +O(t3).

This is the beginning of the Campbell–Hausdorff formula, which relates
eA+B to eA and eB when the matrices A and B do not commute. In terms
of multi-variable calculus, this is the statement that moving along two non-
commuting vector fields produces an error of quadratic order.

For the time being, we observe that for small values of t (and hence
matrices tA and tB which are near the identity), the deviation from what
we expect is controlled by the commutator AB−BA. In particular, (18.11)
yields

[etA, etB ] = I + t2(AB −BA) +O(t3),

which gives a concrete relationship between the group commutator (in terms
of multiplication alone) and the ring commutator (in terms of multiplica-
tion and addition). This is the beginning of the theory of Lie groups and
Lie algebras; we shall not dive into this theory at the present time, but
will merely observe that the matrix exponential provides the relationship
between nilpotent and unipotent matrices: if N = eij is a basic nilpotent
matrix, then it is straightforward to see that

eN = I +N

is a basic unipotent matrix.
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Lecture 19. Monday, October 19

a. Lie algebras. Let us make a few of the notions discussed in the pre-
vious lecture more precise. What we have been discussing leads naturally
into a brief introduction to Lie groups and Lie algebras, which together are
one of the central topics in modern mathematics. We will somewhat devi-
ate from the general principle of these lectures (to prove everything stated,
except exercises and statements proved by routine calculations, using only
assumed standard background) and formulate a key result (Lemma 19.3)
without a proof.

Before giving a general definition, we observe that every matrix group we
have discussed so far is a Lie group. These objects can be quite complicated
both to describe properly and to work with effectively; one reason for this
is that the relevant operation, matrix multiplication, is non-commutative
and gives rise to a great deal of internal structure. In dealing with the
unipotent matrices Un, we were able to side-step this issue by using the
additive structure of the set Nn of nilpotent matrices, and the fact that the
two classes of matrices are naturally related.

This technique is in fact quite general; in the language we are about to
introduce, Un is the Lie group, and Nn is its associated Lie algebra. The
link between a Lie algebra and a Lie group is given by the exponential map
introduced in (18.6).

As described in the previous lecture, given an arbitrary n × n matrix
A (which may or may not be invertible), the matrix exponential takes the
matrices tA, t ∈ R, to a one-parameter subgroup of GL(n,R). That is,
it takes a one-dimensional subspace of the vector space M(n,R) to a one-
parameter subgroup of the group GL(n,R).

Remark. In fact, every continuous one-parameter subgroup ofGL(n,R)
is obtained in this manner. If ϕ : R → GL(n,R) is a homomorphism such
that limt→0 ϕ(t) = I, then one may show that A = ϕ′(0) exists, and that
ϕ(t) = etA. The requirement of continuity is exactly analogous to the fact
that an additive map from R to itself is linear (hence differentiable) as soon
as we require continuity at a single point.

What does the matrix exponential do to a two-dimensional subspace
of M(n,R)? Do we get a two-parameter subgroup of GL(n,R)? If the
subspace V is spanned by two commuting matrices A and B, then (18.9)
shows that we do in fact get a two-parameter subgroup, isomorphic to R2,
since etA+sB = etAesB. If A and B do not commute, however, (18.11) shows
that we should not expect eAeB to lie in the subset {etA+sB | t, s ∈ R} ⊂
GL(n,R); consequently, we should not expect the image of V under the
exponential map to be a subgroup of GL(n,R).

So some subspaces of M(n,R) exponentiate to subgroups of GL(n,R),
and others do not. How do we tell the difference? The presence of the
expression AB − BA in (18.11), and in the formula for [etA, esB ], suggests
that this expression should play a role in whatever criterion we examine.
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Indeed, this expression has intrinsic importance for the structure ofM(n,R),
which is not just a vector space, but an algebra—that is, a vector space on
which we have an associative multiplication that respects addition and scalar
multiplication. The expression AB − BA measures the degree to which A
and B fail to commute.

Definition 19.1. Given two matrices A,B ∈ M(n,R), the Lie bracket
of A and B is the matrix AB−BA, and is denoted [A,B]. A linear subspace
g ⊂M(n,R) is a linear Lie algebra if it is closed under the Lie bracket—that
is, [A,B] ∈ g for every A,B ∈ g.

Remark. Observe that g need not be closed under matrix multiplica-
tion, and hence is not an associative algebra (the sort described above), since
as one may readily verify, the Lie bracket is non-associative.

The following properties of the Lie bracket are established by straight-
forward calculations.

Proposition 19.2. The Lie bracket has the following properties:

(1) Bilinearity: [sA1 +A2, B] = s[A1, B] + [A2, B] and
[A, tB1 +B2] = t[A,B1] + [A,B2].

(2) Skew-symmetry: [A,B] = −[B,A].
(3) Jacobi identity: [[A,B], C] + [[B,C], A] + [[C,A], B] = 0.

We claim that closure under the Lie bracket is precisely the property a
linear subspace ofM(n,R) needs in order for its image under the exponential
map to be a subgroup of GL(n,R). To see this, one needs the following
lemma (which we do not prove):

Lemma 19.3. Given A,B ∈ M(n,R), there exists C ∈ M(n,R) such
that the following hold:

(1) eAeB = eC .
(2) C can be written as an absolutely converging infinite sum of matrices of

the form

(19.1) [· · · [[X1,X2],X3], · · · ,Xn],

where each Xi is either A or B.

The explicit expression for C is called the Campbell–Hausdorff formula;
the key consequence of this formula is that we can now prove the subgroup
property for the image of a Lie algebra under the exponential map.

Theorem 19.4. If g ⊂ M(n,R) is a Lie algebra, then eg is a subgroup
of GL(n,R).

Proof. Let A,B,C be as in Lemma 19.3. It follows from the second
part of the lemma that C ∈ g, since every term of the form (19.1) is in g.
Thus eAeB = eC ∈ eg, and so eg is closed under multiplication. Closure
under inverses is immediate; hence eg is a subgroup. �
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b. Lie groups. Theorem 19.4 gives a natural way of producing sub-
groups of GL(n,R), and it is very profitable to examine such subgroups in
terms of their corresponding Lie algebras. Before saying more about this,
we observe that GL(n,R) has more than just an algebraic structure; it has a
topological structure as well, in which convergence of a sequence of matrices
corresponds to convergence of all the sequences of entries. Thus we may
naturally consider subsets which are not only closed in the algebraic sense
(that is, subgroups), but in the topological sense as well. This brings us to
the central definition.

Definition 19.5. A linear Lie group is a (topologically) closed subgroup
of GL(n,R).

Under this definition, discrete subgroups qualify, but they are not really
what we are interested in (and they introduce a great deal of complexity
which we prefer not to deal with at the present time). Thus we will restrict
our attention to connected linear Lie groups.

Any one-dimensional subspace of M(n,R) is a Lie algebra, and so we
may repeat our earlier observation that every matrix A ∈M(n,R) generates
a one-parameter subgroup of GL(n,R), which comprises all the matrices etA.
However, this subgroup is not automatically a Lie group.

Example 19.6. Fix α ∈ R, and consider the matrix A = ( 0 α
−α 0 ) ∈

M(2,R). Observe that

eA = I +A+
1

2
A2 +

1

3!
A3 +

1

4!
A4 + · · ·

=

(
1 0
0 1

)
+

(
0 α
−α 0

)
+

1

2

(
−α2 0

0 −α2

)
+

1

3!

(
0 −α3

α3 0

)
+ · · ·

=

(
cosα − sinα
sinα cosα

)
.

Now consider the matrix

B =




0 1 0 0
−1 0 0 0

0 0 0 α
0 0 −α 0


 ;

a similar computation shows that

etB =




cos t − sin t 0 0
sin t cos t 0 0
0 0 cos tα − sin tα
0 0 sin tα cos tα


 .
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It is not difficult to show that the subgroup {etB | t ∈ R} is dense in the set
of all matrices of the form

etB =




cos t − sin t 0 0
sin t cos t 0 0
0 0 cos s − sin s
0 0 sin s cos s


 ,

where s, t ∈ R are arbitrary; consequently, this subgroup is not closed, and
hence is not a Lie group.

One may ask if every linear Lie group is of the form eg for some Lie
algebra g. It turns out that this is indeed the case. Letting G ⊂ GL(n,R) be
an arbitrary linear Lie group, we may consider the continuous one-parameter
subgroups of G; these correspond to continuous homomorphisms ϕ : R → G,
and as before, they are generated by the exponentials of the derivatives
ϕ′(0). Considering all matrices in M(n,R) obtained as ϕ′(0) for some one-
parameter subgroup, one may show that we have a Lie algebra g such that
G = eg. However, we do not give the details of the proof here.

Remark. For the benefit of the reader who has some familiarity with
differentiable manifolds, we observe that a Lie group is a differentiable man-
ifold, and continuous one-parameter subgroups correspond to certain curves
through I; in particular, the Lie algebra just described is nothing but the
tangent space to the manifold at I.

Remark. We have given the definitions of Lie groups and Lie algebras
in a very concrete way, in terms of matrices. One can also give an abstract
definition of both these objects, which does not mention matrices at all;
however, if the elements of the Lie algebra are merely abstract entities rather
than matrices, it is not a priori obvious how to define the exponential map.
In fact, there are certain topological issues that get in the way of a completely
clean correspondence.

Before turning our attention to specific examples, we remark that the
technique of studying a Lie group by examining its associated Lie algebra is
actually quite reminiscent of what we do in basic calculus, where we study
finite objects (functions, curves) using infinitesimal tools (their derivatives).
The finite objects are non-linear, while their infinitesimal counterparts are
linear, and hence easier to study. In the present case, the finite objects
are Lie groups (which are “non-linear” in an appropriate sense) and their
infinitesimal counterparts are Lie algebras (which are linear spaces).

c. Examples. All the matrix groups that we have studied are given
by nice equations, and so we quickly see that they are closed subgroups of
GL(n,R), hence Lie groups. For example, a limit of upper triangular matri-
ces is upper triangular; hence UT (n) is closed. Similarly for the unipotent
group Un, the Heisenberg group Hn, the special linear group SL(n,R), the
special orthogonal group SO(n), etc. For UT (n), Un, and Hn, the defining
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equations are very simple: each one takes the form Aij = 0, Aij = 1, or
Aij 6= 0, depending on the context and the values of i, j. For SO(n), there
are n(n + 1)/2 equations, each of which has only terms of quadratic order.
For SL(n,R), there is a single equation, detA = 1, which comprises terms
of order n when written in terms of the entries of A.

Remark. As an aside, we observe that SL(2,R) is a hyperboloid of
sorts in the four-dimensional vector space M(n,R). Indeed, the condition
for a matrix ( x1 x2

x3 x4
) to lie in SL(2,R) is that x1x4 − x2x3 = 1, which may

be rewritten

(x1 + x4)
2 − (x1 − x4)

2 − (x2 + x3)
2 + (x2 − x3)

2 = 4.

Given a Lie group G, we write L(G) for its associated Lie algebra. We
will compute L(G) for the above examples by examining the possible values
of ϕ′(0), where ϕ : R → G is a differentiable map with ϕ(0) = I.

Example 19.7. If ϕ(t) ∈ Dn for each t, then ϕ′(t) is diagonal as well;
thus L(Dn) is contained in the set of all diagonal n×n matrices. Conversely,
if A = diag(λ1, . . . , λn), then etA = diag(etλ1,...,tλn) ∈ Dn, and so L(Dn) is
equal to the set of all diagonal n × n matrices. Since all these matrices
commute, we see that the Lie bracket on this Lie algebra is trivial.

Example 19.8. Let G = Un be the Lie group of unipotent matrices.
Given a differentiable map ϕ : R → G with ϕ(0) = I, let ϕ(t)ij denote the
i, jth entry of ϕ(t). Since ϕ(t) is unipotent for all t, we have ϕ(t)ij = 0 for
all i > j and ϕ(t)ii = 1 for all t. In particular, ϕ′(0)ij = 0 for all i ≥ j,
hence ϕ′(t) is nilpotent and upper-triangular, and we have L(Un) ⊂ Nn.

Conversely, if N is any nilpotent matrix, then so is Nk for all k, and it
follows from (18.6) that eN ∈ Un. Thus L(Un) = Nn.

Example 19.9. Let G = SL(n,R) be the Lie group of matrices with
unit determinant. Given a differentiable map ϕ : R → G with ϕ(0) = I, we
observe that

(19.2)

0 =
d

dt
(detϕ(t))|t=0

=
d

dt

(
∑

σ∈Sn

sgnσ
n∏

i=1

ϕ(t)i,σ(i)

)∣∣∣
t=0

=
∑

σ∈Sn

sgnσ

n∑

j=1

ϕ′(0)
∏

i6=j

ϕ(0)

=

n∑

j=1

ϕ′(0) = Trϕ′(0),

where we write sgn σ = +1 for an even permutation σ ∈ Sn and sgnσ = −1
for an odd permutation. The last equality uses the fact that ϕ(0)ij = δij
since ϕ(0) = I, which implies that the only non-vanishing term comes when
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σ is the identity permutation. We see from (19.2) that L(G) is contained in
the space of matrices with zero trace, which we denote by sl(n,R).

Furthermore, given any traceless matrix A ∈ sl(n,R), we observe that
λ ∈ C is an eigenvalue of A if and only if eλ is an eigenvalue of eA (and
with the same multiplicity). Since the trace of a matrix is the sum of its
eigenvalues, and the determinant is their product, we immediately see that
det eA = eTrA, and in particular, det etA = 1 for all t ∈ R. This shows that
sl(n,R) = L(SL(n,R)).

Example 19.10. Let G = SO(n,R) be the Lie group of orthogonal
matrices with unit determinant. Given a differentiable map ϕ : R → G with
ϕ(0) = I, we observe that ϕ(t)ϕ(t)T = I for every t, and that entry-wise,
this may be written

∑n
k=1 ϕ(t)ikϕ(t)jk = δij for every i, j. Differentiating,

we obtain

(19.3)

n∑

k=1

ϕ′(0)ikϕ(0)jk + ϕ(0)ikϕ(0)jk = 0,

and once more using the fact that ϕ(0)jk = δjk, we see that there are only
two non-vanishing terms here, which yield

ϕ′(0)ij + ϕ′(0)ji = 0.

That is, ϕ′(0) lies in the space of skew-symmetric n× n matrices, which we
denote so(n,R). To see that L(SO(n,R)) = so(n,R), we observe that given
an arbitrary skew-symmetric matrix A ∈ so(n,R), we have A+AT = 0, and

since in general (eA)T = eA
T
, we get

(eA)(eA)T = eA+AT

= e0 = I,

using the fact that A and AT = −A commute. Thus eA ∈ SO(n,R) (the
fact that det eA = 1 follows from the fact that TrA = 0), and we are done.

Remark. Once again, we remark that the theory can be developed in
an abstract setting, without immediately restricting our attention to ma-
trix groups. A Lie group can be defined as a differentiable manifold with a
group structure whose operations are differentiable, and a Lie algebra can
be defined as a vector space endowed with a Lie bracket satisfying Proposi-
tion 19.2.

The question is, is the abstract setting really any more general? It
turns out that the answer is yes. . . but just barely. To see what happens,
observe that in going from sl(2,R) to SL(2,R), we have the relationship
exp( 0 2π

2π 0 ) = I. One can construct an abstract Lie group whose Lie algebra
is sl(2,R), but which is not SL(2,R), because the matrix given has a non-
trivial image under the exponential map. This has to do with the topology
of SL(2,R), in particular with the so-called fundamental group that happens
to be our next subject in these lectures.



CHAPTER 4

Fundamental group: A different kind of group

associated to geometric objects

Lecture 20. Wednesday, October 21

a. Isometries and homeomorphisms. By and large, we have been
considering groups that arise from geometric objects as collections of sym-
metries; now we turn our attention to a different class of groups, which opens
the door on the world of algebraic topology.

We begin by highlighting the distinction between geometry and topology
in the context of metric spaces. As with so many distinctions between
various closely related fields of mathematics, the distinction hinges on the
conditions under which we consider two metric spaces to be “the same” or
“equivalent”.

The natural equivalence relation in metric geometry is isometry. Recall
that two metric spaces (X, d) and (X ′, d′) are isometric if there exists an
isometric bijection between them—that is, a bijection f : X → X ′ such that
d′(f(x1), f(x2)) = d(x1, x2) for all x1, x2 ∈ X. For example, any two circles
in R2 with the same radius are isometric, regardless of their centre, while
the circles x2 + y2 = 1 and x2 + y2 = 4 are not isometric to each other, nor
to the square with vertices at (±1,±1), nor to the line x = 1.

Nevertheless, we feel that the two circles are in some sense more akin to
each other than they are to either the square or the line, and that the circles
and the square are somehow more akin than the circles and the line, or the
square and the line. One may make the first feeling precise by observing
that there is a similarity transformation f : R2 → R2 that takes the circle
of radius 1 to the circle of radius 2; indeed, any two circles are equivalent
up to a similarity transformation. Thus passing from metric geometry to
similarity geometry is a matter of weakening the conditions under which two
objects may be considered equivalent.

Weakening these conditions still further, we may consider allow even
more general maps f . Writing X for the square with vertices at (±1,±1) and
S1 for the unit circle, we may define a bijection f : X → S1 by f(x) = x/‖x‖,
where ‖(x, y)‖ =

√
x2 + y2. One may easily verify that given a sequence of

points xn ∈ X, we have xn → x0 on the square if and only if f(xn) → f(x0)
on the circle—that is, both f and f−1 are continuous. Such a map f is
called a homeomorphism, and is the natural equivalence relation between
topological spaces.

143
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Remark. In fact, a more general definition of continuity uses not con-
vergence of sequences (a local property), but open sets (a global property):
a map f : X → Y is continuous if f−1(U) is open in X whenever U is open
Y . If X and Y are metric spaces, this is equivalent to the definition in terms
of sequences. Using this language, a homeomorphism is a bijection such that
f(U) is open if and only if U is open.

A fundamental observation at this point is that given a metric space
(X, d), there are in general many different metrics one can place on X that
induce the same topology as d does—that is, there are many metrics d′ on
X such that d(xn, x0) → 0 if and only if d′(xn, x0) → 0. Thus when we
are interested in topological matters, the primary importance of a distance
function is not the geometric structure it induces (which is unique to that
particular metric), but rather the topological structure (which is held in
common by many equivalent metrics).

Exercise 20.1. Let X = Rn, and for every p ≥ 1 consider the function

(20.1) dp(x,y) = ((x1 − y1)
p + · · · + (xn − yn)

p)
1

p .

Shown that dp is a metric for every p ≥ 1 and that each of these metrics
defines the same topology on Rn (the standard one).

Exercise 20.2. Consider the following distance function in R2:

dL((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2| + 1 − δx2,y2.

Prove that dL defines a metric that is not equivalent to the standard one.

b. Tori and Z2. Now we consider the various sorts of tori we have
encountered so far. Visually, of course, the most natural way to view a
torus is as the surface of a bagel or doughnut embedded in R3. However,
we also refer to the quotient group R2/Z2 as a torus. Indeed, given any two
linearly independent vectors v and w in R2, we may consider the lattice
L = {av + bw | a, b ∈ Z2}, which is a normal subgroup of R2, and take the
quotient group R2/L; this is again a torus.

Another example is direct product of two circles ( or two closed curves) in
the plane that can be viewed as embedded into R4. One can also generalize
the doughnut example by rotating around the z axis not a circle but another
closed curve that may have no internal symmetries of putting a warp on the
surface.

Geometrically, these tori are quite different from each other.

• Writing X for the surface of the bagel, or more precisely, the set of
points (x, y, z) ∈ R3 such that

(20.2) (
√
x2 + y2 − 2)2 + z2 = 1,

observe that the only isometries of X are rotations around the z-
axis by an arbitrary angle, rotations around any axis through the
origin in the xy-plane by an angle of exactly π, and reflections
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in either the xy-plane or any plane that contains the z-axis. In
particular, Isom(X) only has one continuous degree of freedom.

• Tori obtained by rotating a non-symmetric closed curve have fewer
isometries in Isom R3 that the bagel; symmetry in the xy-plane is
lost. It turns out however that it is recovered when one considers
intrinsic metric on the torus.

• By putting a warp on the bagel’s surface one may destroy all isome-
tries.

• Since we have seen already that Isom(R2/Z2) (or Isom(R2/L)) con-
tains all translations, and hence has two continuous degrees of free-
dom, we conclude that the geometries of the two tori are quite
different from each other; in particular, the torus R2/Z2 is in some
sense more symmetric than the embedded torus X.

• There are also differences in the isometry groups Isom(R2/L) for
different lattices. Generically translations form a subgroup of index
two in the isometries of Isom(R2/L), the rest being rotations by π;
there are no orientation reserving isometries and fewer isometries
overall that for R2/Z2. But for the hexagonal lattice there are in a
sense more isometries that for the rectangular one, i.e. the index of
the translation subgroup in all isometries is higher: twelve rather
than eight.

• Interestingly the product of the two circles is isometric to R2/Z2

while the product of two other curves has only discrete groups of
isometries in Isom R4 intrinsically though it is isometric to R2/Z2.

All statements about isometry groups in this list may be considered as
useful exercises.

Despite the differences in their geometry, all these tori are homeomor-
phic: in the case of the bagel X the map f : R2/Z2 → X given by

(20.3) f((s, t) + Z2) = ((2 + cos 2πs) cos 2πt, (2 + cos 2πs) sin 2πt, sin 2πs)

can be easily verified to be a homeomorphism.

Exercise 20.3. Given a lattice L generated by vectors v and w, show
that L and Z2 are isomorphic subgroups of R2—that is, there exists a group
isomorphism (invertible additive map) f : R2 → R2 such that f(Z2) = L.
Conclude that the two tori R2/Z2 and R2/L are homeomorphic by using the
map f to exhibit a homeomorphism between them.

Exercise 20.3 shows that all the tori R2/L are homeomorphic; the key
tool in the exercise is the fact that the lattices L are all isomorphic to
Z2. This suggests that the group Z2 somehow plays an important role in
the topology of the torus—but how? We will spend the remainder of this
lecture and the next one making this notion clear.

Thus it looks as the group Z2 is somehow important to the structure of
the torus. This is obvious if we consider the torus T2 = R2/Z2 as a factor
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group and direct our attention to the original group R2, within which Z2

sits as the integer lattice {(a, b) | a, b ∈ Z}. However, this does not tell us
how Z2 is related to the intrinsic structure of the torus T2—after all, every
point in the integer lattice in R2 corresponds to the same point on the torus,
and a single point does not have terribly much internal structure!

Another way of stating the problem is to observe that if the algebraic
structure of Z2 characterises some aspect of the topological structure of
the torus, then we should be able to describe Z2 in terms of any torus
homeomorphic to R2/Z2. In particular, we want to produce Z2 in terms of
objects on the embedded torus X given in (20.2). But how do we do this?

c. Paths and loops. Thinking once more in terms of the factor space
R2/Z2, what we want is a description of the lattice points Z2 ⊂ R2 that
is able to distinguish between different points on the lattice even after we
pass to the quotient space R2/Z2. To this end, we consider not just lattice
points, but paths between lattice points, as in Figure 4.1.

Figure 4.1. Paths in the plane and loops on the torus.

Recall that a path in R2 is given by a continuous function γ : [0, 1] → R2;
such a path also defines a path on the factor torus by γ̃ : t 7→ γ(t) + Z2, and
on the embedded torus by γ̃(t) = f(γ(t)), where f is given by (20.3). Let p
be the point on the embedded torus that corresponds to the lattice points in
Z2 under the map f , and observe that if γ is a path between lattice points,
then γ̃ is a loop on the torus based at p—that is, it has the property that
γ̃(0) = γ̃(1) = p. Figure 4.1 shows three such paths, both as paths in R2

and loops on the torus.
Of course, there are many paths in R2 that connect a particular pair of

lattice points. For example, γ1 is only one possible path from 0 to x = (0, 1);
a more natural choice would be γ0(t) = (0, t), which goes between the points
along a straight line with uniform speed. These two paths are equivalent
in the sense that one can be continuously deformed into the other while
keeping the endpoints fixed—this visually obvious property is made precise
as follows. Define a map Γ: [0, 1] → [0, 1] by

(20.4) Γ(s, t) = (1 − s)γ0(t) + sγ1(t).

The map Γ has several important properties:

(1) Γ depends continuously on both s and t.
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(2) Γ(0, t) = γ0(t) and Γ(1, t) = γ1(t) for all t ∈ [0, 1].
(3) Γ(s, 0) = 0 and Γ(s, 1) = x for all s ∈ [0, 1].

The cross-sections Γ(s, ·) each define a path by γs(t) = Γ(s, t). The first
property above states that the paths γs are each continuous and that they
vary continuously with s. The second property states that the family of
paths γs connects γ0 and γ1—that is, it continuously deforms one into the
other. Finally, the third property states every path γs runs from 0 to x—
that is, the endpoints are held fixed even as the rest of the curve moves. We
say that γ0 and γ1 are homotopic relative to {0,x}.

The condition that the endpoints be held fixed is essential. Indeed, if
we remove this condition, then any two paths in R2 can be related by a
linear homotopy as in (20.4). but this homotopy does not project to the
torus as a family of closed paths. One may of course consider an interme-
diate condition: a homotopy between loops on the torus that does not fix
a point. While this condition (called free homotopy) makes perfect sense
geometrically, classes of free homotopic paths are not amenable to algebraic
manipulations, unlike the classes of paths homotopic relative to a point.

Given x ∈ Z2 and a path γ in R2 with γ(0) = 0 and γ(1) = x, let [γ]
denote the set of all paths in R2 that are homotopic to γ relative to {0,x}—
that is, the set of all paths that can be continuously deformed into γ without
moving their endpoints. Observe that [γ] comprises all paths that start at
0 and end at x, and that this gives a one-to-one correspondence between
lattice points Z2 and equivalence classes of paths starting at 0.

Thus we have associated the elements of the group Z2 to equivalence
classes of paths in R2; we will now see that these equivalence classes are still
distinguishable when we pass to the torus.

As remarked above, paths γ in R2 with endpoints in Z2 correspond to
loops γ̃ on the torus—paths with γ̃(0) = γ̃(1) = p. We can define equiva-
lence classes just as before: two loops γ̃0 and γ̃1 based at p are homotopic
relative to p if they can be deformed into each other via a continuous family
of continuous paths, each of which is also a loop based at p.

In R2, we were able to characterise [γ] as the set of all paths from 0 with
the same endpoint as γ; this no longer holds on the torus, since all lattice
points are identified with the point p. However, it is not the case that all
loops on the torus are homotopic—for example, γ̃1 and γ̃2 in Figure 4.1
cannot be continuously deformed into each other. So what characterises the
different homotopy classes?

Heuristically, the answer is as follows (for the torus at least). Let Z
denote the z-axis, and let C denote the circle in the xy-plane of radius 2
centred at the origin (the embedded torus in R3 is the set of all points
whose distance from C is exactly 1). Observe that γ̃1, which corresponds
to the path γ1 from 0 to (0, 1), wraps around C exactly once, and Z not at
all; similarly, γ̃2, which corresponds to the path γ2 from 0 to (1, 0), wraps
around Z exactly once, and C not at all. A slightly more careful look at
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Figure 4.1 shows that γ̃3, which corresponds to the path γ3 from 0 to (1, 2),
wraps around Z exactly once, and around C twice.

In general, if γ is a path from 0 to (a, b), then the corresponding curve γ̃
on the embedded torus wraps a times around Z and b times around C. Thus
we may think of (1, 0) and (0, 1), the generators of Z2, as representing the
two “holes” in the torus: if we think of the embedded torus as a hollowed-out
doughnut, then one hole (corresponding to (1, 0) and Z) is the “doughnut
hole” through the centre, and the other hole (corresponding to (0, 1) and C)
is the hollowed-out part (where the jelly would go, perhaps).

One thing is not yet clear. We wanted to give an intrinsic description
of the group Z2 in terms of the embedded torus; so far we have described
the elements of the group as loops on the torus (or rather, as equivalence
classes of loops), but have not specified a binary operation. There is a fairly
natural candidate, though, using which we can complete the construction,
and we do this in the next section.

d. The fundamental group. Consider now an arbitrary metric space
X, and fix a point p ∈ X (this will be our base point). Given any two paths
γ1, γ2 : [0, 1] → X with γ1(1) = γ2(0), we can define a concatenated path
γ1 ⋆ γ2 by

(20.5) (γ1 ⋆ γ2)(t) =

{
γ1(2t) 0 ≤ t ≤ 1/2,

γ2(2t− 1) 1/2 ≤ t ≤ 1.

That is, γ1 ⋆ γ2 is the path that follows first γ1 and then γ2, moving with
twice the speed of the original parametrisations so as to parametrise the
entire path by the interval [0, 1]. In particular, if γ1 and γ2 are loops from
p, then γ1 ⋆ γ2 is a loop from p as well.

We saw in the previous section that the key objects are not loops per se,
but equivalence classes of loops. Thus we formalise the discussion there as
follows.

Definition 20.1. Let γ0, γ1 : [0, 1] → X be continuous paths with γ0(0) =
γ1(0) = γ0(1) = γ1(1) = p. We say that γ0 and γ1 are homotopic relative to
p if there exists a continuous function Γ: [0, 1] × [0, 1] → X such that

(1) Γ(0, t) = γ0(t) and Γ(1, t) = γ1(t) for all 0 ≤ t ≤ 1.
(2) Γ(s, 0) = Γ(s, 1) = p for all 0 ≤ s ≤ 1.

In this case we write γ0 ∼ γ1. The set of all loops from p that are homotopic
to γ relative to p is called the homotopy class of γ, and is denoted [γ].

The binary operation of concatenation works not just on loops, but on
homotopy classes of loops: given loops γ and η, we define [γ] ⋆ [η] to be the
homotopy class [γ ⋆η]. We must check that this is well-defined, but once we
do so, we will finally have in our hands the fundamental object of algebraic
topology.

Definition 20.2. Given a metric space X and a point p ∈ X, the fun-
damental group of X with base point p is the collection of homotopy classes
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of loops based at p together with the binary operation of concatenation. We
denote this group by π1(X, p).

Of course, this terminology puts the cart before the horse. Right now
all we have is a set together with a binary operation (which may not even
be well-defined, for all we know). Why is this a group?

Proposition 20.3. The binary operation ⋆ is well-defined on π1(X, p)
and makes it into a group.

Proof. We first show that ⋆ is well-defined—that is, that γ1⋆η1 ∼ γ2⋆η2

whenever γ1 ∼ γ2 and η1 ∼ η2. An equivalent way of stating this condition is
that the equivalence class [γ ⋆η] is the same no matter which representatives
of [γ] and [η] we work with.

The proof of this is straightforward: if Γ and H are homotopies demon-
strating γ1 ∼ γ2 and η1 ∼ η2, respectively, we can concatenate them to
obtain a homotopy between γ1 ⋆ η1 and γ2 ⋆ η2. To wit, define a continuous
function G : [0, 1] × [0, 1] → X as follows:

G(s, t) =

{
Γ(s, 2t) 0 ≤ t ≤ 1/2,

H(s, 2t− 1) 1/2 ≤ t ≤ 1.

One may easily verify that G is the required homotopy. A visual represen-
tation of this procedure is shown in Figure 4.2(a), where the vertical lines
are level sets of the function G—that is, values of s and t which G sends to
the same point in X.

s

γ1 η1

γ2 η2

(a)

γ1 γ2 γ3

γ3γ2γ1

(b)

γ

γ e

(c)

γ γ−1

e

(d)

Figure 4.2. Homotopy equivalences that make π1(X) a group.

A similar representation is used in Figure 4.2(b)–(d), which essentially
contains all the remaining elements of the proof. Let us explain this claim.

Now that we know ⋆ is well-defined, we must show that it is associative.
As shown along the bottom edge of part (b) of the figure, (γ1 ⋆ γ2) ⋆ γ3

is the curve which traverses γ1 from t = 0 to t = 1/4, then γ2 from t =
1/4 to t = 1/2, and finally γ3 from t = 1/2 to t = 1. The top edge
represents γ1 ⋆ (γ2 ⋆γ3), for which the points traversed are the same, but the
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parametrisation is different. Using the piecewise linear homotopy

G(s, t) =





γ1((s + 1)t) 0 ≤ t ≤ s+1
4 ,

γ2(t− (s + 1)/4) s+1
4 ≤ t ≤ s+2

4 ,

γ3(1 − (s+ 1)t) s+2
4 ≤ t ≤ 1,

we see that [(γ1 ⋆ γ2) ⋆ γ3] = [γ1 ⋆ (γ2 ⋆ γ3)], and hence ⋆ is associative. Once
again, the lines in Figure 4.2(b) correspond to values of s and t which G
sends to the same place in X.

Observe that G does not change the geometry of the above paths at all—
indeed, it is nothing more than a reparametrisation! This is an important
special case of homotopy equivalence, and is also what we need in order
to satisfy the next group axiom, the existence of an identity element. The
natural candidate for the identity element in the fundamental group π1(X, p)
is the trivial loop e : [0, 1] → X, for which e(t) = p for all 0 ≤ t ≤ 1.
Concatenating any loop γ with e does not change its geometry, and the
simple piecewise linear reparametrisation shown in Figure 4.2(c) suffices to
show that [γ] ⋆ [e] = [γ ⋆ e] = [γ] for all loops γ, and similarly [e] ⋆ [γ] = [γ].

Reparametrisation is not enough to get us the final group axiom, the
existence of inverse elements. Indeed, as soon as a loop γ is non-trivial and
goes to points other than p, it cannot be a reparametrisation of the trivial
loop. Rather, a genuine homotopy is required; the key is that we consider
loops not just as geometric objects (the image γ([0, 1])), but also record the
“history” of movement along the path. Thus the inverse γ−1 ought to be
the loop which “undoes” γ, so we write γ−1(t) = γ(1 − t) to obtain a loop
that traverses the same curve as γ, but does so in the reverse direction.

To show that γ ⋆ γ−1 ∼ e, we use the homotopy shown in Figure 4.2(d),
which may be given the following explicit form:

G(s, t) =





γ(t) 0 ≤ t ≤ 1−s
2 ,

γ(1−s
2 ) = γ−1(1+s

2 ) 1−s
2 ≤ t ≤ 1+s

2 ,

γ−1(t) 1+s
2 ≤ t ≤ 1.

The path G(s, ·) follows γ as far as γ((1−s)/2), then stops and thinks about
things for a while, and finally retraces its steps to end where it began, at p.
As s goes from 0 to 1, the amount of γ that G(s, ·) traverses gets smaller
and smaller, until finally G(1, ·) is just the trivial loop e. This homotopy
establishes that [γ] ⋆ [γ−1] = [e], and hence π1(X, p) is indeed a group. �

We have successfully produced a group from the intrinsic topological
data of X. However, several questions remain. The definition involves an
arbitrarily chosen point p; what happens if we choose a different point p as
our base point? Do we get a different group? What does this group look like
for familiar examples, such as the circle, the sphere, the plane, the torus,
etc.? Part of our motivation was to recover the group Z2 from the intrinsic
properties of the torus—did it work? Or is π1(T2,p) something else?
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We will defer specific examples until the next lecture; for now we address
the first question, and consider the groups π1(X, p) and π1(X, q) for points
p 6= q ∈ X.

Definition 20.4. A metric space X is path-connected if for every p, q ∈
X there exists a continuous path γ : [0, 1] → X such that γ(0) = p and
γ(1) = q.

Proposition 20.5. If X is a path-connected metric space, then π1(X, p)
and π1(X, q) are isomorphic for any p, q ∈ X.

Proof. Given p, q ∈ X, let α : [0, 1] → X be a continuous path such
that α(0) = p and α(1) = q. Define a map ϕ : π1(X, p) → π1(X, q) by
ϕ([γ]) = [α−1 ⋆ γ ⋆ α]. The proof that ϕ is well-defined exactly mirrors the
proof for ⋆ in Proposition 20.3. Furthermore, ϕ is a homomorphism, since

ϕ([γ] ⋆ [η]) = [α−1 ⋆ γ ⋆ η ⋆ α]

= [α−1 ⋆ γ ⋆ α ⋆ α−1 ⋆ η ⋆ α]

= ϕ([γ]) ⋆ ϕ([η]),

where the second equality uses the fact that α ⋆ α−1 ∼ ep, and that α−1 ⋆
γ ⋆ ep ⋆ η ⋆ α is a reparametrisation of α−1 ⋆ γ ⋆ η ⋆ α.

Now we observe that ϕ is onto, since ϕ−1 can be defined by [ζ] 7→
[α ⋆ ζ ⋆ α−1] for every [ζ] ∈ π1(X, q). Furthermore, ϕ([γ]) = [eq] implies
γ ∼ α ⋆ eq ⋆ α

−1 ∼ ep, and so ϕ is one-to-one. It follows that ϕ is an
isomorphism. �

As a consequence of Proposition 20.5, we can (and will) speak of the
fundamental group of X, and write π1(X), without explicitly mentioning
the base point, since changing the base point merely yields an isomorphic
group.

e. Algebraic topology. In algebraic topology one associates to vari-
ous kinds of topological spaces algebraic objects, usually groups, moduli or
rings. The fundamental group we just described is a premiere and arguably
most geometrically transparent example of such an association. Two leading
principle of algebraic topology are invariance and functoriality. The former
requires that equivalent spaces are associated with isomorphic objects and
that the association is independent of auxiliary elements involved in the
construction of an algebraic object. We already have an example in the
case of fundamental group of a path connected space: construction does not
depend on the base point used and homeomorphic spaces have isomorphic
fundamental groups. Functoriality in its simplest form requires that con-
tinuos maps between spaces “naturally” induce homomorphisms between
associated algebraic object; the direction of this homomorphism may be the
same as for the map (covariant constructions) or the opposite (contravari-
ant constructions). The fundamental groups is an example of the former.
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Furthermore this homomorphisms should behave properly under the com-
position of maps.

Proposition 20.6. Let f : X → Y be a continuous map and p ∈ X.
Then for [γ] ∈ π1(X, p) the path γ◦f : [0, 1] → Y defines an element f∗([γ]) ∈
π1(Y, f(p)) and f: ∗ π1(X, p) → π1(Y, f(p)) is a group homomorphism.
If g : Y → Z then (gf)∗ = g∗f∗.

Proof. Since composition of a path homotopy in X with a continuous
map is a path homotopy in Y the map f∗ is correctly defined. Concatenation
of paths goes into concatenation of their images, hence the map f∗ is a
homomorphism. The last statement is obvious since it is true already at the
level of paths. �
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Lecture 21. Friday, October 23

a. Homotopic maps, contractible spaces and homotopy equiv-
alence. The notion of homotopy from the previous lecture can be applied
not just to paths, but to any continuous maps. Given two metric spaces X
and Y , we say that two continuous maps f, g : X → Y are homotopic if there
exists a continuous function Γ: [0, 1]×X → Y such that Γ(0, x) = f(x) and
Γ(1, x) = g(x) for all x ∈ X. Heuristically, this means that the functions
Γ(s, ·) : X → Y are a continuous one-parameter family of continuous maps
that deform f into g.

This is the notion of absolute homotopy; observe that we place no re-
strictions on the functions Γ(s, ·), in contrast to the previous lecture, where
we required each of the paths Γ(s, ·) to have endpoints at a fixed base point.
Even though we later showed that the isomorphism class of the fundamental
group is independent of the choice of base point, this base point still plays
a prominent role in the definitions. This is emblematic of many topological
constructions: in order to define a very general object, one must use def-
initions which in and of themselves depend on an arbitrary choice, but in
the end the objects so defined are independent of which particular choice is
made.

For the fundamental group, the “particular choice” is a choice of base
point, which appears in the definitions via the notion of relative homotopy.
Given two continuous maps f, g : X → Y and a subset A ⊂ X, we say that
f and g are homotopic relative to A if there exists a continuous homotopy
Γ: [0, 1] × X → Y with the properties above, along with the additional
property that Γ(s, x) = f(x) = g(x) for all s ∈ [0, 1] and x ∈ A. Thus
relative homotopy is a matter of continuously deforming the map f into
the map g, while keeping the action of the map Γ(s, ·) on the set A fixed;
in the previous lecture, we used homotopy relative to the set of endpoints
A = {0, 1}.

Once we have a definition of homotopy for maps, it is natural to ask
what the possible homotopy classes of maps from X to Y are. For example,
if X = Y = S1, then it is intuitively clear that the homotopy class of
f : S1 → S1 is the set of all maps that “wind around the circle the same
number of times as f does”. We will make this precise shortly.

In the meantime, we note that given any metric space X, there are two
natural maps from X to itself. One is the identity map, Id : x→ x, and the
other is the trivial (or constant) map ep : x→ p, where p is some arbitrarily
chosen point in X. Thus Id fixes every point in X, while ep collapses all
of X to a single point. We say that X is contractible to the point p if
these two maps are homotopic—that is, if there exists a continuous map
Γ: [0, 1] ×X → X such that Γ(0, x) = x and Γ(1, x) = p for all x ∈ X.

Proposition 21.1. Given any two points p, q ∈ X, X is contractible to
p if and only if X is contractible to q.
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Proof. First notice that if X is contractible to a point p it is path
connected, since for any q ∈ X the homotopy Γ(t, q) is a path connecting
q with p. Combining the contraction to p with this path in the opposite
direction, i.e. Γ(1 − t, q), gives a contraction of X to q. �

Thanks to Proposition 21.1, we may simply refer to X as being con-
tractible without mentioning which point it is contractible to, since if it
contractible to one point it is contractible to any point. This is another
example of a general property that must be defined with reference to an
arbitrarily chosen object, whose precise choice turns out not to matter.

Example 21.2. Rn is contractible: consider the homotopy Γ(s,x) =
(1 − s)x. We have Γ(0, ·) = Id and Γ(1, ·) = e0. Similarly, any open or
closed ball in Rn is contractible: given p ∈ Rn and r > 0, the identity map
on the closed ball X = {x ∈ Rn | d(p,x) ≤ r} can be homotoped to the
trivial map by

(21.1) Γ(s,p + x) = (1 − s)x + p.

In fact, this gives a broad class of contractible spaces: we say that X ⊂ Rn

is convex from a point (or star-shaped) if there exists p ∈ X such that the
line segment from p to x is contained in X for every x ∈ X. If X is convex
from the point p, then (21.1) gives a homotopy between IdX and ep.

Remark. The fact that open balls are contractible emphasises the fact
that for nice spaces that look locally as Euclidean spaces (such spaces are
called manifolds) at a local level, everything is homotopic, and that homo-
topy is really a global theory, which captures large-scale properties of spaces
and maps.

Definition 21.3. Recall that a graph is a finite or countable collection
of vertices (which we may think of as lying in Rn) together with a collection
of edges joining certain pairs of vertices. A cycle is a collection of edges that
forms a closed loop, and a graph without cycles is a tree.

Proposition 21.4. Every finite tree is contractible.

Proof. Let us use induction in the number of edges. The tree with zero
edges is a point and hence contractible. Now let T be a tree with n edges.
Removing an edge e makes the rest of the tree disconnected since otherwise
the endpoints of e could be connected in T \ e and adding e one would get
a cycle. Thus T with the interior of e removed is the union of two disjoint
trees, each having fewer that n edges. By inductive hypothesis each of the
two parts can be contracted to the corresponding endpoint of the removed
edge. Combining these contractions with contraction of the edge to, say, its
midpoint, completes the argument. �

As it turns out, countable trees are also contractible. This will be proven
later in the course of our studies of certain graphs as geometric objects
related to certain groups.
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Example 21.5. Let X = R2 \ {0}; then as we will shortly see, X is not
contractible.

We have observed that homeomorphic spaces have the same fundamen-
tal group; however, there is a weaker condition under which two spaces must
have the same fundamental group. The condition that X and Y be homeo-
morphic may be stated as the existence of maps f : X → Y and g : Y → X
such that f ·g = IdY and g ·f = IdX . Since the fundamental group is stated
not in terms of paths but rather of homotopy classes of paths, it makes sense
to weaken these equalities to homotopic equivalences.

Definition 21.6. Two metric spaces X and Y are homotopic (or ho-
motopy equivalent) if there exist maps f : X → Y and g : Y → X such that
f · g ∼ IdY and g · f ∼ IdX .

Example 21.7. Any contractible space is homotopic to a point; to see
this, let X be contractible, fix a point p ∈ X, and let Y = {p}. Then
defining f : X → {p} by ep : x → p and g : {p} → X as the inclusion map
g(p) = p, we see that f : g = IdY and g : f = ep ∼ IdX , where the last
statement follows from the definition of contractibility.

Example 21.8. Writing S1 for the circle {x ∈ R2 | ‖x‖ = 1}, we see
that the punctured plane R2 \ {0} is homotopic to S1. Indeed, we may let
f : R2\{0} → S1 be the radial projection f(x) = x/‖x‖ and g : S1 → R2\{0}
be the inclusion map g(x) = x: then f ◦ g = IdS1, and g ◦ f is homotopic to
IdR2\{0} via the linear homotopy

Γ(s,x) = sx + (1 − s)
x

‖x‖ .

Similarly, one may show that both the Möbius strip and the cylinder are
homotopic to the circle, and hence to each other (since homotopy is an
equivalence relation), although they have the same dimension but not home-
omorphic

Fundamental group that is an invariant of homeomorphism between
spaces by construction in fact possesses a stronger invariance property.

Proposition 21.9. Show that if X and Y are homotopically equivalent,
then π1(X) and π1(Y ) are isomorphic.

Proof. By Proposition 20.6 one simply needs to check that (g · f)∗ is
an isomorphism between π1(X, p) and π1(X, g(f(p)). This is very similar
to the argument in the proof of Proposition 20.5. Let Γ be the homotopy
between Id and g · f and α(t) = Γ(t, p). Let us associates to a path γ at
p the path α−1 ⋆ γ ⋆ α at g(f(p)). Γ establishes homotopy between these
two paths. Reversing the direction of Γ one gets homotopy in the opposite
direction. �
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b. The fundamental group of the circle. We now describe the ho-
motopy classes of maps from S1 to itself, which also lets us compute its
fundamental group π1(S

1). We need to formalise the notion of a map
f : S1 → S1 as “wrapping the circle around itself”. To do this, we re-
call that the circle S1 can also be obtained (algebraically and topologically,
if not geometrically) as the factor space R/Z. Thus any continuous map
F : R → R projects a map f : R/Z → R/Z provided it is well-defined—that
is, provided F (x) − F (y) ∈ Z whenever x − y ∈ Z. Furthermore, for any
such map, the quantity F (x+ 1) − F (x) varies continuously in x and takes
integer values, and hence is independent of x; it is called the degree of the
map f and denoted by deg f . We may think of the degree as the number of
times f wraps the circle around itself.

Does it go in the other direction? Do we get every map of the circle this
way? That is, given a continuous map f : R/Z → R/Z, can we produce a
continuous map F : R → R such that the following diagram commutes?

(21.2)

R F−−−−→ R
yπ

yπ

R/Z
f−−−−→ R/Z

Here π : R → R/Z is the natural projection π(x) = x+ Z.
It turns out that such a map F does indeed exist; we call this the lift of

f . To produce F , we begin by specifying F (0) as any element of f(0 + Z).
Once this is done, the requirement that F be continuous specifies it uniquely;
fixing a small ε > 0 and considering any y ∈ (−ε, ε), we must choose F (y)
to be the element of f(y + Z) that lies nearest to F (0). Continuing in this
manner, we can define F on (−2ε, 2ε), (−3ε, 3ε), and so on.

Given a lift F : R → R, we see that F (1)−F (0) is the degree of f defined
above. Observe that since x 7→ F (x+ 1) − F (x) is continuous and integer-
valued, we must have F (x+1)−F (x) = F (1)−F (0) for all x ∈ R, and thus
the choice of 0 to determine the degree is (once again) irrelevant, although
some choice was necessary.

Proposition 21.10. If f : S1 → S1 and g : S1 → S1 are homotopic,
then deg f = deg g.

Proof. If f and g are homotopic, then their lifts F andG are homotopic
as well. Let Γ be this homotopy, and observe that Γ(s, ·) : S1 → S1 varies
continuously in s, so Γ(s, 1) − Γ(s, 0) varies continuously in s as well. Since
it takes integer values, it must be constant. �

We can easily define a circle map with any given degree: for any n ∈ Z,
let En : S1 → S1 be the linear map En(x+ Z) = nx+ Z—that is, En is the
projection of the map x 7→ nx from the real line onto the circle. In fact,
from the point of view of homotopy, these maps are all there is.

Proposition 21.11. Every circle map of degree n is homotopic to En.
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Proof. Let f : S1 → S1 have degree n, and let F : R → R be its lift to
the real line. Consider the linear homotopy

(21.3) Γ(s, x) = (1 − s)F (x) + snx,

and observe that Γ(0, x) = F (x) and Γ(1, x) = nx. Furthermore, we have

Γ(s, x+ 1) = (1 − s)F (x+ 1) + sn(x+ 1)

= (1 − s)(F (x) + n) + snx+ sn

= Γ(s, x) + n,

and so Γ(s, ·) : R → R projects to a well-defined continuous map γ(s, ·) : R/Z →
R/Z. Since γ(0, x+ Z) = f(x+ Z) and γ(1, x+ Z) = nx+ Z, we see that γ
is the desired homotopy. �

Corollary 21.12. The fundamental group of the circle is π1(S
1) =

{[En]} ∼= Z, where the group operation is [En] ⋆ [Em] = [En+m].

Proof. A loop in X with base point p can be written as a continuous
map S1 = R/Z → X which maps 0 + Z to p. Taking p = 0 + Z ∈ S1, we see
that En has this property as well, and so any loop in S1 of degree n with base
point 0 + Z is homotopic to En via the homotopy coming from (21.3). �

Remark. In the end, this result is purely topological, and applies to any
space homotopic to the circle—a punctured plane, a Möbius strip, a cylinder,
etc. However, in order to prove it, we found it beneficial to consider a very
particular representative from this homotopy class—namely, the factor circle
R/Z, which carries an extra algebraic structure that was essential in the
proof.

c. Direct products, spheres, and bouquets of circles. Upon ob-
serving that the torus R2/Z2 is the direct product of two copies of S1, we
can finally complete our description of the fundamental group of the torus,
using the following result.

Theorem 21.13. Let X and Y be path-connected metric spaces. Then
π1(X × Y ) ∼= π1(X) × π1(Y ).

Proof. Fix base points x0 ∈ X and y0 ∈ Y , and let PX : (x, y) 7→ x
and PY : (x, y) 7→ y be the natural projections from X × Y to X and Y ,
respectively.

Now if γX and γY are loops in X and Y with base points x0 and y0,
then they determine a unique loop in X × Y with base point (x0, y0) by

(21.4) γ(t) = (γX(t), γY (t)).

Conversely, every loop γ in X × Y based at (x0, y0) determines loops in X
and Y based at x0 and y0 by the projections PX(γ) and PY (γ). This map
also works for homotopies, so it defines a map π1(X × Y ) → π1(X) × π(Y );
similarly, the map (21.4) defines a map π1(X)×π1(Y ) → π1(X×Y ). Writing
down definitions in a straightforward way one sees that these maps are
homomorphisms and are inverses of each other, which proves the result. �
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Corollary 21.14. The n-dimensional torus Rn/Zn has fundamental
group Zn.

Corollary 21.14 is a concrete example of an important general scheme:
many interesting spaces are obtained as X/G, where X is a topological
space and G is a group acting on X. We will see in the next lecture that for
“simple” enough X, and a “nice” action of G one can obtain π1(X/G) = G.

Definition 21.15. If π1(X) is trivial, we say that X is simply connected.

Obviously, every contractible space is simply connected. The converse
fails, however: being contractible is a stronger property than being simply
connected. A simplest but fundamental example is provided by the spheres.
To see this, consider the sphere S2. The sphere is not contractible (this
looks clear intuitively but requires a proof that will be given later), but has
trivial fundamental group.

Proposition 21.16. The sphere S2 is simply connected.

Proof. We observe that if x is any point on the sphere, then S2 \{x} is
homeomorphic to R2 via stereographic projection. Since R2 is contractible,
any curve on R2 is homotopic to a point, and in particular, any loop γ : S1 →
S2 which misses a point (that is, γ(S1) 6= S2) can be homotoped to a point
by using stereographic projection from a point x ∈ S2 \ γ(S1).

However, one must deal with the fact that there are continuous and
surjective functions γ : S1 → S2—these so-called Peano curves cannot be
immediately dealt with in the above fashion. They turn out not to cause
too much trouble, as any curve γ is homotopic to a piecewise smooth ap-
proximation. In the plane, this can be seen by letting γ : [0, 1] → R2 be
any curve and considering the piecewise linear approximations γn that are
defined by the property γn(k/n) = γ(k/n) for integers 0 ≤ k ≤ n, and are
linear in between these points. We have γn ∼ γ, and a similar construction
works on the sphere, replacing line segments with arcs of great circles. Since
the curves γn cannot cover the entire sphere (being piecewise smooth), this
suffices to show that π1(S

2) = {e}. �

This argument extends straightforwardly to higher dimensions: for n ≥ 2

π1(S
n) = {e}.

a b

(a) (b)

Figure 4.3. Bouquets of circles.
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A more complicated example is given by the “bouquets” of n circles
shown in Figure 4.3. When n = 2, we get the figure-eight shape shown in
Figure 4.3(a); part (b) of the diagram shows the case n = 5. What is the
fundamental group of these spaces?

The case n = 1 is just the circle S1, where the key to deciphering the
fundamental group was to classify curves in terms of how often they looped
around the circle. Thus we expect a similar classification to be important
here, and indeed, given a loop γ, we may profitably ask what the degree of
γ is on each “leaf” of the bouquet (to mix our metaphors a little). However,
we soon find that this is not quite sufficient for a complete understanding.
Labeling the leaves of the figure-eight as shown in Figure 4.3(a), we write a
for the loop that goes around the left-hand leaf in the clockwise direction,
and a−1 for the loop that goes around it counter-clockwise, and similarly
for b and b−1. Then the loop γ = a ⋆ b ⋆ a ⋆ b−1 has degree 0 around both
leaves, but is not homotopic to the identity.

This indicates that the fundamental group in this case is more compli-
cated; in particular, it is non-abelian. We will return to this example in
the next lecture, where we will once again be able to “lift” loops from the
figure-eight to a certain covering space, just as we lifted loops from the circle
to the real line. However, it is not immediately obvious what this covering
space of the figure-eight should be, and so we will first need to see what
happens when we “unfold” this picture.
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Lecture 22. Monday, October 26

a. Fundamental groups of bouquets of circles. Let Bn(S
1) denote

the bouquet of n circles shown in Figure 4.3; we will focus our attention on
the case n = 2, as the situation for larger values of n is analogous.

What is the fundamental group of the “figure eight” shape B2(S
1)? So

far, we have used three different techniques to compute the fundamental
group of a space X:

(1) Show that π1(X) is trivial by showing that any loop can be contracted
to a point.

(2) In the case X = S1, use the fact that we can lift loops to paths in R to
define the degree of a loop, and show that this defines an isomorphism
between π1(S

1) and Z.
(3) Show thatX is homotopic to a space whose fundamental group is known,

or obtain X as the direct product of such spaces.

For the figure eight X = B2(S
1), the first and the third methods are

useless, and so we must look more closely at the second. As we did for the
circle, we want to exhibit a standard family of loops in B2(S

1) that carries
a clear group structure, and which is universal in the sense that every loop
in B2(S

1) is homotopic to something from this family.
The first step in obtaining this family for the circle was to use the fact

that the circle is a factor space R/Z, and that loops on the circle can be
lifted to paths in R. The standard projection π : R → S1 = R/Z can be
written in a number of different forms.

(1) If we think of the circle as the interval [0, 1), where the missing endpoint
1 is identified with 0, then π(x) = x (mod 1).

(2) If we think of the circle as the factor space R/Z, so that points on the
circle are equivalence classes in R, then π(x) = x+ Z.

(3) If we think of the circle as the unit circle in C, then π(x) = e2πix.

Whichever model of the circle we use, the key property of the projection π
is that it is a local homeomorphism—that is, for every x ∈ R there exists a
neighbourhood U ∋ x such that π : U → π(U) ⊂ S1 is a homeomorphism. In
particular, if V ⊂ S1 is any sufficiently small neighbourhood, the preimage
π−1(V ) ⊂ R is a disjoint union of open sets, each of which is homeomorphic
to V via the action of π.

In the language of topology, we say that π is a covering map, and R is a
covering space; in fact, it is what is called the universal covering space. We
will postpone general definitions of these concepts, and focus instead on the
techniques involved.

Example 22.1. The natural projection S2 → RP (2) that takes x to
{x,−x} is also a local homeomorphism (and indeed, a covering map). In
this case, however, each point has only two preimages, rather than countably
many, as is the case for the circle.
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Figure 4.4. Unwinding the circle and the figure-eight.

One visualisation of the covering map π is shown in Figure 4.4(a). Topo-
logically, the helix {(cos t, sin t, t) | t ∈ R} is equivalent to the real line, and
the projection (x, y, z) 7→ (x, y) is a local homeomorphism from the helix to
the circle.

If we unwind just one of the (topological) circles in B2(S
1), say a, then

we obtain the space X shown in Figure 4.4(b); the circle labeled by a un-
winds into a copy of R, just as S1 did, but now the resulting line has a
circle corresponding to b attached to every integer value. There is a natural
projection from X back down to B2(S

1); however, in the end X is not quite
the space we were after. Recall that one of the key tools in our analysis of
π1(S

1) was the fact that the homotopy type of a loop in S1 only depended
on the endpoints of its lift to a path in R. In particular, this required every
loop in R to be homotopic to the trivial loop; in other words, it was essential
that R be simply connected. The space X is not simply connected, and so
we will run into difficulties if we try to study π1(B2(S

1)) using X.
Thus to obtain the proper covering space for B2(S

1), we must unwind
X still further until we have something simply connected. The space we
get is to be locally homeomorphic to B2(S

1)—that is, every point must
either have a neighbourhood that is a segment of a path or be a vertex from
which four paths emanate. This means that the space we are looking for
is a graph in which every vertex has degree 4. Furthermore, in order to be
simply connected, it cannot have any loops, and hence must be a tree.

This is enough to describe the space completely—see Figure 4.5. Let p
be the point at which that two circles in B2(S

1) intersect. We construct the
universal covering space, which we call Γ4, and the covering map π : Γ4 →
B2(S

1) by beginning with a single preimage x of the point p, which is the
centre of the cross in Figure 4.5(a). There are four edges emanating from
x, which correspond to the paths a, b, a−1, b−1; at the other end of each of
these edges is another preimage of p, distinct from the first one.

Consider the point y ∈ Γ4 shown in Figure 4.5(b); this point is the
preimage of p lying at the other end of the edge labeled a. The loop a in
B2(S

1) corresponds to following this edge from x to y; following the edge
in the reverse direction, from y to x, corresponds to the loop a−1. There
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x b

a
b−1

a−1

(a)

y b

b−1
a

a a−1

(b) (c)

Figure 4.5. An infinite tree of homogeneous degree 4.

must be three other edges emanating from y, and they are labeled a, b, b−1,
as shown.

Similarly, each of the other three vertices we constructed at the first
step must be the source of three more edges; once these are all drawn, we
have five vertices of degree 4 and twelve vertices of degree 1. Each of these
twelve vertices must likewise be the source of three further edges, so that
it has one edge corresponding to each of the four labels a, b, a−1, b−1; this
process continues ad infinitum. Thus Γ4 is an infinite tree of the sort shown
in Figure 4.5(c); observe that at every step, the vertices we add are disjoint
from those that came before and from each other, since otherwise we would
produce a loop.

Remark. The lengths of the edges of Γ4 are irrelevant for topological
questions, which is what we are interested in. However, the geometric nature
of Figure 4.5 is worth noting. Edges further away from x are drawn to be
shorter; in particular, if we let n(z) denote the minimum number of edges
we must move along to reach x from a vertex z, then the edges emanating
from z are drawn with length 2−(n(z)+1). This lets us embed Γ4 in the unit
disc, and results in a fractal-like pattern near the edges of the disc that is
reminiscent of some of M.C. Escher’s artwork. Recalling that these drawings
are based on the unit disc model of the hyperbolic plane, we may suspect
that there is some connection between Γ4 and hyperbolic geometry. This is
indeed the case, although we shall not pursue the connections at the present
time.

The projection map π : Γ4 → B2(S
1) is defined in the obvious way:

every vertex of Γ4 is mapped to p, and every edge is mapped to the loop
corresponding to its label. In particular, the restriction of π to any small
neighbourhood U ⊂ Γ4 is a homeomorphism between U and its image. This
is the key to the following result, which says that we can lift paths from
B2(S

1) to Γ4.
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Proposition 22.2. Let γ : [0, 1] → B2(S
1) be a continuous path such

that γ(0) = γ(1) = p. Then there exists a unique continuous path γ̃ : [0, 1] →
Γ4 such that γ̃(0) = x and π ◦ γ̃ = γ.

Proof. The idea is this: because π is a local homeomorphism, there ex-
ists a neighbourhood V ∋ p = γ(0) such that if we write U for the connected
component of γ−1(V ) containing x, then π : U → V is a homeomorphism.
Write ϕ : V → U for the inverse of this homeomorphism; then taking ε > 0
such that γ(t) ∈ V for all t ∈ (0, ε), the unique path γ̃ satisfying π ◦ γ̃ = γ
on (0, ε) is γ̃ = ϕ ◦ γ. Repeating this construction and using compactness
of the unit interval, one obtains the result.

To make this a little more precise, let r > 0 be such that every ball of
radius r in B2(S

1) is simply connected. For example, if the two (topological)
circles in Figure 4.3 each have diameter 1, then any r < 1/2 will suffice,
as a ball of radius r in B2(S

1) is not big enough to contain a complete
loop. Now since γ : [0, 1] → B2(S

1) is continuous and [0, 1] is compact, γ
is uniformly continuous, so there exists ε > 0 such that d(γ(s), γ(t)) < r
whenever |s− t| < ε.

Now for every t ∈ [0, 1], we may write B(γ(t), r) for the ball of radius r
centred at γ(t) in B2(S

1), and we observe that if U is a connected compo-
nent of π−1(B(γ(t), r)), then π|U is a homeomorphism from U to B(γ(t), r).
Given ε as above, we see that once γ̃(t) is chosen, the connected component
is fixed, and so there exists a unique lift of γ to γ̃ on (t− ε, t+ ε).

Thus we start with γ̃(0) = x, and observe that this determines a unique
γ̃ on [0, ε). Applying the above argument to t = ε/2, we get a unique γ̃
on [0, 3ε/2); applying it to t = ε, we get [0, 2ε), and so on. Within a finite
number of steps, we have determined γ̃ uniquely on [0, 1]. �

In fact, the above argument lets us lift more than just paths. We can also
lift homotopies, which gives a direct link between π1(B2(S

1)) and π1(Γ4).

Proposition 22.3 (Principle of covering homotopy). If γ0, γ1 : [0, 1] →
B2(S

1) are continuous loops based at p and Γ: [0, 1] × [0, 1] → B2(S
1) is a

homotopy from γ0 to γ1, then there exists a unique lift of Γ to a homotopy
from γ̃0 to γ̃1, the lifts guaranteed by Proposition 22.2. Furthermore, the
lifted homotopy is a homotopy relative to endpoints.

Proof. Apply Proposition 22.2 to Γ(s, ·) for each 0 ≤ s ≤ 1. We can
(indeed, must) hold the endpoints fixed because the set of preimages of the
base point is discrete. �

In order to describe the homotopy classes of loops in B2(S
1), we need

to give a list of standard representatives, along with a complete homotopy
invariant that identifies which element from the list corresponds to a given
loop. For the circle S1, the homotopy invariant was the degree of a loop,
which tracked how many times the loop went around the circle; upon being
lifted to R, this became the total displacement of the lifted path.
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For the torus T2, the homotopy invariant was a pair of integers speci-
fying the degrees of the projections of the lifted path; this integer pair cor-
responded to the second endpoint of the lifted path on the integer lattice,
which was the lift of the base point.

For the figure eight B2(S
1), we may likewise expect that the homotopy

invariant will be the second endpoint of the lifted path on the preimage of the
base point under the projection map π. This preimage is the set of vertices
of Γ4, and every such vertex may be specified by the sequence of edges we
follow to reach it from the “centre” of Γ4. To see this, we first consider a
finite sequence of symbols from the set {a, a−1, b, b−1}—such a sequence is
called a word. If a word w has the property that the symbols a and a−1

never appear next to each other, and similarly for b and b−1, then w is
called a reduced word. Any word can be transformed into a reduced word by
repeatedly cancelling all adjacent pairs of inverses. For brevity of notation,
we abbreviate aa as a2, aaa as a3, and so on; thus aaab−1aba−1a−1bbb may
be written a3b−1aba−2b3.

Now labeling the edges of Γ4 with the symbols a, a−1, b, b−1 (see Fig-
ure 4.5), we associate to each reduced word w the following path in Γ4.
Beginning at the centre x, follow the edge corresponding to the first symbol
in w; once the second vertex of this edge is reached, follow the edge cor-
responding to the second symbol in w, and so on. Observe that because
w never contains a symbol followed by its inverse, we will never backtrack.
Parametrising this path with uniform speed, one associates to each reduced
word a standard path in Γ4.

This exhibits a one-to-one correspondence between reduced words and
standard paths; there is also a one-to-one correspondence between standard
paths and vertices in Γ4. By Proposition 22.3, any two homotopic loops
in B2(S

1) lift to paths in Γ4 that are homotopic relative to endpoints. In
particular, they correspond to the same reduced word.

Write F2 for the set of all reduced words in the symbols a, b, a−1, b−1.
We have now shown that the process of lifting loops in B2(S

1) to paths in
Γ4 gives a map ψ : π1(B2(S

1)) → F2. The previous paragraph shows that ψ
is well-defined, and it is obvious that ψ is surjective.

Furthermore, ψ is one-to-one. To see this, we must show that any two
loops in B2(S

1) that lift to paths with the same endpoint in Γ4 are actually
homotopic.

Lemma 22.4. Every loop based at p in B2(S
1) is homotopic to one of

the standard loops described above.

Proof. As in the proof of Proposition 22.2, let r > 0 be such that every
ball of radius r in B2(S

1) is contractible. Given a loop γ based at p, let ε > 0
be such that γ((t−ε, t+ε)) is contained in such a ball for every ε > 0. (This
uses uniform continuity of γ.)
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Now consider the set E = {t ∈ [0, 1] | γ(t) = p}, which contains all
parameter values t at which γ returns to the basepoint. Because γ is con-
tinuous, E = γ−1(p) is closed, and so [0, 1] \ E is open—in particular, this
complement is a countable union of open intervals. Denote these intervals
by (sn, tn), and observe that if |tn − sn| < ε, then γ|[sn,tn] is homotopic to
the constant map t 7→ p.

This shows that γ is homotopic to a loop γ1 with the property that
[0, 1] \ γ−1

1 (p) is a finite union of open intervals (since there are at most 1/ε
values of n such that tn − sn ≥ ε). Again, denote these by (sn, tn), and
observe that each γ|[sn,tn] is a loop on a circle (which corresponds to either
a or b), and hence is homotopic to one of the standard representatives from
π1(S

1).
We have shown that γ is homotopic to a concatenation of standard loops

on circles; a straightforward reparametrisation shows that such a concate-
nation is homotopic to one of the standard loops described above. �

Lemma 22.4 shows that ψ is a bijection between π1(B2(S
1)) and F2. In

order to complete our description of the fundamental group, it remains to
put a group structure on F2 and show that ψ is in fact an isomorphism.

As with paths, words can be multiplied by concatenation; in order to
obtain a reduced word, we must then cancel adjacent inverse symbols. Thus,
for example,

(aba2b) ⋆ (b−1a−1b) = aba2bb−1a−1b = aba2a−1b = abab.

This gives a group structure on F2, which we call the free group with two
generators. It is immediate that ψ is a homomorphism, since the operation
in both groups is concatenation; upon observing that everything we have
done generalises immediately to Bn(S

1) for n > 2, we have the following
result.

Theorem 22.5. The fundamental group of the bouquet of n circles is
isomorphic to the free group with n generators: π1(Bn(S

1)) ∼= Fn.

Remark. The free group is in some sense the most non-abelian group
possible, in that it has the fewest relations—none. One can show that
[F2, F2] is the set of words in which a and a−1 occur with equal frequency,
and also for b and b−1. Furthermore, one finds that F2/[F2, F2] ∼= Z2, so Z2

is the abelianisation of F2.





CHAPTER 5

From groups to geometric objects and back

Lecture 23. Wednesday, October 28

a. Cayley graphs. We constructed the graph Γ4 as a covering space
of B2(S

1), and thought of it as somehow an “unfurling” of that space to
eliminate all loops. We then found that apart from this topological meaning,
it also had algebraic significance by leading us to the free group F2. In fact,
we can also go in the other direction and construct Γ4 from the purely
algebraic properties of F2: this is an example of a very general construction,
which we now describe.

Let G be a finitely generated group—that is, a group for which there
exists a finite set B = {g1, . . . , gn} ⊂ G such that the only subgroup of
G containing B is G itself. The elements gi are generators of G; we say
that the set of generators is symmetric if g−1 ∈ B whenever g ∈ B. If G
is finitely generated, then it has a symmetric finite set of generators; every
element of G can be written as a finite product of elements from this set.
(We can modify the following construction to avoid making this symmetry
assumption, but this way simplifies certain aspects of the notation.)

Given a group G and a symmetric set of generators {g1, . . . , gn}, we con-
struct the Cayley graph as follows. Begin with a single vertex corresponding
to the identity element e, and draw n edges emanating from e, correspond-
ing to the n generators. Label each of the vertices at the other ends of these
edges with the corresponding generator.

This is the first step of an iterative process; so far we have vertices
corresponding to the group elements e, g1, . . . , gn. In the second step, we
add vertices corresponding to each of the elements gigj , and draw edges
from gi to gigj .

The iterative process continues as described: after n steps, we have
a collection of vertices that correspond to group elements represented by
reduced words of length ≤ n in the set of generators. The same group
element may be represented by different words: for example, if G is abelian
then g1g2 and g2g1 give the same vertex of the Cayley graph. Two vertices
corresponding to the elements g and g′ are connected by an edge if and only
if there exists a generator gi ∈ B such that ggi = g′.

By appending all possible generators to all possible reduced words of
length exactly n, we obtain the next level of vertices. Once again, we stress
that if G is not free in the generators B, then there may be some non-trivial
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relationships—that is, different reduced words that correspond to the same
vertex. In particular, since a reduced word describes a path along the graph,
two different reduced words corresponding to the same vertex describe two
different paths with the same endpoints, and thus give a loop in the Cayley
graph.

Example 23.1. For G = F2 and B = {a, b, a−1, b−1}, we start with a
single vertex (the identity), add four vertices at the first step, and add 12
more at the second step. For G = Z2 and B = {(1, 0), (0, 1), (−1, 0), (0,−1)},
we start with a single vertex, add four vertices at the first step, and then
add only four more at the second step. This is because there are different
combinations gigj which yield that same element of the group: for example,
(1, 0) + (0, 1) = (0, 1) + (1, 0). In this representation the Cayley graph of Z2

is the set of vertices and edges of the square lattice in the plane.

Exercise 23.1. (1) Describe the Cayley graph of Z2 for a different
choice of two generators and their inverses.

(2) Show how to obtain the vertices and edges of a the triangular lattice
as the Cayley graph of Z2.

(3) Show how to obtain the hexagonal lattice as the Cayley graph of
Z2 by choosing a non-symmetric system of generators.

Exercise 23.2. Show that all Cayley graphs that appear in Exercise 23.1
are homotopy equivalent to the bouquet of countably many circles and cal-
culate their fundamental group.

We now have a short dictionary between algebraic objects in the group
G and graph-theoretic objects in the Cayley graph: group elements cor-
respond to vertices, generators correspond to edges, words correspond to
paths, relations correspond to loops, and freeness of the group is equivalent
to the statement that the Cayley graph is a tree.

There is one aesthetically unpleasant part of all this. The Cayley graph
depends not just on the group G, but also on the choice of generators. If
we choose a different set of generators, we will obtain a different graph;
is there anything intrinsic about all this, or do the generators really play a
fundamental role? Exercise 23.2 indicate that there may be some similarities
in the properties of those graphs.

Consider first the free group F2 and its associated Cayley graph Γ4.
We can pass to the boundary of the Cayley graph by considering infinite
words in the generators {a, b, a−1, b−1}, which correspond to infinite paths
from the centre of the graph out to its edge. We will not go through the
details here, but merely mention that one can introduce a natural topology
on the space of infinite words under which it becomes a Cantor set, and has
certain intrinsic properties. A similar construction can be carried out for
more general groups, although we must be more careful because there may
be infinite words whose corresponding paths do not escape to the edge of
the graph.
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b. Homotopy types of graphs. We now use the notion of homotopy
equivalence to further our understanding of the topological structure of ar-
bitrary graphs. Understanding the topological structure of graphs up to
homeomorphism is quite a difficult proposition, as homeomorphisms pre-
serve a great deal of combinatorial information about the graph, such as the
degree of every vertex (although vertices of degree 2 can be absorbed into
their adjoining edges). However, homotopy equivalence is a more flexible
matter, and it turns out that we can say a great deal without exerting an
unreasonable amount of effort. We begin by showing that the absence of
loops implies contractibility (trivial homotopy type).

Proposition 23.2. Any tree (finite or infinite) is contractible.

Proof. Let T be a tree, and fix a vertex v ∈ T . Put a metric on T
under which every edge has length 1, and observe that for every point x ∈ T
(whether at a vertex or not) there exists a path px : [0, 1] → T that runs
from v to x with constant speed (with respect to the metric just imposed)—
that is, px(0) = v and px(1) = x. Because T does not contain any loops, px
is unique; in particular, px(t) varies continuously with x.

Now define a homotopy Γ: [0, 1] ×X → X by Γ(t, x) = px(1 − t), and
observe that Γ(0, ·) = IdT and Γ(1, ·) = ev. It follows that IdT ∼ ev, so T is
contractible. �

In order to deal with graphs that contain loops, we want to find trees in
these graphs to which we can apply Proposition 23.2.

Definition 23.3. Given a connected graph G, a maximal tree in G is a
subgraph T ⊂ G such that

(1) T is a tree;
(2) If T $ T ′ ⊂ G, then T ′ is not a tree.

Equivalently, T contains every vertex of G, and no edge of G can be added
to T without forming a loop.

Figure 5.1. Collapsing a maximal tree.

Figure 5.1 shows an example of a maximal tree, as well as illustrating
what we want to do with such trees: collapse them to a single point using
Proposition 23.2, and then show that G is homotopic to the resulting bouquet
of circles.
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First, though, we need to verify that maximal trees exist. For finite
trees, this is a straightforward induction; for infinite trees, things are a little
more subtle, and we need the following abstract tools.

Definition 23.4. A total ordering on a set S is a binary relation � such
that

(1) x � x for all x ∈ S;
(2) if x � y and y � x, then x = y;
(3) if x � y and y � z, then x � z;
(4) for every x, y ∈ S, either x � y or y � x.

If the first three of these hold, but we do not require the fourth, then � is
called a partial ordering, and (S,�) is called a partially ordered set. If x � y
or y � x, we say that x and y are comparable; any two elements of a totally
ordered set are comparable, but this is not necessarily true in a partially
ordered set.

Example 23.5. The set of real numbers with the usual ordering is a
totally ordered set.

Example 23.6. The set of natural numbers with divisibility (a � b if
and only if a divides b) is a partially ordered set.

Example 23.7. Given any set X, the power set of X, denoted P(X),
is the set of all subsets of X. Inclusion gives a natural partial ordering on
P(X): A � B if and only if A ⊂ B.

Given a partially ordered set S, an element x ∈ S is maximal if there
does not exist y ∈ S, y 6= x, such that x � y. (Note that this does not imply
that y � x for all y ∈ S, since not every pair of elements is comparable.) We
are often interested in finding maximal elements of certain partially ordered
sets—for example, we often want to find a subset of X that is maximal
among all subsets with a certain property. The standard tool for doing this
is the following statement, which is equivalent to the Axiom of Choice.

Lemma 23.8 (Zorn’s lemma). Let S be a partially ordered set and suppose
that every totally ordered subset of S has an upper bound. Then S itself has
a maximal element.

Remark. If we take S to be the collection of all linearly independent
subsets of an arbitrary vector space V (ordered by inclusion), then Zorn’s
lemma lets us prove that every vector space has a basis. This statement,
which is straightforward for finite-dimensional vector spaces, becomes more
mysterious when we consider examples such as R as a vector space over Q
(which has uncountable dimension).

Applying Zorn’s lemma to trees in a graph G, we can obtain a maximal
tree.

Proposition 23.9. Any graph (finite or infinite) contains a maximal
tree.
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Proof. Let S be the collection of subgraphs of G that are also trees.
Observe that if C ⊂ S is totally ordered, then

⋃
T ∈C T ∈ S is an upper

bound for C, and so Zorn’s lemma applies. �

Combining Propositions 23.2 and 23.9, we can classify graphs up to
homotopy.

Theorem 23.10. Every graph is homotopy equivalent to a bouquet of
circles: in particular, if T ⊂ G is a maximal tree and n is the number of
edges of G that are not contained in T , then G ∼ Bn(S

1).

Proof. Let T ⊂ G be a maximal tree, whose existence is guaranteed
by Proposition 23.9. (Note that T is not unique.) Recall that the quotient
space G/T is the result of identifying all points in T to a single point—that
is,

G/T =


 ⋃

x∈G\T

{x}


 ∪ {T },

and a sequence xn ∈ G/T converges to x ∈ G/T if and only if xn → x in G
(if x ∈ G \ T ) or if infy∈T d(xn, y) → 0 (if x = {T }). Observe that G/T is
homeomorphic to Bn(S

1), where n is the number of edges of G not contained
in T , and so it suffices to show that G ∼ G/T .

To show that two spaces are homotopic, we produce maps f and g in
opposite directions such that f ◦ g and g ◦ f are both homotopic to the
identity. In this case, we let f : G → G/T be the canonical projection

f(x) =

{
T x ∈ T ,
x x /∈ T .

To define g : G/T → G, we first fix a point v ∈ T and set g(T ) = v. Now
we observe that every point x ∈ G \ T lies on an edge γ of G that is not
contained in T ; writing x, y for the endpoints of γ, we let px and py denote
the (unique) paths in T from v to x and y, respectively. Let gγ : γ → G be
the map that uniformly stretches the path γ to cover the path px ⋆ γ ⋆ p

−1
y ,

and define g(x) = gγ(x) for all x ∈ γ.
Now we see that f ◦ g : G/T → G/T simply reparametrises each loop of

the bouquet, and that g ◦ f : G → G similarly stretches each edge in G/T in
a way that can be continuously homotoped to the identity, which completes
the proof. �

If we consider the trivial group a free group with zero generator and
remember that Z is the free group with one generator we obtain.

Corollary 23.11. The fundamental group of any graph is a free group.
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c. Covering maps and spaces. We now extend some of the ideas
used in the previous lectures; namely, the procedure of covering the torus
by the plane, and the figure-eight by the Cayley graph of the free group.
These are specific cases of a more general theory, which we now introduce.

Let C and X be metric spaces, and suppose that ρ : C → X is a contin-
uous map such that for every x ∈ X, there exists a neighbourhood U ∋ x
such that ρ−1(U) is a collection of disjoint neighbourhoods in C on which ρ
is homeomorphic—that is, ρ−1(U) =

⋃
i Vi, where the Vi are disjoint open

sets in X, and ρ : Vi → U is a homeomorphism for all i. (The union may be
finite or countable.) Then ρ is called a covering map, and C is a covering
space of X.

Remark. The number of connected components of the preimage ρ−1(U)
takes discrete values and varies continuously in x. Thus it is locally constant,
and hence constant everywhere if X is path connected, the only case to be
considered forthwith.

We have already seen a number of examples of covering spaces and cov-
ering maps. For example, the map f(t) = e2πit is a covering map from R
to S1 ⊂ C. We also saw covering maps from R2 to T2, and from Γ4 to the
bouquet B2(S

1).
As we have shown in Proposition 20.6 given any metric spaces X,Y

and a base point x0 ∈ X, any continuous map f : X → Y induces a ho-
momorphism f∗ : π1(X,x0) → π1(Y, f(x0)) that takes [γ] ∈ π1(X,x0) to
[f ◦ γ] ∈ π1(Y, f(x0)). In particular, a covering map ρ : C → X induces a
homomorphism ρ∗ : π1(C, x0) → π1(X, ρ(x0)).

Proposition 23.12. If ρ : C → X is a covering map, then ρ∗ is injective.

Proof. The key is the principle of covering homotopy that generalizes
Propositions 22.3

Lemma 23.13. If ρ : C → X is a covering map, then:

(1) Every path γ : [0, 1] → X has a lift γ̃ : [0, 1] → C—that is, ρ ◦ γ̃ = γ.
Furthermore, γ̃ is unique up to the choice of γ̃(0), which can be any
point in ρ−1(γ(0)).

(2) If Γ: [0, 1]×[0, 1] → X is a homotopy such that Γ(s, 0) = Γ(s, 1) = x0 for

all 0 ≤ s ≤ 1, then there exists a continuous homotopy Γ̃ : [0, 1]×[0, 1] →
C such that ρ ◦ Γ̃ = Γ. Again, Γ̃ is unique up to the choice of Γ̃(0, 0).

Proof. It suffices to prove the second statement. Observe that given
x ∈ X, there exists a neighbourhood Ux of x in X such that ρ−1(Ux) is
a disjoint union of neighbourhoods in C on which ρ is a homeomorphism.
In particular, there exists a family of maps Li : Ux → C such that Li is a
homeomorphism onto its image (the Li are the inverse branches of ρ).

Now given (s, t) ∈ [0, 1]×[0, 1], let x = Γ(s, t) ∈ X, and let ε = ε(s, t) > 0
be such that Γ(s′, t′) ∈ Ux for all |s− s′| < ε and |t− t′| < ε. Denote
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this range of (s′, t′) by B(s, t, ε), and observe that ρ(Γ̃(s′, t′)) = Γ(s′, t′) on

B(s, t, ε) if and only if Γ̃(s′, t′) = Li(Γ(s′, t′)) for some i.
We can now construct the lift of the homotopy. The open sets B(s, t, ε(s, t))

cover the compact unit square [0, 1]× [0, 1], and so by compactness there ex-
ists a finite set {(s1, t1), . . . , (sn, tn)} such that the open setsBi = B(si, ti, ε(si, ti))
cover the unit square.

Fix Γ̃(0, 0) ∈ ρ−1(Γ(0, 0)); we claim that this determines Γ̃(s, t) ∈ ρ−1(Γ(s, t))
uniquely for every (s, t) ∈ [0, 1] × [0, 1]. Indeed, for any such (s, t), let
η(r) = (rs, rt) for 0 ≤ r ≤ 1, and for 1 ≤ i ≤ n with η([0, 1]) ∩Bi 6= ∅, let

r−i = inf{r ∈ [0, 1] | η(r) ∈ Bi,

r+i = sup{r ∈ [0, 1] | η(r) ∈ Bi.

Observe that there exist i1, . . . , im such that

0 = r−i1 < r−i2 < r+i1 < r−i3 < r+i2 < · · · < r−im < r+im−1
< r+im = 1.

There exists a unique inverse branch L1 of ρ on Γ(η([0, r+i1))) such that

L1(Γ(0, 0)) = Γ̃(0, 0). Similarly, there exists a unique inverse branch L2 of
ρ on Γ(η((r−i2 , r

+
i2

))) such that L2(Γ(η(r+i1))) = L1(Γ(η(r+i1))), and so on for

L3, . . . , Lm. Define Γ̃(s, t) = Lm(Γ(s, t)).

Now observe that Γ̃(s, t) was uniquely determined by Γ̃(0, 0), and that

the choice of Lm is stable under small perturbations of (s, t), so Γ̃ is contin-
uous in s and t. �

Using Lemma 23.13, we can prove that the map ρ∗ : π1(X,x0) → π1(C, ρ(x0))
is injective. Indeed, if ρ◦γ is a contractible loop in C, then Lemma 23.13 al-
lows us to lift the homotopy between ρ◦γ and eρ(x0) to a homotopy between
γ and ex0

; hence [γ] = [ex0
] whenever ρ∗[γ] = [ef(x0)], so ρ∗ is an injective

homomorphism. �

The key consequence of Proposition 23.12 is that if C is a covering space
for X, then π1(C) is isomorphic to a subgroup of π1(X). If C is simply
connected, then this subgroup is trivial and we refer to C as the universal
covering space.

Remark. Definite article here need justification; indeed, universal cov-
ering space is unique up to a homeomorphism that commutes with the cover-
ing maps. The proof of this is not too difficult and provides a useful exercise.
However we will not use uniqueness in our considerations.

There are many examples, though, for which C is not simply connected
and we obtain a non-trivial subgroup. For example, letX be the space shown
in Figure 4.4(b); X is a covering space for the figure-eight B2(S

1), but is not
simply connected and the tree Γ4 is in turn a covering space for X. Notice
that X is homotopic to the bouquet if infinitely many circles and hence its
fundamental group is F∞, the free group with infinitely many generators.
By Proposition 23.12 it is mapped injectively to F2 for the homomorphism
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induced by the covering map and hence is isomorphic to a subgroup of it.
Indeed the generators of this subgroup are anba−n, n = 1, 2, . . . . Since F∞

contains Fn for any natural number n as a subgroup and F2 is isomorphic to
to a subgroup of n for any n > 2 we obtain the following interesting property
of free groups that superficially looks somewhat paradoxical:

Proposition 23.14. Let m,n ∈ {2, 3, . . . ;∞}. Then Fm contains a
subgroup isomorphic to Fn.

d. Deck transformations and group actions. Returning to our
original example of the torus T2, we recall that π1(T2) = Z2, and that
R2 is a covering space for the torus via the canonical projection. Indeed, R2

is simply connected (even contractible), so it is the universal covering space.
We know that in this example the fundamental group Z2 does not merely
sit passively by, but acts on the universal covering space R2 by translations.
In fact, this is once again a specific manifestation of a general phenomenon.

Let ρ : C → X be a covering map. Then given a loop γ in X based at
x0, we can define a map fγ : C → C as follows.

(1) Given x ∈ C, let η : [0, 1] → X be a path in X from x0 to ρ(x).
(2) Consider the loop γx = η ⋆ γ ⋆ η−1, which is a loop in X based at ρ(x).
(3) Using Lemma 23.13, lift γx to a path γ̃x : [0, 1] → C with γ̃x(0) = x.
(4) Define fγ(x) as the other endpoint of γ̃x: fγ(x) = γ̃x(1).

Once again using Lemma 23.13, one sees that fγ1 = fγ2 whenever γ1 ∼ γ2,
and so we may write f[γ] for any element [γ] ∈ π1(X). To summarise, each
element of the fundamental group of X induces a map on the covering space
C; this map is called a deck transformation.

Example 23.15. If C = R2 and X = T2, then (a, b) ∈ Z2 = π1(X) acts
on C = R2 as translation by the vector (a, b).

This action allows us to obtain X as a factor space: X = C/π1(X).
Observe that if C is the universal covering space, then this action is free:

f[γ](x) 6= x for every x ∈ C and non-trivial [γ] ∈ π1(X).
Conversely, if G is a group acting freely and discretely on a spaceX, then

the natural projection X → X/G is a covering map (action by isometries is
the simplest case). The case of a simply connected space X will be central
for our purposes so let us summarize it:

Theorem 23.16. Let X be a complete path-connected simply connected
metric space and G be a finite of countable group that acts on X by isometries
in such a way that there exists r > 0 such that for any g ∈ G, g 6= Id and
any x ∈ X the distance between x and its image g(x) is greater than r. Then
π1(X/G) = G.

The condition of freeness is important: for example, the plane R2 modulo
rotation by 2π/3 does not give a covering map, since the origin behaves badly
(we get a cone). Thus it is not so easy to get a space with fundamental group
Z/3Z.
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Finally, if G is a topological group and Γ is a discrete subgroup of G,
then Γ acts freely and discretely on G by left translations. Thus G 7→ G/Γ
is a covering map, and π1(G/Γ) = Γ (this is another interpretation of the
torus). The really interesting examples start to turn up when we let G be
the group of isometries of H2 (fractional linear transformations). We will
consider such examples in a little while.
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Lecture 24. Friday, October 30

a. Subgroups of free groups are free. The theory of covering spaces
introduced in the previous lecture can be used to prove a remarkable purely
algebraic result, which we will state in a moment. First consider the free
group Fn: what are its subgroups?

As we have seen in the previous lecture (Proposition 23.14) among sub-
groups of F − N are free groups with any number of generators, finite or
countable. It is quite remarkable that there is nothing else. Recall that
an arbitrary group G is free if there exist generators a1, . . . , an for G such
that no non-trivial reduced word in the elements a±1

i is equal to the identity
element.

Theorem 24.1. Every subgroup of a free group is free.

Proof. We use two topological facts proved in the previous lecture:
first, that any group acting freely and discretely on a simply connected
space then appears as the fundamental group of the factor space (Theo-
rem 23.16), and second, that the fundamental group of any graph is free
(Corollary 23.11).

Let Fn be a free group on n generators, and recall that Fn = π1(Bn(S
1)).

The universal cover of Bn(S
1) is the infinite tree Tn whose vertices all have

degree 2n. As described in the previous lecture, Fn acts on Tn by deck
transformations; thus any subgroup G ⊂ Fn also acts on Tn by deck trans-
formations. This action is free and discrete, so we get

G = π1(Tn/G).

The result follows upon observing that Tn/G is a graph, and hence is homo-
topic to a bouquet of circles. �

Theorem 24.1 is a purely algebraic result; however, direct algebraic
proofs of it are considerably more involved that the elegant geometric argu-
ment we presented. Thus the use of topological methods provides a surpris-
ingly powerful tool to address an ostensibly purely algebraic matter.1

b. Abelian fundamental groups. As we have seen, fundamental groups
can have a very complicated algebraic structure. However, there is one in-
stance worth noting in which this structure simplifies significantly, and the
fundamental group π1(X) turns out to be abelian. This occurs then the
space X is not just a topological space, but carries a group structure as
well.

Theorem 24.2. Let G be a metrisable path-connected topological group.
Then π1(G) is abelian.

1An even more dramatic phenomenon occurs regarding the so-called Fundamental
Theorem of Algebra, which has no known purely algebraic proof.
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Proof. We take the identity element e as our base point, and consider
two loops α, β : [0, 1] → G with α(0) = β(0) = α(1) = β(1) = e. We must
show that α ⋆ β ∼ β ⋆ α by using group multiplication in G to produce a
homotopy.

Using the fact that α and β take the value e at the endpoints of the
interval, we observe that

α ⋆ β(t) =

{
α(2t)β(0) 0 ≤ t ≤ 1/2,

α(0)β(2t − 1) 1/2 ≤ t ≤ 1,

and a similar formula holds for β ⋆ α. Observe that if Γ(s, t) is the desired
homotopy—that is, Γ(0, t) = α ⋆ β(t) and Γ(1, t) = β ⋆ α(t)—then for 0 ≤
t ≤ 1/2, we must have

(24.1) Γ(s, t) =

{
α(2t)β(0) s = 0,

α(0)β(2t) s = 1,

and for 1/2 ≤ t ≤ 1,

(24.2) Γ(s, t) =

{
α(1)β(2t − 1) s = 0,

α(2t− 1)β(1) s = 1.

It is now easy to see that the following homotopy works:

Γ(s, t) =

{
α((1 − s)(2t))β(s(2t)) 0 ≤ t ≤ 1/2,

α(s(2t − 1) + 1 − s)β((1 − s)(2t− 1) + s) 1/2 ≤ t ≤ 1.

One needs only observe that Γ satisfies (24.1) and (24.2), is continuous, and
has Γ(s, 0) = Γ(s, 1) = e for all 0 ≤ s ≤ 1. �

c. Finitely presented groups. Recall that a group G is finitely gen-
erated if there exists a finite set {a1, . . . , an} such that every element g ∈ G

can be written in the form g = ak1i1 · · · akm

im
, where ij ∈ {1, . . . , n} and kj ∈ Z.

If G is the free group on the n generators a1, . . . , an, then this represen-
tation is unique provided we choose a reduced word—that is, one in which
kj 6= 0 and ij 6= ij+1 for all j. For other groups G, however, such represen-
tations are not unique. Two prominent examples of this are as follows:

(1) If a generator ai has order p, then we can always replace aki with ak±pi .
(2) If two generators ai and aj commute, then we can always reverse their

order whenever they occur in a representation of g ∈ G.

The situation, then, is this. There is a one-to-one correspondence be-
tween reduced words in the generators and their inverses on the one hand,
and elements of the free group on the other; a similar correspondence exists
for a group that is not free, but it is no longer one-to-one, and elements of
the group correspond not to single reduced words, but to equivalence classes
of reduced words. For example, in the cyclic group 〈g | gn = e〉, all the
words in the set {. . . , g1−2n, g1−n, g, g1 +n, g1 + 2n, . . . } are equivalent, and
each of them corresponds to the generator of the group.



178 5. FROM GROUPS TO GEOMETRIC OBJECTS AND BACK

To get a feel for this process, let us see what happens as we go from F2 to
Z2 to (Z/2Z)×(Z/4Z). Each of these groups is generated by two generators,
which we write a and b, but the equivalence classes of words corresponding
to individual group elements will grow as we go from the first group to the
second, and from the second to the third.

To begin with, every element of F2 corresponds to a unique reduced
word; the product of the two generators is ab, and no other reduced word in
a and b corresponds to this element. Once we pass to Z2, we are dealing with
an abelian group, and so as elements of Z2, ab and ba are equal, despite being
two non-equivalent reduced words in F2. Indeed, there are many more words
corresponding to this element: for example, ab = ba = a−1ba2 = ba−1ba2b−1,
and so on. Every reduced word w in a and b can be written in the form
w = aj1bk1aj2bk2 · · · ajmbkm, and one may show without much difficulty that
two words correspond to the same element of Z2 if and only if

∑
i ji =

∑
i j

′
i

and
∑

i ki =
∑

i k
′
i. Thus the equivalence classes of words are infinite.

Every element of Z2 corresponds to a word of the form ambn, where
m,n ∈ Z. As elements of Z2, these words are all distinct, but this is not
true when we pass to (Z/2Z) × (Z/4Z). In this (finite) group, a and b

have orders 2 and 4, respectively, so now two words ambn and am
′

bn
′

are
equivalent if m−m′ is a multiple of 2 and n− n′ is a multiple of 4. We see
that with the addition of more relations and restrictions on the generators,
the equivalence classes have grown once again. . .

Surely there must be some nice way to formalise all this. The second
transition above can be given a relatively nice form: the group (Z/2Z) ×
(Z/4Z) can be written as the factor group Z2/〈a2, b4〉, and we see that the
two restrictions we added are precisely the relationships a2 = b4 = e. Can
we do a similar thing with the transition from F2 to Z2?

First we need to observe that every relationship between the generators
can be restated by giving a word that is to be considered trivial: for example,
the relationship ab = ba is equivalent to the relationship aba−b−1 = e. Thus
a näıve generalisation of the technique just given would say that we ought
to produce Z2 as F2/〈aba−1b−1〉. The first signs are promising: we see that
ab = aba−1b−1ba, and so ab and ba lie in the same right coset of 〈aba−1b−1〉.
However, things sort of fizzle out at this point, since 〈aba−1b−1〉 is not a
normal subgroup of F2, and so we do not actually obtain a factor group.2

This suggests an obvious remedy: let H be the smallest normal subgroup
of F2 that contains aba−1b−1. Then F2/H is indeed a factor group; of course,
it may be trivial, if F2 does not contain any normal subgroups between
〈aba−1b−1〉 and the whole group.

Exercise 24.1. Show that [F2, F2] is the smallest normal subgroup of
F2 that contains aba−1b−1. Furthermore, show that Z2 = F2/[F2, F2].

2Instead, we get something called a homogeneous space.
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It is now relatively clear what the general procedure ought to be. Begin-
ning with the free group Fn on n generators {a1, . . . , an}, we consider a finite
list of words W = {w1, . . . , wm} in the generators ai. These words are the
combinations of the generators that are to be considered trivial, and encode
all the relationships between the generators. Let SW be the smallest nor-
mal subgroup of Fn that contains W ; we say that the factor group Fn/SW
is the group with generators a1, . . . an defined by the relations w1, . . . , wm,
and write this group as

(24.3) 〈a1, . . . an | w1, . . . wm〉
The expression (24.3) is a presentation of the group. If an arbitrary group G
is isomorphic to a group of this form, we say that G is finitely presented. One
could also consider infinitely presented groups namely, groups that are pre-
sented by a finite number of generators but an infinite number of relations.
We will see later that interesting properties can be observed in finitely gen-
erated infinitely presented groups. Finitely presented groups are the most
natural class of countable groups from many viewpoints including geometric
applications. It is already a broad enough class that a complete classifica-
tion is out of the question. However many natural questions about possible
properties of finitely generated of groups do not have known answers in the
class of finitely presented groups, while infinitely presented groups with such
properties may be constructed. We will encounter such examples later in
this course.

Example 24.3. The discrete groups we have played with so far are all
finitely presented. For example:

(1) F2 = 〈a, b〉.
(2) Z2 = 〈a, b | [a, b]〉.
(3) Z/nZ = 〈a | an〉.
(4) Dn = 〈a, b | an, b2, abab〉.

Remark. In everyday usage, it is common to write relationships in the
form of equalities: for example, the presentation of the dihedral group is
often given as 〈a, b | an = b2 = e, ab = ba−1〉.

Remark. If we are given two finitely presented groups G and H, it is in
general a highly non-trivial problem to determine whether or not they are
isomorphic. Thus it is not always easy (or indeed possible) to tell whether
or not two finite presentations are actually talking about the same group.

One fully tractable class of finitely presented groups is the class of finitely
generated abelian groups. One can show (though we do not do so here), that
every finitely generated abelian group is isomorphic to a group of the form

(24.4) Zn ⊕


 ⊕

p prime

⊕

m≥1

(Z/pmZ)k(p,m)


 .
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Furthermore, the integers n and k(p,m) form a complete system of invari-
ants; that is, two finitely generated abelian groups are isomorphic if and
only if n = n′ and k(p,m) = k′(p,m) for every p,m.

Remark. Arbitrary countable abelian groups have considerably more
complicated albeit still tractable structure. The group of rational numbers
by addition provides an instructive example.

Remark. The use of the direct sum ⊕ rather than the direct product
× in (24.4) is important. For collections of finitely many abelian groups,
these are the same: G ⊕ H = G × H. However, the story is different
for infinite collections. Each element of an infinite direct product G1 ×
G2 × · · · corresponds to a sequence (g1, g2, . . . ), where gi ∈ Gi may be
arbitrary.This is an uncountable abelian group. In a direct sum, however,
there is a cofiniteness requirement: the sequences that occur in an infinite
direct sum are precisely those which have only finitely many non-identity
elements. This group is countable although not finitely generated.

For example, if we take the direct product of countably many copies of
Z/2Z = {0, 1}, we are dealing with infinite sequences of 0s and 1s, added
coordinate-wise (modulo 2). If, however, we take the direct sum, then we
are only dealing with finite sequences (albeit of arbitrarily length), since
every permissible sequence has a “tail” which is eventually all 0s.

d. Free products. Certain groups, such as SL(2,Z), can be best de-
scribed not by group presentations, but by a different construction, which
we will soon describe. Observe that SL(2,Z) is not a free group, as it con-
tains elements of finite order, such as

(
0 −1
1 0

)
, which has order 4, and

(
0 1

−1 1

)
,

which has order 6. However, it does have a finite index free subgroup.
The construction of the free group can be generalised to the free product

of two groups. Given groups G and H, their free product G ∗H is the set
of all words g1h1g2h2 · · · gmhm, where gi ∈ G and hi ∈ H, with the obvious
cancellations, and with binary operation given by concatenation.

Example 24.4. F2 = Z ∗ Z, and more generally, Fn is the free product
of n copies of Z.

Exercise 24.2. What is (Z/nZ) ∗ (Z/mZ)? Hint: Construct its Cayley
graph.

We will show later that PSL(2,Z), the factor of SL(2,Z) by its center
± Id is isomorphic to (Z/2Z) ∗ (Z/3Z).
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Lecture 25. Monday, November 2

a. Planar models. The torus can be thought of in many ways. It can
be embedded into R3; it can be a factor space R2/Z2; and it can also be
thought of as the unit square with opposite edges identified. If we label the
vertical edges a and the horizontal edges b, then upon “rolling” the square
into the embedded torus, a and b correspond to loops on T2 that generate the
fundamental group Z2. The union of the loops a and b gives an embedding
of the figure-eight B2(S

1) into R3, which has fundamental group F2. To
obtain the torus from this skeleton, we may think of stretching a “film” of
some sort so that it is anchored to the loops a and b, and composes the rest
of the surface of the torus. This film corresponds to the interior of the unit
square, and we see that the boundary of the square is aba−1b−1, which is
contractible through that interior.

Thus adding the film corresponds to imposing the relationship aba−1b−1 =
e on F2. As we saw earlier, this leads to F2/[F2, F2] = Z2, which explains
the relationships between the fundamental groups.

Here is another example of a similar construction. Consider the hexagon
with opposite edges identified, as shown in Figure 5.2. Label the three pairs
of opposite edges a, b, c: let v1 be the vector from x1 to x3, so that translation
by v1 maps one edge labeled a onto the other, and let v2 and v3 be similarly
defined, as shown in the picture.

a

b

c

a

b

c

x0

x1 x2

x3

x4x5

v1

v2

v3

Figure 5.2. A planar model on a hexagon.

This is an example of a general sort of construction: we begin with
a polygon P (in this case, a hexagon), and then introduce an equivalence
relation ∼ on the boundary of P , under which certain pairs of edges are
identified. The pair (P,∼) is called a planar model of the topological space
obtained as the quotient X = P/ ∼.

As we have seen, the square with opposite edges identified is a planar
model of the torus: Figure 5.3 shows how horizontal and vertical lines in the
planar model correspond to parallels and meridians on the torus. The fact
that all the horizontal lines in the planar model are the same length, while
the parallels on the torus (circles around the z-axis) are of varying lengths,
illustrates the fact that we are capturing the topology of the situation, and
not its geometry.
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Figure 5.3. A planar model of the torus.

What is the hexagon with opposite edges identified a planar model of?
Observe that the images of the hexagon under all translations generated by
Tv1

, Tv2
, and Tv3

tiles the plane, and thus the subgroup H ⊂ Isom(R2)
generated by these three translations acts freely and discretely on R2. The
quotient P/ ∼ is just the factor space R2/H; furthermore, because v1 =
v2 + v3, we see that in fact H = 〈v1,v2〉 is a lattice, and this factor space
is a torus.

Observe that when we identify opposite edges of the square, all vertices
are identified, and hence each edge becomes a loop. This does not happen
on the hexagon; instead we get two different equivalence classes of vertices
({x0, x2, x4} and {x1, x3, x5}), and so a, b, c are not themselves loops. Writ-
ing ab for a ⋆ b, and so on, we see that ab, ca−1, and cb are loops. Each
of these loops is non-contractible; however, the product abca−1b−1c−1 cor-
responds to the perimeter of the hexagon traversed clockwise beginning at
x0, and is contractible by the obvious homotopy through the interior of the
hexagon.

So we got a torus from both the square and the hexagon. What if we
move up to the octagon, and again consider the planar model with opposite
edges identified? In this case we immediately see that the tiling procedure
from before fails: R2 can be tiled with squares and with hexagons, but not
with octagons. Indeed, all eight vertices of the octagon are to be identified,
but the sum of the internal angles is 6π, not 2π.

It follows that the translations matching opposite edges of the regular
octagon do not generate a discrete subgroup of R2, which means that this
planar model does not admit a nice geometric interpretation as R2 modulo
some discrete group of isometries.

We have two options, then: we can forget about the geometry of the
situation and adopt a combinatorial and topological approach, or we can
use a different geometry. We will follow the first of these for now, and
return to the second later on.

Exercise 25.1. Using cutting and pasting, show that the planar model
of the octagon with opposite sides identified is equivalent to the planar model
shown in Figure 5.4. (Note that rather than placing arrows along the edges
to indicate the direction of identification, we write a for the edge a directed
counterclockwise, and a−1 to indicate a clockwise direction.)
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Figure 5.4. From an octagon to a surface of genus two.

The planar model in Figure 5.4 has two halves, each of which is a penta-
gon with two pairs of sides identified and the fifth side left free. Figure 5.5
shows that this pentagon may be obtained by cutting a hole in the usual
planar model of a torus (to obtain a so-called “handle”), and so the octagon
with opposite edges identified is equivalent to the surface obtained by cut-
ting holes in two tori and gluing them together along those holes. This gives
the “pretzel” surface shown in Figure 5.4.

Figure 5.5. Cutting a hole in a torus.

All eight vertices of the octagon are identified, and so each of the curves
a1, a2, b1, b2 becomes a loop in the quotient space, as shown in Figure 5.4. In-
tuitively, we expect that these loops generate the fundamental group of this
surface; furthermore, since the curve a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 is the perimeter
of the octagon, it is contractible (through the octagon), and we expect that
this is the only relationship between the generators.

This construction can be generalised to any 4n-gon to produce a surface
with more “holes”—or, to use the technical term, a surface of higher genus.
(The genus is the number of holes.) Based on the above considerations, we
expect that the fundamental group of the surface of genus n is the surface
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group with presentation

〈a1, b1, . . . , an, bn | [a1, b1] · · · [an, bn]〉.
This will appear as a particular case of a more general construction.

b. The fundamental group of a polygonal complex. One of our
key results so far has been to exhibit every free group on finitely or countably
many generators as the fundamental group of a graph, by associating the
generators of the group to loops in the graph. What we have not been able
to do so far is to take a group G in which those generators satisfy certain
relationships and exhibit a topological space that has G as its fundamental
group.

In the previous section, we saw that planar models place a relationship
on a collection of loops (the edges of the polygon) by allowing homotopy
through the interior of the polygon. Using the suitable generalisation of this
idea, we will be able to produce a topological space with arbitrary finitely
presented fundamental group.

The idea, then, is to generalise the notion of a graph (which is a col-
lection of zero-dimensional vertices and one-dimensional edges with some
combinatorial relationships) to a two-dimensional object by adding some
faces.

For our purposes, a graph can be defined as a metric space that is the
union of a collection V of vertices (points) together with a collection E of
edges (homeomorphic images of the open interval (0, 1)) such that

(1) no vertex in V lies on an edge e ∈ E;
(2) the endpoints of every edge e ∈ E are vertices in V ; and
(3) every pair of distinct edges e 6= e′ ∈ E is in fact disjoint.

The generalisation of this definition to two-dimensional objects is straight-
forward. A polygonal complex is a metric space obtained as the union of a
collection V of vertices, a collection E of edges, and a collection F of faces
(homoeomorphic images of the open unit disc {(x, y) | x2 + y2 < 1}, such
that

(1) no vertex in V lies on an edge e ∈ E or a face f ∈ F , and no edge e ∈ E
has non-trivial intersection with a face f ∈ F ;

(2) the boundary of every face f ∈ F is a union of edges and vertices, and
the endpoints of every edge are vertices in V ;

(3) every pair of distinct edges is disjoint, as is every pair of distinct faces.

Remark. This definition can also be generalized to dimensions higher
than two. While the straightforward one is not used very often there are two
versions, one more specialized (simplicial complexes) and one more general
(CW-complexes), that are central objects of algebraic topology.

Observe that the planar models described in the previous section are all
examples of polygonal complexes. For example, the square with opposite
sides identified is a polygonal complex with one vertex, two edges, and one



LECTURE 25. MONDAY, NOVEMBER 2 185

face. Similarly, the hexagon with opposite sides identified has two vertices,
three edges, and one face.

a

a

a

a

Figure 5.6. Polygonal complexes for the sphere and the
projective plane.

There is no requirement that a face have enough edges to make it a
polygon in the Euclidean sense; indeed, Figure 5.6 shows two polygonal
complexes whose only face is a 2-gon. The first of these has one face, one
edge, and two vertices; if we “fold” the disc up to identify the two edges
labeled a (sort of like folding up a taco), we see that this polygonal complex
is nothing but the sphere S2.

What about the second complex in Figure 5.6, which has exactly one
face, one edge, and one vertex? We see that this space is the unit disc with
antipodal boundary points identified; this is homeomorphic to the upper
hemisphere of S2 with antipodal points on the equator identified. This is in
turn homeomorphic to the entire sphere with all pairs of antipodal points
identified, which we know to be the projective plane RP (2).

Recall that since RP (2) is the factor of S2 by the free and discrete action
of Z/2Z, and furthermore π1(S

2) is trivial, we have π1(RP (2)) = Z/2Z. As
with the planar models we saw earlier, we observe that the fundamental
group has presentation 〈a | a2〉, where the generator is the single edge and
the relation corresponds to the perimeter of the single face.

In fact, this gives a general procedure for finding the fundamental group
of a (connected) polygonal complex.

Let C = (V,E, F ) be a connected polygonal complex, and write E =
{e1, . . . , en}. Fix an orientation on each edge ei. Every face f ∈ F deter-
mines a word in the symbols e1, . . . , en by recording the symbols correspond-
ing to the edges traversed in one counterclockwise circuit of the perimeter
of f . Write w1, . . . , wm for the collection of such words.

We now have the tools for a group presentation: to the connected polyg-
onal complex C we associate the group

(25.1) G(C) = 〈e1, . . . , en | w1, . . . , wm〉.
Based on our previous experience, we expect to find that G(C) = π1(C).
Is this true? In the first place, the edges ei are not necessarily loops if V
contains more than a single vertex. Furthermore, we need to show that every
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loop in C is in fact homotopic to a loop corresponding to a concatenation of
edges.

Theorem 25.1. If C is a connected polygonal complex, then π1(C) =
G(C).

Right now we will only prove one half of this theorem, namely we will
prove that π1(C) is a factor-group of G(C). We define a map ϕ : G(C) →
π1(C) using the idea of a maximal tree. Observe that the collection of all
vertices and edges in C is a graph G, which has a maximal tree T . Fix a
vertex v0 ∈ T , and for every vertex v ∈ V , let γv be the unique path in T
that moves from v0 to v with unit speed.

Now given an edge e ∈ E that runs from v to w, define a loop in C by
γv ⋆ e ⋆ γ

−1
w . Thus we may define ϕ on each generator e = (v,w) by

ϕ((v,w)) = [γv ⋆ e ⋆ γ
−1
w ] ∈ π1(C, v0).

To obtain a homomorphism from G(C) to π1(C), we extend ϕ in the natural
way. One needs to check that ϕ is well-defined, and indeed, if w is a word
in the generators ei that lies in the normal subgroup of Fn generated by
w1, . . . , wm, then the corresponding loop in C can be contracted through the
faces of C, and so ϕ(w) is the identity element.

It remains to show that ϕ is a bijection. To show that ϕ is onto, it suffices
to observe that if γ is any loop in C, then the section of γ lying inside any
given face can be homotoped to lie on the edges adjacent to that face, and
once a loop γ lies on the graph G, it is homotopic to a loop generated by
the loops γv ⋆ (v,w) ⋆ γ−1

w . Thus we proved that π1(C) is a factor-group of
G(C).

As a consequence of Theorem 25.1, we can obtain any finitely presented
group as the fundamental group of a compact metric space.

c. Factor spaces of the hyperbolic plane. We return now to the
surface of genus two, the “pretzel” surface obtained by identifying opposite
sides of the octagon. As we saw earlier, this surface cannot be obtained as
R2/G for any subgroup G ⊂ Isom(R2); we will see now that if we replace the
Euclidean plane R2 with the hyperbolic plane H2, things are quite different.

First observe that if T1 and T2 are any Euclidean translations, then
they obey the relationship T1 ◦ T2 = T2 ◦ T1. Things are quite different
in the hyperbolic plane, where the analogues of translations are hyperbolic
transformations, which have two fixed points on the ideal boundary, and
move points in H2 along circles connected these two ideal fixed points. Such
a transformation in the upper half-plane was illustrated in Figure 3.6; we will
work now in the unit disc model, where the geometry of the transformation
is as shown in Figure 5.7(a).

A hyperbolic transformation with fixed points w1 and w2 on the ideal
boundary moves points along the geodesic connecting w1 and w2 (the hori-
zontal line). The transversal curves such as γ1, which are circles intersection
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γ1 γ2

w1 w2

z1

z2
(a)

F

(b)

Figure 5.7. A hyperbolic transformation.

this geodesic and the ideal boundary orthogonally, are moved into other such
curves.

Let f be a hyperbolic transformation that fixes w1 and w2 and takes γ1

to γ2, and let g be a hyperbolic transformation that acts similarly on the
geodesic from z1 to z2. Let F be the subset of H2 shown in Figure 5.7(b),
and let G = H2 \F . Then fk(F ) ⊂ G and gk(F ) ⊂ G for any integer k 6= 0.

Exercise 25.2. Using the action of f and g on the region F , show that
f and g generate a free subgroup of Isom(H2).

Exercise 25.2 is a particular case of the “ping-pong lemma”, which gives
a general method of showing that a subgroup of a group acting on a set is
actually free.

The existence of a free subgroup of Isom(H2) stands in stark contrast
to the situation in Isom(R2). We will show in the next lecture that the
latter does not contain a free subgroup with two generators, discrete or not.
To accentuate complexity of the situation let us add that SO(3) and hence
Isom(R3) contains a free subgroup but not a discrete free subgroup.

To return to the octagon, we observe that we may replace F in Fig-
ure 5.7(b) with a figure bounded by symmetrically located eight geodesics,
rather than four. If we increase the Euclidean length of these geodesics by
moving them inwards toward the centre of the disc, they will eventually
intersect, so that they bound an octagon. At the first moment of intersec-
tion, they will be tangent, and so the sum of the angles of the octagon is
0. As they move closer and closer to the centre, the angles of intersection
grow, approaching the Euclidean limit of 3π/4, and so the sum of the angles
approaches 6π. By continuity, we can find geodesics that bound an octagon
whose angles sum to exactly 2π. It turns out that the hyperbolic transla-
tions matching opposite sides of this octagon generate a discrete subgroup
of Isom(H2), and that the images of the octagon under this subgroup tile
the hyperbolic plane.
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Lecture 26. Wednesday, November 4

a. Hyperbolic translations and fundamental domains. Let us
now spend a little more time with the embedding of the free group F2 into
PSL(2,R), the group of isometries of the hyperbolic plane H2. First re-
call that GL(2,C) acts on the Riemann sphere C ∪ ∞ by fractional linear
transformations: to a matrix A = ( a bc d ) ∈ GL(2,C) we associate the trans-
formation

ϕA(z) =
az + b

cz + d
.

The kernel of this action is the set of scalar multiples of the identity matrix:
that is, ϕA = ϕA′ if and only if A = λA′ for some λ ∈ C.

Exercise 26.1. Show that ϕA ◦ ϕB = ϕAB .

If A has real entries, then ϕA preserves the extended real line and maps
the upper half-plane H = {z ∈ C | Im z > 0} to itself, which lets us consider
it as a transformation of the hyperbolic plane H2.

We can also consider the unit disc model for H2, given by D = {z ∈
C | |z| < 1}. The Möbius transformation ϕB(z) = −z+i

z+i associated to the

matrix B = (−1 i
1 i ) maps H bijectively onto D, taking the ideal boundary

R ∪∞ to the unit circle S1 (in particular, 0 to 1 and ∞ to −1), and taking
i to 0, the centre of the disc. Taking the inverse of B and rescaling the
matrix, we see that ϕ−1

B (z) = −z+1
−iz−i maps D back onto H.

Treating φB as a change of coordinates, we define the map ψA : D → D
such that the following diagram commutes:

H
ϕA−−−−→ H

yϕB

yϕB

C
ψA−−−−→ C

That is, ψA = ϕB ◦ ϕA ◦ ϕ−1
B , and so A acts on D as ϕA′ , where

A′ =

(
−1 i

1 i

)(
a b
c d

)(
−1 1
−i −i

)

=

(
(a+ d) + (b− c)i (a− d) + (b+ c)i
(a− d) − (b+ c)i (a+ d) − (b− c)i

)
=

(
u w
w u

)
;

here u = (a + d) + (b − c)i and w = (a − d) + (b + c)i, and we may take

detA′ = |u|2 − |w|2 = 1.

Remark. Matrices of the form given above compose a group known as
SU(1, 1); it is reminiscent of the special unitary group SU(2), except the
Hermitian product (12.1) is replaced by z1w1−z2w2. This group acts on the
unit disc in the same way SL(2,R) acts on the upper half-plane, preserving
the ideal boundary (in this case, the unit circle), and mapping the disc to
itself.
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Recall that a fractional linear transformation ϕA : H → H is hyperbolic
if A ∈ SL(2,R) has trace TrA > 4, in which case ϕA fixes two points on
the ideal boundary R ∪ ∞. In this case, the images of these points under
the change of coordinates ϕB are fixed points of ψA on the ideal boundary
S1 of the unit disc D. The situation when these two points are antipodal
was illustrated in Figure 5.7; of course, they may also lie in some other
configuration, and Figure 5.8 shows the general setup.

γ

z

ψA(z)

w

ψA(w)

ηz

F

ψA(F )

ψ−1
A (F )

Figure 5.8. A hyperbolic transformation.

Geodesics in H2 are lines and circles that are orthogonal to the ideal
boundary. There is a unique geodesic γ connecting the ideal fixed points of
ψA, and ψA preserves γ. It also preserves the other circles through the ideal
fixed points shown in Figure 5.8, although these are not geodesics. (They are
the so-called equidistant curves, which each run a fixed (hyperbolic) distance
from the geodesic γ.)

Another important family of curves for ψA is the set of geodesics or-
thogonal to γ. These partition H2, and furthermore, if we write ηz for the
geodesic through z ∈ γ orthogonal to γ, then ψA(ηz) = ηψA(z). Thus ψA
acts on this family of curves.

Fix z ∈ γ and let (z, ψA(z)) denote the set of points on γ that lie between
z and its image ψA(z). Then consider the region

(26.1) F =
⋃

w∈(z,ψA(z))

ηw

that comprises all geodesics orthogonal to γ through points in the interval
(z, ψA(z)). F is significant for understanding the action of ψA on D; we
start by recalling the following definition.

Definition 26.1. Let G be a group acting on a set X. A subset F ⊂ X
is a fundamental domain for this group action if

(1) g1F ∩ g2F = ∅ for all g1 6= g2 ∈ G, and
(2)

⋃
g∈G gF = X.

That is, a fundamental domain is a subset whose images under all the ele-
ments of G tile the set X.
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Remark. In order for a fundamental domain to exist, G must act freely
on X, otherwise there exists g ∈ G and x ∈ X such that g(x) = x, and
hence if x ∈ hF , we also have x ∈ ghF .

If X is not just a set, but carries a topology as well, then we usually
want to avoid fundamental domains that are topologically unpleasant. For
example, the set [0, 1/2) ∪ (3/2, 2) is a fundamental domain for the action
of Z on R, but not one we ever really want to use. . .

Thus in this case we restrict ourselves to connected fundamental do-
mains, such as [0, 1). Furthermore, it is somewhat unwieldy to have to
include some of the boundary, but not all of it; this motivates a slight mod-
ification of the above definition.

Definition 26.2. Let G be a group acting on a topological space X. A
subset F ⊂ X is a topological fundamental domain for this group action if

(1) F is open,
(2) g1F ∩ g2F = ∅ for all g1 6= g2 ∈ G, and
(3)

⋃
g∈G gF = X.

Example 26.3. Every topological fundamental domain for the action of
Z on R by addition (n : x 7→ x + n) is an open interval (a, a + 1) for some
a ∈ R.

Example 26.4. Given two linearly independent vectors u,v ∈ R2, we
have an action of Z2 on R2 by (m,n) : x 7→ x + mu + nv. The obvious
topological fundamental domain for this action is the parallelogram

(26.2) {au + bv | 0 < a < 1, 0 < b < 1},
or any translation of this parallelogram. However, there are many other
fundamental domains as well.

In order for a topological fundamental domain to exist, the group G
must act discretely on X. However, the action need not necessarily be free;
for example, Z/3Z acts on R2 by rotations by multiples of 2π/3, and the
sector

{(r cos θ, r sin θ) | 0 < r <∞, 0 < θ < 2π/3}
is a topological fundamental domain.

A useful general construction of fundamental domain when G acts by
isometries is the Dirichet domain Dx: pick a point x ∈ X and let Dx be the
set of points that are closer to x than to any other point on the orbit of x.
Conditions (1) and (2) of Definition 26.2 are obviously satisfied. In order
for (3) to hold the set of points equidistant from two point must be nowhere
dense since the boundary of Dx consists of parts of several such sets. This
condition obviously holds in Euclidean, spherical (and hence elliptic) and
hyperbolic geometry since the sets in questions are lines (geodesics); this
generalizes to higher dimensions.
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Exercise 26.2. Prove that the Dirichlet domain for the action by trans-
lations as in Example 26.4 is either a centrally symmetric hexagon or a
parallelogram.

Returning to the hyperbolic plane, we see that the set F defined in (26.1)
is a topological fundamental domain for the action of Z on D given by
n→ ψnA. Figure 5.8 shows the images of F corresponding to n = −1, n = 0,
and n = 1. If we take the images corresponding to all other values of n ∈ Z,
we obtain a tiling of D.

v

w

F

ηA

ηB

ψA(ηA)

ψB(ηB)

DA

DB

DA−1

DB−1

Figure 5.9. Fundamental domains in R2 and H2.

b. Existence of free subgroups. Now the fun begins. Given v ∈ R2,
the translation Tv induces an action of Z on R2; if w ∈ R2 is linearly
independent from v, then the strip

{av + bw | 0 < a < 1, b ∈ R}
is a topological fundamental domain for this action (see Figure 5.9). Fur-
thermore, if v,w ∈ R2 are linearly independent, then we can obtain a fun-
damental domain for 〈Tv, Tw〉 of the form (26.2) by taking the intersection
of the fundamental domains for 〈Tv〉 and 〈Tw〉.

Let ψA and ψB be hyperbolic transformations of the unit disc modelD of
the hyperbolic plane H2, and let γA and γB be the corresponding geodesics
connecting ideal fixed points. Fix zA ∈ γA and zB ∈ γB , and let ηA and ηB
be the geodesics through zA and zB orthogonal to γA and γB , respectively.
Let FA and FB be the corresponding fundamental domains for 〈ψA〉 and
〈ψb〉—that is, FA is the region between ηA and ψA(ηA), and similarly for
FB . Finally, let F = FA ∩ FB .

Now we make a crucial assumption: suppose that ψA and ψB are such
that the four geodesics ηA, ηB , ψA(ηA), ψB(ηB) do not intersect each other.
This amounts to requiring that ψA and ψB translate points on γA and γB
by a large enough distance, and guarantees that F has the form shown in
Figure 5.9.
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Observe that D \F is the union of four disjoint regions, and that each of
the four images ψA(F ), ψ−1

A (F ), ψB(F ), ψ−1
B (F ) lies in one of these regions.

Denote the region containing ψA(F ) by DA, the region containing ψ−1
A (F )

by DA−1 , and similarly for B.

Proposition 26.5. With A,B as above, the subgroup 〈A,B〉 ⊂ SL(2,R)
is free.

Proof. It suffices to show that the natural homomorphism F2 → 〈A,B〉 ⊂
SL(2,R) has trivial kernel. That is, every reduced word in A and B corre-
sponds to a matrix in SL(2,R), and hence to a Möbius transformation of
D. If w = w1 · · ·wn is such a word, where each wi is either A or B, then we
must show that ψw = Id if and only if w is the trivial word.

We do this by induction on the length of w, showing that ψw(F ) ⊂ Dw1

for every reduced word w. The case n = 1 is immediate from the observation
that ψA(F ) ⊂ DA, ψB(F ) ⊂ DB , and similarly for the inverses. Now if the
result holds for some value of n ≥ 1, then for any word w = w1 · · ·wn+1, we
have

ψw(F ) = ψw1
(ψw2···wn+1

(F )) ⊂ ψw1
(Dw2

) ⊂ Dw1
,

using the inductive hypothesis, the assumption that w is reduced, and the
fact that ψw1

(D \Dw−1

1

) ⊂ Dw1
. It follows that ψw 6= Id, and hence 〈A,B〉

is free. �

We will now spend a little time with the question of which groups have
free subgroups—although Z is technically a free group and is isomorphically
embedded into any group that contains an element of infinite order, we are
concerned with more substantive examples, and so will use “free subgroup”
to refer to a free subgroup on at least 2 generators.

Since many matrix groups contain an isomorphic image of SL(2,R),
Proposition 26.5 shows that free subgroups occur in many matrix groups—
for example, SL(n,R) for any n ≥ 2. SO(3) is compact, and hence does not
contain a copy of SL(2,R). It turns out that SO(3) contains a free subgroup
regardless, but this subgroup is not discrete.

Obviously an abelian group does not contain a free subgroup; however,
there are other, more interesting examples.

Theorem 26.6. Isom(R2) does not contain a free subgroup.

Proof. Recall that G = Isom(R2) is solvable, with G1 = [G,G] =
Isom+(R2), G2 = [G1, G1] = T (the subgroup of translations), and G3 =
[G2, G2] = {Id}. Furthermore, every subgroup of a solvable group is solvable,
and so we have reduced the problem to proving the following proposition.

Proposition 26.7. F2 is not solvable.

Proof. How can a group fail to be solvable? One simple way is for G
to contain a subgroup H with [H,H] = H, and indeed, if G is finite this
is the only possibility, since the sequence Gn must eventually stabilise. If
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G is infinite, this sequence may not stabilise, and this turns out to be the
case for F2. Indeed, we already saw that [F2, F2] is a subgroup of countable
index (the factor group being Z2), and we have no more luck further along.

Thus we use a slightly different approach. Recall that any subgroup of a
free group is free; in particular, [F2, F2] is a free group. Furthermore, direct
inspection shows that [F2, F2] is non-abelian, and hence contains an isomor-
phic image of F2. It immediately follows that G = F2 cannot be solvable,
since every group Gn in the derived sequence contains a free subgroup. �

This completes the proof of Theorem 26.6, since a non-solvable group
cannot be contained in a solvable group. �

Theorem 26.6 is really the observation that solvable groups are somehow
“too small” to contain a free subgroup. The dichotomy between groups that
contain a free subgroup and groups that are too small to do so forms the
heart of the Tits alternative, which was introduced by Jacques Tits in 1972,
and states that within the class of finitely generated matrix groups, the
only groups that do not contain a free subgroup are groups with a solvable
subgroup of finite index.

Remark. With a little more work, Proposition 26.7 can be strengthened
to the statement that [F2, F2] = F∞, the free group on countably many
generators. To see this, let G be the graph in R2 whose vertices are points
on the integer lattice Z2 and whose edges are all horizontal and vertical
unit intervals connecting adjacent vertices. Label each (directed) horizontal
edge a and each (directed) vertical edge b, and put the same labels on
the two loops in the figure-eight B2(S

1). Then we have a natural covering
map ρ : G → B2(S

1), which gives an isomorphism between π1(G) and the
subgroup [F2, F2] ⊂ π1(B2(S

1)). Letting T ⊂ G be any maximal tree, we
see that G \ T has infinitely many loops, and so π1(G) = F∞.

c. Surfaces as factor spaces. In the next lecture, we will return to
the question of obtaining surfaces of higher genus as factor spaces of H2 by
groups of isometries. For now, we recall the situation in the other two metric
geometries in two dimensions.

The only non-trivial group of isometries that acts freely and discretely
on the sphere S2 is the two-element group Z/2Z, and so the only two factor
spaces of S2 by isometries are S2 itself and the projective plane RP (2).
Both of these have lots of symmetries (the isometry group is SO(3)), which
require three continuous parameters to specify, and which act transitively
on points on the surface and on directions.

Moving to the Euclidean plane, we can construct free and discrete ac-
tions of Z (leading to the cylinder or the Möbius strip) and Z2 (leading to
the torus or the Klein bottle). The resulting factor spaces have fewer sym-
metries, which are specified by only two continuous parameters, and which
act transitively on points, but not on directions.
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In the hyperbolic plane, we will see that there are even more possible
factor spaces (in fact, infinitely many), but they only have discrete groups
of symmetries.
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Lecture 27. Friday, November 6

a. A rough sketch of geometric representations of surface groups.
Having constructed a geometric representation of the free group, we now do
so for the surface groups

(27.1) SGn = 〈a1, b1, . . . , an, bn | [a1, b1] · · · [an, bn] = e〉;
thanks to Theorem 25.1 (that we did not quite proved) and our discussion of
polygonal complexes, we know that the surface group on n pairs of symbols
is the fundamental group of the surface of genus n. We exhibit a free and
discrete action of SGn on the hyperbolic plane H2, which shows that the
surface of genus n can be obtained as a factor space of H2 by actions of
isometries. We go through the details in the case n = 2; the other cases are
similar.

First we observe that SGn, n ≥ 2 cannot act freely and discretely by
isometries on the Euclidean plane. For, by Theorem 6.10 any such group
contains a finite index subgroup of translations that is abelian hence any
two elements have commuting powers, while SGn contains elements, say a1

and a2, none of whose powers commute.

Exercise 27.1. Prove that SGn for n ≥ 2 contains a subgroup iso-
morphic to F2 and hence cannot be embedded to Isom(R2), discretely or
not.

Thus we turn our attention to the hyperbolic plane, and use the unit
disc model.

The central region in Figure 5.10 is a hyperbolic octagon with angles
equal to π/4. Denote this region by F , and label the edges of F with the
symbols a1, b1, c1, d1, a2, b2, c2, d2, proceeding counterclockwise around the
perimeter. Let fa, fb, fc, fd be the hyperbolic translations along axes through
the centre of the circle that map a1 to a2, b1 to b2, and so on. The regions bor-
dering F in Figure 5.10 (which are also hyperbolic octagons) are the images
of F under the eight transformations Fσ , σ ∈ {a, b, c, d, a−1 , b−1, c−1, d−1}.

Recall that in the case n = 2, the surface group SG2 is isomorphic to

〈a, b, c, d | abcda−1b−1c−1d−1 = e〉 = F4/G,

where G is the smallest normal subgroup of F4 that contains the word
abcda−1b−1c−1d−1.

Using the hyperbolic translations just introduced, we have a natural
homomorphism from ψ : F4 → Isom(H2); given any word w = σ1σ2 · · · σk,
where σi ∈ {a, b, c, d}, we associate to w the fractional linear transformation

ψ(w) = fσ1
◦ · · · ◦ fσk

.

We claim that ψ(F4) is an isomorphic image of SG2 that acts freely and
discretely on H2. The first part of this claim requires us to show that
kerψ = G, and then to apply the general result that ψ projects to an
isomorphism from SG2 = F4/G to ψ(F4).
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Figure 5.10. Tiling the hyperbolic plane with isometric octagons.

To establish G ⊂ kerψ, we must show that

(27.2) fa ◦ fb ◦ fc ◦ fd ◦ f−1
a ◦ f−1

b ◦ f−1
c ◦ f−1

d = Id .

The reverse inclusion kerψ ⊂ G can be established by induction on the
length of w, proving that ψ(w) = Id implies w ∈ G.

It then remains to show that SG2 acts freely and discretely on H2. This
will follow once we show that the octagon F is a fundamental domain for
SG2; in fact, it is a Dirichlet domain (or Voronoi domain) of the sort defined
in the previous lecture, as it comprises all points that are closer to the origin
than they are to any of its images under elements of SG2. To show that F
is a fundamental domain, one must show two things:

(1) If g ∈ SG2 is such that gF ∩ F 6= ∅, then gF = F . This can be shown
by induction on the length of g in the generators a, b, c, d.

(2) The images of F under elements of g fill H2.

b. Fuchsian groups. The example in the previous section is represen-
tative of an important general class.

Definition 27.1. A Fuchsian group is a discrete subgroup of Isom(H2)—
that is, a group that acts discretely on H2 by isometries.

Remark. A Fuchsian group G also acts on the ideal boundary S1 =
∂H2, but this action is not discrete.
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To any Fuchsian group G ⊂ Isom(H2) we can associate a fundamental
domain for the action of G on H2. (Of course, this choice is not canonical,
as there are many possible fundamental domains.)

Example 27.2. Let g ∈ Isom(H2) be parabolic (one fixed point on the
ideal boundary) or hyperbolic (two fixed points on the ideal boundary).
Then Z = {gn} ⊂ Isom(H2) is a Fuchsian group; if g is hyperbolic, a funda-
mental domain for the action of Z on H2 is as shown in Figure 5.8.

Example 27.3. In the previous lecture, we introduced hyperbolic trans-
lations that generate the free group F2 as a discrete subgroup of Isom(H2).
Thus F2 is a Fuchsian group, with fundamental domain as shown in Fig-
ure 5.9.

i

M

Figure 5.11. A fundamental domain for the modular group.

Example 27.4. Recall that Isom+(H2) = PSL(2,R). We can obtain
a discrete subgroup by restricting the entries of the matrices to be integer-
valued; thus PSL(2,Z) is a Fuchsian group, called the modular group. Unlike
the previous examples, it does not act freely on H2, as it contains finite-order
elements. For example, A = ( 0 1

−1 0 ) and B = ( 0 −1
1 1 ) have orders 2 and 3,

respectively, as elements of PSL(2,Z), as can be seen by working either
with the matrices themselves or with their corresponding fractional linear
transformations ϕA(z) = −1/z and ϕB(z) = −1/(z + 1).

In fact, PSL(2,Z) is generated by A and B, and these two elements
satisfy no relations aside from the obvious ones A2 = B3 = Id. One way to
show this is to work with the fundamental domain M shown in Figure 5.11,
and to proceed as we did with the surface group SG2. Identifying edges of
the fundamental domain of SG2 according to the generators of the group
yielded a surface of genus two; identifying edges of M according to the
generators ϕA and ϕA−1B : z 7→ z + 1 yields the modular surface.

Topologically, the modular surface is a sphere with a point removed;
geometrically, there are three special points. One of these is the point i, at
which the angles of the surface add to π, not 2π, and another is the point
ei(π/3), which is identified with ei(2π/3), and at which the angles only add to
2π/3; these two points are called conic points, by analogy with the tip of a
cone. The other special point is not a point on the surface at all, but rather
the point “at infinity”, which corresponds to a cusp on the surface.
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Remark. The modular group PSL(2,Z) contains a copy of the free
group on two symbols that is embedded in a different way than the example
we saw earlier. In that case, the elements of the group were hyperbolic
translations; it turns out that one can also embed F2 into PSL(2,Z) in such
away that some elements of it are parabolic. We will discuss this together
with a modification of the earlier construction that produce a similar effect,
in the next lecture.

Once a distance function (a metric) has been properly defined on H2,
it is possible to define an area function as well. One can show that the
fundamental domain M shown in Figure 5.11 for the modular group has
finite area, despite the fact that it is not compact. This represents a new
sort of behaviour compared with what we are used to in the Euclidean case;
if G ⊂ Isom(R2) acts discretely and F ⊂ R2 is a fundamental domain for G,
then one of the following two things happens.

(1) F has infinite area and hence F is non-compact; for example, when
G = Z acts by powers of a single translation and so R2/G is a cylinder.

(2) F is compact and hence has finite area; for example, when G = Z2 acts
by powers of two linearly independent translations and so R2/G is a
torus.

Both of these cases occur in Fuchsian groups acting on the hyperbolic
plane: the free group F2 has a non-compact fundamental domain with infi-
nite area, and the surface SG2 has a compact fundamental domain with finite
area. Now, however, there is a new possibility, as exhibited by PSL(2,Z),
which has a non-compact fundamental domain with finite area. Thus we are
led to consider not only Fuchsian groups with compact fundamental domain
(cocompact groups), but also Fuchsian groups with fundamental domains
having finite area (groups of cofinite volume).

c. More on subgroups of PSL(2,R). The statement that the surface
group SG2 embeds isomorphically as a discrete subgroup of PSL(2,R) is
a special case of the Poincaré polygon theorem, which says (more or less)
that the isometries of H2 that realise the edge identifications of a suitable
polygon in H2 generate a Fuchsian group with that polygon as a fundamental
domain if (in the case of free action, i.e. a group without elliptic elements)
the angles around each geometrically distinct vertex add to 2π. The proof
goes in three stages, the first two of which can be done by brute force for
any specific case, and the third of which is more abstract:

(1) Check that the isometries identifying edges of the polygon satisfy the
appropriate relation; for example, if a, b, c, d are the hyperbolic transla-
tions identifying opposite pairs of edges of the octagon, that

abcda−1b−1c−1d−1 = e.

(2) Show that images of the polygon align correctly around a single vertex
of the polygon; for example, under the action of the appropriate com-
binations of a, b, c, d, one obtains eight images of the octagon that are
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adjacent to a single vertex of the original octagon, each subtending an
angle of π/4.

(3) Prove and apply a general theorem due to Maskit, showing that these
first two conditions imply that the isometries in question generate a dis-
crete subgroup of PSL(2,R)—the proof, which we omit here, is essen-
tially an inductive procedure, carried out by “growing” the tesselation
beginning with the original polygon.

Before moving on to the final major topic of this course, we return
once more to the free group F2, which we embedded into PSL(2,R) in
Proposition 26.5. A fundamental domain F for this embedding was shown
in Figure 5.9; F is bounded by four geodesics in H2 and four arcs on the
ideal boundary.

Observe that by decreasing the distance that the generators ψA and ψB
move the geodesics ηA and ηB bounding F , we can decrease the (Euclidean)
length of the ideal arcs bounding F . In particular, if we choose ψA and ψB
just right, we can make each of these arcs collapse to a single point on the
ideal boundary.

For this particular choice of ψA and ψB, the fundamental domain F is
topologically equivalent to a torus with a single point removed: deforming
F into a (Euclidean) square, we see that ψA identifies the two vertical edges,
and ψB the two horizontal edges; thus all four corners are identified into a
single point, which is not actually part of F , but lies on the ideal boundary,
“at infinity”.

The geometric meaning of this can be seen by considering the usual
torus and pulling a particular point out to infinity, creating a cusp, a sort of
infinite “beak” on the torus, which is the same geometrically as the cusp on
the modular surface. This “beaked torus” differs from the modular surface
in that it has no conic points; in fact, this is a manifestation of a fundamental
difference between the topology of the sphere and the topology of the torus,
which we shall not get into here.

The proof of Proposition 26.5 goes through for this choice of A and B,
showing that 〈A,B〉 is a free subgroup of PSL(2,R); however, something
is different now. Before, every element of 〈A,B〉 was a hyperbolic transfor-
mation, while now, the transformation ψ[A,B] = ψA ◦ ψB ◦ ψ−1

A ◦ ψ−1
B fixes a

single point on the ideal boundary (one of the four vertices of F ), and hence
is a parabolic transformation. Similarly, all conjugates of [A,B] generate
parabolic transformations, as do all the powers of [A,B].

Exercise 27.2. Is this it? Is any parabolic transformation in 〈A,B〉 is
a conjugate of a power of [A,B]?

d. The Heisenberg group and nilmanifolds. Now we consider a
simplest representative of a species that will play a significant role in the
next chapter. The geometric picture here will look simpler that for Fucshian
groups, like that appearing in Figure 5.10; the tradeoff being higher dimen-
sion and an action that does nor preserve any natural distance function.
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Recall that the Heisenberg group H3 is the group of all 3×3 real matrices
of the form

(27.3)




1 x y
0 1 z
0 0 1


 .

If we demand that the entries x, y, z in (27.3) be integers, we obtain a discrete
subgroup Γ3 ⊂ H3. As with any subgroup of any group, Γ3 acts on H3 by
left multiplication:

(27.4)




1 m n
0 1 k
0 0 1


 :




1 x y
0 1 z
0 0 1


 7→




1 m+ x n+ y +mz
0 1 k + z
0 0 1


 .

This can be interpreted as an action of Γ3 on R3, but not by isometries. It is
almost the same as the action of Z3 on R3 by translations, but is “twisted”
in the z-coordinate. A natural set of generators for Γ3 is given by matrices

(27.5) e =




1 1 0
0 1 0
0 0 1


 , c =




1 0 1
0 1 0
0 0 1


 and f =




1 0 0
0 1 1
0 0 1


 .

Matrix c commutes with e and f and hence generates the center of N3;
direct computation shows that

(27.6) [e, f ] = c

providing the remaining generating relation for Γ3. Notice that this implies
that e and f generate Γ3 In fact, f and c act by translations but e does
not. As a fundamental domain for this action, we can take the unit cube
X = {(x, y, z) | x, y, z ∈ [0, 1]}. Two pairs of opposite faces of the cube are
identified in the standard way since f and c act by translations: f gives the
identification

(x, y, 0) ∼ (x, y, 1),

and c gives

(x, 0, z) ∼ (x, 1, z).

The remaining two faces, however, are identified with a shear by e:

(0, y, z) ∼ (1, y + z, z).

Thus the resulting quotient space R3/Γ3 is not the three-torus T3 = R3/Z3,
but something different. Indeed, because R3 is simply connected and N3

acts freely and discretely, Theorem 23.16 shows that π1(R3/Γ3) = Γ3, which
is non-abelian.

Remark. Thanks to Theorem 24.2, we know that any metrisable path-
connected topological group has abelian fundamental group, and hence R3/Γ3

does not carry a group structure.
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R3/Γ3 is obtained as the quotient space of a nilpotent Lie group (H3)
by the action of a free discrete subgroup; such quotient spaces are called
nilmanifolds, and have many nice properties.

Exercise 27.3. Prove that A : e → f, f → e, c → c−1 defines an
automorphism of Γ3 that is also an involution: A2 = Id.

Thus, intrinsically the non-central elements e and f are equivalent but
they clearly play different role with the action on H3. The reason is that we
consider action by left multiplications; with the action by right multiplica-
tions the roles of n1 and n2 will be reversed.

Remark. We can follow the procedure in Theorem 25.1 to construct a
polygonal complex whose fundamental group is Γ3. It turns out that the
resulting space is is homeomorphic to the fundamental domain [0, 1]3 with
the same face identifications, but with the interior (0, 1)3 removed. That is,
we obtain the two-dimensional skeleton of the above construction. Naturally
one needs to add some edges to make this a legitimate polygonal complex.





CHAPTER 6

Groups at large scale

Lecture 28. Monday, November 9

a. Commensurability. In the final chapter of this course, we shall
study coarse properties of finitely generated groups. The groups we consider
will be countably infinite, and we will examine certain “growth properties”
that characterise how these groups look at a “large scale”, in a sense that
will soon be made more precise. This will give us further insight into the
distinction between abelian groups, free groups, and the things that lie in
between.

We will be interested in coarse properties of groups, and so we need some
way of “throwing away” the insignificant details, and of saying when two
groups are equivalent for our purposes.

Definition 28.1. Two groups G and H are commensurable if there
exist finite index subgroups G1 ⊂ G and H1 ⊂ H such that G1 and H1 are
isomorphic. In this case, we write G ≃ H.

Proposition 28.2. Commensurability is an equivalence relation.

Proof. Symmetry and reflexivity are obvious; the only axiom of an
equivalence relation that is not immediate is transitivity. Suppose G ≃ H
and H ≃ K, so there exist isomorphic finite index subgroups G1 ⊂ G and
H1 ⊂ H, and similarly for H2 ⊂ H and K2 ⊂ K. Let φ1 : H1 → G1 and
φ2 : H2 → K2 be isomorphism

Now let H ′ = H1∩H2, and observe that H ′ is a finite index subgroup of
H. Furthermore, G′ = φ1(H

′) and K ′ = φ2(H
′) are finite index subgroups

of G and K, respectively. They are isomorphic to H ′, and hence to each
other, thus G ≃ K. �

Example 28.3. All finite groups are commensurable to each other and
to the trivial group.

Example 28.4. The infinite dihedral group is D∞ = 〈a, b | b2 = (ab)2 =
e〉. The subgroup 〈a〉 ⊂ D∞ has index two and is isomorphic to Z, thus
D∞ ≃ Z.

Example 28.5. Let L ⊂ R2 be a rank 2 lattice. Then Isom(L) is a
discrete subgroup of Isom(R2), and hence has a finite index subgroup of
translations, which is isomorphic to Z2. It follows that Isom(L) and Z2 are
commensurable.

203
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In general, every discrete subgroup of Isom(R2) is commensurable to
{e}, Z, or Z2, and none of these three groups are commensurable to each
other.

b. Growth in finitely generated groups. The definition of com-
mensurability gives a sense of the lens through which we will now look at
various groups. We now introduce the yardstick by which we will measure
those groups.

Let G be a finitely generated group, and let Γ = {γ1, . . . , γn} be a set of
generators (not necessarily symmetric). Then every element g ∈ G can be
represented by a word

(28.1) w = (γ
k1,1

1 γ
k1,2

2 · · · γk1,n
n )(γ

k2,1

1 γ
k2,2

2 · · · γk2,n
n ) · · · (γkm,1

1 γ
km,2

2 · · · γkm,n
n ),

where the exponents ki,j can take any integer values. The length of the word
w is

ℓ(w) =
∑

i,j

|ki,j| ;

of course, there are many different words that represent the element g, and
so we define the length of g to be the length of the shortest word representing
g:

(28.2) ℓ(g) = min{ℓ(w) | w represents g}.
Remark. If we draw the Cayley graph of G using the set Γ of generators,

the length of an element g is just the length of the shortest path in the Cayley
graph from the identity element to g. Of course, choosing a different set of
generators yields a different Cayley graph, and in our present setting, leads
to a potentiall different length for the element g. Thus this notion is very
dependent on our choice of Γ.

Definition 28.6. Given a group G and a set of generators Γ, the growth
function of G and Γ evaluated at n ∈ N is the number of elements of G whose
length with respect to Γ is bounded by n:

(28.3) GG,Γ(n) = #{g ∈ G | ℓ(g) ≤ n}.
Example 28.7. If G = Z and Γ = {1}, then GG,Γ(n) = 2n + 1, since

ℓ(k) = |k|.
Example 28.8. If G = Z2 and Γ = {(1, 0), (0, 1)}, then ℓ((a, b)) =

|a| + |b|, and an easy computation shows that GG,Γ(n) = 2n2 − 2n + 1. A
similar computation and an easy induction shows that

(28.4) GZk ,{e1,...,ek}
(n) = 2nk +O(nk−1).

Exercise 28.1. Find a closed formula for GZk ,{e1,...,ek}
(n).

Example 28.9. Let a and b be the generators of the free group F2.
Observe that there is only 1 reduced word of length 0 (the identity element),



LECTURE 28. MONDAY, NOVEMBER 9 205

there are 4 reduced words of length 1, and there are 4 · 3j reduced words of
length j for j ≥ 2. Thus we have

(28.5) GF2,{a,b}(n) = 1 + 4(1 + 3 + 32 + · · · + 3n−1) = 1 + 2(3n − 1).

A similar computation for Fk and its natural generators {a1, . . . , ak} yields
the growth function

(28.6) GFk,{a1,...,ak}(n) = 1 + k((2k − 1)n − 1).

In fact, (28.6) gives a universal upper bound on the growth function of
any group with k generators: whatever group G and generating set Γ we
choose, the number of reduced words of length ≤ n in elements of Γ, and
hence the number of elements of G with length ≤ n, is bounded above by
the expression in (28.6). However, it is important to notice that this growth
function can often be made to grow quite quickly by choosing a large set of
generators with few relations, and hence a large value of k.

The above examples all yielded explicit expressions for the growth func-
tion. However, such explicit expressions are not always so easy to come by,
and are also quite sensitive to our choice of generators. A more robust piece
of information is the asymptotic growth of GG,Γ(n). So far we have seen two
qualitatively different sorts of behaviour:

(1) Polynomial growth: There exists α such that GG,Γ(n) = nα + o(nα).

This is the case for Zk with the standard generators and α = k.
(2) Exponential growth: There exists λ > 1 such that GG,Γ(n) = eλn+o(n).

This is the case for the free group Fk with the standard generators, with

(28.7) λ = lim
n→∞

1

n
log GFk,{a1,...,ak}(n) = log(2k − 1).

The utility of this point of view can be seen by considering the surface
group SG2 with generators a, b, c, d. Explicit computation of the growth
function amounts to a relatively intricate combinatorial inspection of the
tesselation, which we prefer to avoid. We can work out the asymptotic
behaviour with rather less effort: observing first that GSG2,{a,b,c,d}(n) ≤
GF4,{a,b,c,d}(n), we then note that the subgroup 〈a, c〉 ⊂ SG2 is free, and
hence

GSG2,{a,b,c,d}(n) ≥ GF2,{a,c}(n) = 1 + 2(3n − 1).

The growth function for SG2 is bounded above and below by growth func-
tions with exponential growth, and hence itself has exponential growth.

Is this true of SG2 with any set of generators? Or might we find some set
of generators with respect to which the growth function has only polynomial
growth?

First observe that for any group G, generators Γ, and m,n ∈ N, every
word of length m+ n can be decomposed into the concatentation of a word
of length m and a word of length n: it follows that

GG,Γ(m+ n) ≤ GG,Γ(m)GG,Γ(n),

and so log GG,Γ(n) is subadditive.
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The following fact is one of the most useful that appears in calculus
courses. If you did not see a proof it serves as nice exercise.

Proposition 28.10. Show that if an is subadditive—that is, am+n ≤
am+an for all m,n ∈ N—then limn→∞ an/n exists and is equal to infn an/n
(it may be −∞).

Applying Proposition 28.10 to log GG,Γ(n), we see that the exponential
growth rate

(28.8) λ(G,Γ) = lim
n→∞

1

n
log GG,Γ(n)

exists for every group G and generators Γ.

Proposition 28.11. Let G be a finitely generated group. If λ(G,Γ) > 0
for some set of generators Γ, then λ(G,B) > 0 for any other set of generators
B.

Proof. Let Γ = {γ1, . . . , γk} and B = {β1, . . . , βm} be two sets of
generators of G. Write ℓΓ(g) and ℓB(g) for the length of g ∈ G with respected
to Γ and B, respectively. Let ω = maxi ℓB(γi), and observe that every word
of length ≤ n in elements of Γ can be written as a word of length ≤ ωn in
elements of B. It follows that

GG,Γ(n) ≤ GG,B(ωn),

and hence

λ(G,B) = lim
n→∞

1

ωn
log GG,B(ωn) ≥ 1

ω
lim
n→∞

1

n
log GG,Γ(n) =

1

ω
λ(G,Γ) > 0.

�

As a consequence of Proposition 28.11, the statement that a group G
has exponential growth is independent of what set of generators we choose,
as is the statement that G has subexponential growth (λ = 0). However,
the exponent λ can vary if we choose a different set of generators.

Within the class of groups with subexponential growth, we have seen
polynomial growth occurring for abelian groups. We will see that in fact,
any nilpotent group has polynomial growth. Furthermore, a deep result
due to Gromov states that a group has polynomial growth if and only if
it is virtually nilpotent—that is, it is commensurable to a nilpotent group.
Unfortunately the proof of this result that features some of the most striking
applications of “soft” analysis argument to algebra, lies beyond the scope of
these lectures.
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Lecture 29. Wednesday, November 11

a. Different growth rates. In the previous lecture, we considered the
growth function for finitely generated groups G with generating set Γ. We
saw that although the exact value of the exponential growth rate λ(G,Γ)
defined in (28.8) may depend on the choice of generators, the dichotomy
between exponential growth (λ > 0) and subexponential growth (λ = 0) is
valid independently of what generators we choose (Proposition 28.11). Thus
we may divide the class of finitely generated groups into two classes: groups
with exponential growth and groups with subexponential growth.

So far, we have seen two basic classes of groups with exponential growth
up to commensurability: free groups and surface groups. We have seen one
basic class of examples of groups with sub-exponential growth, again up to
commensurability: the groups Zk. One way to obtain more examples is to
consider direct products. This gives new examples in the exponential case
but so far not in the polynomial case. In the exponential case one can also
consider free products of previously constructed groups.

The distinction between exponential and subexponential growth is rem-
iniscent of the situation we see when we consider a matrix A ∈ SL(n,R)
acting on Rn. Given a vector v ∈ Rn, we may consider the growth rate of
the quantity ‖Akv‖—that is, the norm of the image of v under k iterations
of the linear map A. There are three possibilities:

(1) No growth: ‖Akv‖ is uniformly bounded for all k ∈ Z. This occurs
if v lies in the linear span of eigenspaces corresponding to eigenvalues
on the unit circle for which there are no Jordan blocks. Thus A acts
on a subspace containing v as a product of rotations; in particular, an
isometry.

(2) Polynomial growth: ‖Akv‖ ≈ kα for some α ∈ N. This occurs if v lies in
the linear span of eigenspaces corresponding to eigenvalues on the unit
circle for which there are Jordan blocks. If m is the size of the largest
Jordan block, then α = m− 1.

(3) Exponential growth in either one or both time directions: This occurs
if v has a non-zero component in the direction of an eigenvector for an
eigenvalue not lying on the unit circle.

Exercise 29.1. Construct a sequence of real numbers xn such that both
of the following hold simultaneously:

(1) xn grows super-polynomially—that is, for every α > 0,
limn→∞ xn/n

α = ∞.
(2) xn grows subexponentially—that is, for every λ > 0,

limn→∞ xn/e
λn = 0.

A sequence such as the one in Exercise 29.1 is said to have intermediate
growth. It follows from the discussion above that intermediate growth does
not occur for linear maps—that is, every linear map with subexponential
growth actually has polynomial growth. So far, the only examples we have
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seen of groups with subexponential growth are the abelian groups Zk, which
turn out to have polynomial growth.

There are a number of natural questions to ask at this point.

(1) Is polynomial growth independent of the choice of generators?
(2) Does every abelian group have polynomial growth? And, if yes, are they

characterized by the growth rate up to commensurability?
(3) Are there non-abelian groups with polynomial growth?
(4) Does intermediate growth even exist for groups? Or are they like linear

maps in displaying only polynomial growth and exponential growth,
with nothing in between?

(5) Can we characterise the class of groups with polynomial growth? Do the
properties of polynomial growth, exponential growth, and intermediate
growth (if such examples exist) have algebraic significance?

The last two questions turn out to be harder than the other three, and
so we will postpone them. For the time being, we will address the first three
questions in turn.

b. Groups with polynomial growth. We say that (G,Γ) has poly-
nomial growth of degree α > 0 if there exists C > 0 such that GG,Γ(n) ≤ Cnα

for all n, and if this property fails for all smaller values of α.

Remark. If G has an element of infinite order, then we have α ≥ 1. It
is natural to ask if there exist groups with polynomial growth of degree α
with 0 < α < 1: clearly such groups must have infinitely many elements,
all of finite order. Groups with these properties do exist, but we do not
construct them here.

Proposition 28.11 showed that the property of exponential growth is
independent of the choice of generators. A similar statement is true for
polynomial growth: in fact, the degree is also independent.

Proposition 29.1. If Γ is a finite generating set for G and (G,Γ) has
polynomial growth of degree α, then (G,B) has polynomial growth of degree
α for any other finite generating set B.

Proof. We use a similar approach to the proof of Proposition 28.11.
Consider ω = maxi ℓΓ(βi), and observe that GG,B(n) ≤ GG,Γ(ωn). Conse-
quently, if α > 0 and C > 0 are such that GG,Γ(n) ≤ Cnα for all n, then

GG,B(n) ≤ Cωαnα

for all n, and hence (G,B) has polynomial growth of degree at most α. A
symmetric proof establishes the other inequality. �

This gives a positive answer to the first question above: polynomial
growth, and even the degree of that growth, is independent of the choice of
generators, so we can speak of “a group with polynomial growth of degree
α” without fear of ambiguity due to not specifying a choice of generators.



LECTURE 29. WEDNESDAY, NOVEMBER 11 209

c. Abelian groups. In the previous lecture, we studied the growth
functions for the abelian groups Zk. It turns out that up to commensura-
bility, these are the only finitely generated abelian groups.

Definition 29.2. Let G be a group. If g ∈ G has finite order, we say
that it is a torsion element. If every element of G is a torsion element, then
G is a torsion group. If the only torsion element is the identity, then G is
torsion-free.

Theorem 29.3. Every torsion-free finitely generated abelian group is
isomorphic to Zk for some k.

Proof. Given a torsion-free abelian group G = 〈g1, . . . , gn〉, we must
show that G ∼= Zk for some k ≤ n. Note that k may be strictly less than n;
for example, one may consider Z2 = 〈(1, 0), (1, 1), (0, 1)〉, in which case we
have k = 2 and n = 3.

The proof uses geometric methods and goes by induction in n. The case
n = 1 is easy: if G = {g1} and a1 has infinite order, then G ∼= Z. So now
suppose that the result holds for groups with n generators, and suppose
G = 〈g1, . . . , gn+1〉.

Because G and Zk are both abelian, we will use additive notation—that
is, given elements g, h ∈ G and integers a, b, we will write ag+ bh instead of
gahb.

We say that an element g ∈ G is prime in G if it is not obtained from
any other single element—that is, if there do not exist h ∈ G and a > 1
such that ah = g. Observe that (m1, . . . ,mk) is prime in Zk if and only if
the greatest common divisor of m1, . . . ,mk is 1.

Lemma 29.4. If m ∈ Zk is prime in Zk, then there exists a basis of
Zk containing m—that is, there exist m1, . . . ,mk such that m1 = m and
〈m1, . . . ,mk〉 = Zk. Equivalently, there is a matrix A ∈ SL(k,Z) such that
the first row of A is the vector m.

Proof. Consider the line P1 in Rk given by P1 = {tm | t ∈ R}. Because
the slope of this line is rational, there exists a lattice point m2 ∈ Zk such
that d(m2, P1) ≤ d(m′, P1) for all m′ ∈ Zk.

Now consider the plane P2 = {t1m1 + t2m2 | t1, t2 ∈ R}. The lattice
L2 = {n1m1 + n2m2 | n1, n2 ∈ Z} = P2 ∩ Zk. For, otherwise there would a
point Zk ∋ x = t1m1 + t2m2, 0, < t2 < 1 that is closer to the line P1 than
m2.

Once again, let m3 ∈ Zk be the closest lattice point to P2 and let
P3 = {t1m1 + t2m2 + t3m3 | t1, t2, t3 ∈ R} The same argument using
fundamental domains shows that

L3 = {n1m1 + n2m2 + n3m3 | n1, n2, n3 ∈ Z} = P3 ∩ Zk

Proceeding by induction we obtain Pk = Rk and

Lk = {n1m1 + n2m2 + · · · + nkmk | n1, n2, . . . , nk ∈ Z} = Pk ∩ Zk = Zk.
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�

Armed with Lemma 29.4, we can carry out the inductive step. Given
a torsion-free abelian group G = 〈g1, . . . , gn+1〉, we have by the inductive
hypothesis that 〈g1, . . . , gn〉 is isomorphic to Zk for some k ≤ n. Now there
are two cases.

Case 1. Suppose agn+1 /∈ 〈g1, . . . , gn〉 for all non-zero integers a. Then
mapping gn+1 to ek+1 extends the isomorphism between 〈g1, . . . , gn〉 and Zk

to an isomorphism between G and Zk+1.
Case 2. Suppose a > 0 is the smallest positive integer such that agn+1 ∈

〈g1, . . . , gn〉. Now let h ∈ 〈g1, . . . , gn〉 be prime in 〈g1, . . . , gn〉 such that
agn+1 = bh for some integer b. Since 〈g1, . . . , gn〉 ∼= Zk, Lemma 29.4 proves
the existence of a basis {m1, . . . ,mk} for Zk such that m1 corresponds to
h.

Now observe that under the correspondence between 〈g1, . . . , gn〉 and Zk,
the element agn+1 corresponds to bm1. Let m′

1 = b
am1 ∈ Rk, and observe

that 〈m′
1,m2, . . . ,mk〉 is a subgroup of Rk that is isomorphic to Zk and that

is also isomorphic to 〈g1, . . . , gn+1〉. �

If G is a finitely generated abelian group that contains elements of finite
order, one can consider the torsion subgroup T ⊂ G that comprises all ele-
ments of finite order. (Observe that T is a subgroup because two commuting
elements of finite order have a product that is also of finite order; this is not
necessarily true if the elements do not commute.) Then G/T is a torsion-free
finitely generated abelian group, so by Theorem 29.3 it is isomorphic to Zk.
One can show that G/T is also isomorphic to a finite index subgroup of G,
and it follows that G and Zk are commensurable.

Summarising, Theorem 29.3 tells us that up to commensurability, every
finitely generated abelian group is equivalent to Zk. In particular, every
finitely generated abelian group G has polynomial growth of degree k, where
k is the so-called “torsion-free rank” of G. Thus we see that the degree of
polynomial growth completely classifies finitely generated abelian groups up
to commensurability. This is a stark contrast from the case for the free
groups Fk, where the growth rate alone cannot distinguish F2 from F3, or
from any other Fk.

d. Nilpotent groups. Having settled the first and second questions on
our original list, we turn our attention to the third: are there non-abelian
groups that also have polynomial growth? It turns out that there are.

Theorem 29.5. Any finitely generated nilpotent group has polynomial
growth.

The proof goes by induction in nilpotent length. The base of induction
is nilpotent length one, i.e. abelian groups, which follows from Theorem 29.3
and the results on growth of Zk.
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Proof for nilpotent length ≤ 2. We start with the case of nilpo-
tent length two to explain the ideas and show how they work for the example
given above. After that we present the general induction step.

Assume G is such a group with m generators, g1, . . . , gm. Then the
commutator [G,G] is abelian and belongs to the center of G. Take a product
of n generators. Exchanging any two generators produces a commutator on
the right. Since commutators lie in the center they can be moved to the right.
In order to move generators to a canonical order one needs thus no more
than n2 interchanges. Thus we obtain a word of the form gk11 g

k2
2 . . . gkm

m C,
where C is the product of no more that n2 commutators of the generators.
Those commutators are words of bounded length with respect to any system
of generators in the abelian group [G,G] with polynomial growth of degree,
say, k. Thus the growth of G is polynomial of degree at most m+ 2k. �

Remark. Notice that m ≥ 2 since any group with one generator is
abelian, and k ≥ 1; otherwise commutator is finite and G can be shown to
have an abelian subgroup of finite index. Hence the minimal value of our
above estimate for the growth in a non-abelian nilpotent group is four.

Example 29.6. (See Section 27.d) Let Γ3 be the group of upper-triangular
unipotent 3×3 matrices with integer entries (this is a subgroup of the Heisen-
berg group). Γ3 is generated by

e =




1 1 0
0 1 0
0 0 1


 and f =




1 0 0
0 1 1
0 0 1


 ,

and has a one-dimensional center generated by

[e, f ] =




1 0 1
0 1 0
0 0 1


 .

As our above estimate shows the polynomial growth in this group has degree
≤ 4. Let us show that this growth is actually achieved. Consider a word
w that contains k e’s and l f ’s and no inverses, Let I(w) be the number of
paris (e, f) in w where e precedes f . Immediate calculation shows that w
corresponds to the matrix




1 k I(w)
0 1 l
0 0 1


 .

For fixed value of k and l a(w) can take any value between 0 and kl. Thus

GΓ3,<e,f>(n) >
∑

k,l,k+l≤n

kl > Cn4,

where the constant C can be easily estimated from below, say C > 2−6 by
taking k and l between n/4 and 3n/4.
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This is the slowest possible growth in a nilpotent group which does not
have an abelian subgroup of finite index.

Proof for the general case. Assume G has nilpotent length s and
as before has m generators g1, . . . , gm. Then [G,G] has nilpotent length
≤ s − 1 and hence by the inductive assumption has polynomial growth of
degree, say k.

As before, consider a product w of n generators and try to bring it
to a form gk11 g

k2
2 . . . gkm

m C, where C ∈ [G,G] and estimate the length of
C. Exchanging a pair of generators produces a commutator on the right;
as before there will be no more than n2 such commutators in the process
of rearranging the generators. But this time when we move generators to
the left we need to exchange them with the commutators thus producing
elements of the from [gi1 , [gi2 , gi3 ]] ∈ [G, [G,G]], the total of no more of n3,
and so on. Since G has nilpotent length s this process of generating new
terms will stop at s-th level, i.e. moving generators through commutators
of i-th order with not produce any new terms. Thus the total length of C
is estimated from above by const · ns since there are at most n2 + · · · + ns

commutators of different orders and each of them is a word of bounded
length. Thus the growth of G is polynomial of degree at most m+ sk. �

The above proof gives an above estimate of the degree of growth of G.

Example 29.7. Consider the group Γ4 of of upper-triangular unipotent
4 × 4 matrices with integer entries. It has three generators

e12 =




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , e23 =




1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1


 and e34 =




1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 ,

its nilpotent length is three and its commutant is isomorphic to Γ3. This
gives 3 + 3 · 4 = 15 as an above estimate on the degree of of growth for Γ4.
However, a more accurate count shows that the actual degree is 10.
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Lecture 30. Friday, November 13

a. The automorphism group. Let us return now to a more general
discussion. Broadly speaking, one of the goals of the endeavour in which we
are presently embroiled is to understand “just what groups are actually out
there”. One way of doing this is to characterise certain interesting properties
that distinguish between various sorts of groups: polynomial growth and
exponential growth are examples of this approach.

Another approach is to construct lots of interesting examples of groups
with different algebraic structure, and thus to gain our insight from more
concrete cases. So how do we construct examples of groups? The technique
of group presentations is a powerful way to specify very many interesting
groups by giving a set of generators and a set of relations. However, it suffers
from a drawback: it is often quite hard to tell just what group we actually
have our hands on. For example, here are two finitely presented groups:

G = 〈a, b, c | a2 = b2 = c2 = e, ac = ca, aba = bab, bcb = cbc〉,
H = 〈x1, x2, x3 | x2

i = (xixj)
3 = (xixjxk)

4 = e for all i 6= j, i 6= k, j 6= k〉.

Are G and H isomorphic? It is not at all obvious how we ought to go
about answering this question: in fact, it has been proved that there does
not exist an algorithm for determing when two finitely presented groups are
isomorphic.

One situation where we are on better footing is when a finitely presented
group turns out to be isomorphic to a group we have already studied in some
more concrete realisation.

Exercise 30.1. Show that G and H above are both isomorphic to S4,
and hence are isomorphic to each other.

Another problem with using the presentation method is that it does not
behave well with respect to commensurability. For example, F2 is isomorphic
to SL(2,Z); standard presentation for the latter do not seem to indicate this.

Since group presentations are so slippery, we may well search for more
transparent ways of producing new groups from old ones. We have already
seen two important constructions: the direct product and the free product.
In this section, we consider a third construction, which builds a (possibly
new) group not as a “product” of two others, but in terms of a single group.
This will be later used in the construction of a “semi-direct” product of two
groups (that requires some extra information) that is more flexible than the
straightforward direct product but still connects the groups more tightly
than free product.

Recall that an automorphism of a group G is a bijective homomorphism
from G to itself. The set of all automorphisms of G forms a group, which
we denote Aut(G). Every element g ∈ G induces an automorphism ψg ∈
Aut(G) by conjugation: ψg(h) = g−1hg. Automorphisms of this form are
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called inner automorphisms; the set of all inner automorphisms is a subgroup
of Aut(G), which we denote Inn(G).

Inner automorphisms are very helpful in understanding the internal
structure of G. An outstanding example concerns continuous groups, such
as matrix groups, and, more generally, Lie groups. The action of a matrix
group on itself by inner automorphisms is called the adjoint representation.
It, and its derivative, the adjoint representation of the Lie algebra, play the
central role in the structural theory of Lie groups and Lie algebras.

However, we do not obtain any new groups by looking at inner automor-
phisms, since Inn(G) is a homomorphic image of G itself. Indeed, the map
g 7→ ψg is a homomorphism from G onto Inn(G), whose kernel is Z(G), the
center of G, and thus

(30.1) Inn(G) = G/Z(G).

Example 30.1. Consider the abelian group Zk: because the centre is
everything, the inner automorphism group is trivial. Nevertheless, there are
many automorphisms of Zk:

(30.2) Aut(Zk) = GL(k,Z) = {A ∈Mn(Z) | detA = ±1}.
If k is odd, then GL(k,Z) is the direct product of SL(k,Z) and Z/2Z. If
k is even, the relationship between GL(k,Z) and SL(k,Z) is slightly more
complicated (but only slightly).

Example 30.1 shows that interesting new groups can be constructed as
the automorphism groups of already familiar groups. One may ask how
Aut(Zk) = GL(k,Z) fits into the theory of group presentations: is it finitely
generated? Finitely presented? We will see later on that this turns out to
be the case.

b. Outer automorphisms. For non-abelian groups G, the inner au-
tomorphism group Inn(G) is non-trivial, and so we would like to construct a
new group by factoring Aut(G) by Inn(G). To do this, we must first verify
that Inn(G) is normal.

Proposition 30.2. Inn(G) is a normal subgroup of Aut(G).

Proof. Given g ∈ G, consider the corresponding inner automorphism
ψg : h 7→ g−1hg, and let φ ∈ Aut(G) be an arbitrary automorphism (not
necessarily inner). Then for all h ∈ G, we have

(φ ◦ ψg ◦ φ−1)(h) = φ(g−1φ−1(h)g) = φ(g)−1hφ(g) = ψφ(g)(h),

and it follows that φ ◦ ψg ◦ φ−1 = ψφ(g) ∈ Inn(G). �

Definition 30.3. The quotient group Out(G) = Aut(G)/ Inn(G) is
called the outer automorphism group of G.

Remark. In day-to-day usage, we often refer to an automorphism that
is not an inner automorphism as an outer automorphism. However, strictly
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speaking, the elements of the outer automorphism group are actually cosets
of the inner automorphism group, rather than individual “outer automor-
phisms”.

Example 30.4. Since Zk is abelian, we have Out(Zk) = Aut(Zk) =
GL(k,Z).

The outer automorphism groups of the free groups Fk and the surface
groups SGn turn out to be exceedingly interesting objects.

Out(SGn) is the so-called mapping class group, which plays a role in
Teichmüller theory. In the case n = 1, this is just GL(2,Z), since SG2 = Z2,
but for larger values of n, Out(SGn) is a completely different beast than the
linear groups GL(k,Z). Thus SL(2,Z) has two natural generalisations to
“higher dimensions”: SL(k,Z) and Out(SGn).

Exercise 30.2. Let Γ3 once again be the group of upper-triangular
unipotent matrices with integer entries. Show that Inn(Γ3) = Z2. What are
Aut(Γ3) and Out(Γ3)?
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Lecture 31. Monday, November 16

a. The structure of SL(2,Z). In the previous lecture, we obtained
the groups GL(n,Z) (and hence their index 2 subgroups SL(n,Z)) by con-
sidering the automorphism groups Aut(Zn). In this lecture, we study these
groups further, beginning with the case n = 2.

Proposition 31.1. SL(2,Z) is generated by the following matrices:

(31.1) A =

(
1 1
0 1

)
, B =

(
0 −1
1 0

)
.

Proof. Recall the classical Euclidean algorithm: one begins with two
positive integers a and b, and transforms the pair (a, b) into the pair (gcd(a, b), 0)
through successive applications of the transformation

(31.2) (a, b) 7→
{

(a, a− b) a ≥ b,

(b, a) a < b.

We follow a similar procedure here, replacing the integers a, b with vectors
x,y ∈ Z2, and using multiplication by the matrices A,B as the analogue of
the two transformations in (31.2).

Let us make this precise. Begin with a matrix X ∈ SL(2,Z), and let
x = ( x1

x2
) ,y = ( y1y2 ) ∈ Z2 be the column vectors of X. Write p(x) =

min(|x1| , |x2|) for the distance from x to the nearest axis, and also write
P (X) = p(x). Observe that P (X) does not depend on the second column of
X. The proof is by induction on P (X): essentially we perform the Euclidean
algorithm on the pair (x1, x2), and bring the pair (y1, y2) along for the ride.

First observe that the matrices BiX for i ∈ {0, 1, 2, 3} have the forms

(31.3)

(
x1 y1

x2 y2

)
,

(
−x2 −y2

x1 y1

)
,

(
−x1 −y1

−x2 −y2

)
,

(
x2 y2

−x1 −y1

)
.

For the base case of the induction, we use the fact that P (X) ≥ 0 for
every matrix X ∈ SL(2,Z), and that if P (X) = 0, then either X or BX is
upper-triangular. Upper-triangular matrices in SL(2,Z) have integer entries
equal to ±1, and hence one of the matrices BiX is of the form

(
1 k
0 1

)
for

some k ∈ Z. Furthermore, this matrix is equal to Ak, and it follows that
X = B−iAk ∈ 〈A,B〉.

Now for the induction step. For any 2 × 2 matrix T , we have TX =
T (x y) = (Tx Ty), and consequently, P (TX) = p(Tx). Furthermore,
Akx =

(
x1+kx2
x2

)
. Thus if |x1| ≥ |x2|, then we choose k ∈ Z such that

|x1 + kx2| < |x2|, and we see that

P (AkX) = p(Akx) = |x1 + kx2| < |x2| = p(x) = P (X).

If |x1| < |x2|, then Bx =
(
−x2
x1

)
, and the same argument shows that

P (AkBX) = p(AkBx) < p(x) = P (X).

By the inductive hypothesis, then, either AkX or AkBX lies in 〈A,B〉, and
so X ∈ 〈A,B〉 as well. This completes the proof that 〈A,B〉 = SL(2,Z). �
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It turns out that SL(2,Z) is not far from being free. Of course, it
has a non-trivial centre Z(SL(2,Z)) = {±I}, and so we consider instead
the projective group PSL(2,Z) = SL(2,Z)/{±I}. Consider the following
subgroup of PSL(2,Z):

(31.4)

Γ(2) = {X ∈ PSL(2,Z) | X ≡ I mod 2}

=

{(
a b
c d

)
∈ PSL(2,Z)

∣∣∣ a, d are odd and b, c are even

}
.

Exercise 31.1. Show that Γ(2) = 〈S, T 〉, where S = ( 1 2
0 1 ) and T =

( 1 0
2 1 ). (Hint: mimic the proof of Proposition 31.1).

Exercise 31.2. Show that Γ(2) is isomorphic to F2 with generators
S and T—that is, show that there are no non-trivial relations between S
and T . (Hint: mimic the proof of Proposition 26.5, replacing the regions
DA,DB ,DA−1 ,DB−1 ⊂ H2 with the four “quadrants” in R2 bounded by the
lines y = ±x.)

Exercise 31.3. Show that Γ(2) has index 6 in PSL(2,Z), and that we
can take the coset representatives to be(

1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
,

(
0 1
1 0

)
.

It follows from the above exercises that SL(2,Z) has a free subgroup of
index 12, and hence GL(2,Z) has a free subgroup of index 24. In particular,
each of these groups is commensurable to F2.

Not only does PSL(2,Z) have a free subgroup of index 6, but it itself can
be written as a free product. Indeed, using the fact that SL(2,Z) = 〈A,B〉,
where A,B are as in Proposition 31.1, and abusing notation slightly by
also writing A and B for the corresponding elements of PSL(2,Z), we have
PSL(2,Z) = 〈A,B〉 = 〈B,BA〉, where

BA =

(
0 −1
1 0

)(
1 1
0 1

)
=

(
0 −1
1 1

)
.

Observe that as elements of PSL(2,Z), B has order 2 and BA has order 3:
furthermore, it can be shown (though we do not do so), that A and BA do
not satisfy any other relations. Thus we have

(31.5) PSL(2,Z) ∼= (Z/2Z) ∗ (Z/3Z),

which is the smallest non-trivial example of a free product (the free product
of two copies of Z/2Z turns out not to be terribly complicated).

Returning to SL(2,Z) itself, one can show that writing g and h for
abstract generators corresponding to B and BA, respectively, we have

(31.6) SL(2,Z) = 〈g, h | g4 = h6 = e, g2 = h3〉.
This gives a finite presentation of SL(2,Z), and also lets us write it as
something which is very nearly the free product of Z/4Z and Z/6Z, but
not quite. If we think of the free product of two groups as being obtained
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by “gluing” the groups together at the identity and nowhere else, then this
construction corresponds to gluing the two groups not just at the identity,
but also at the element g2 = h3. The “gluing set” {e, g2 = h3} corresponds
to a subgroup of order two in both Z/4Z and Z/6Z: this is an example
of a general construction, where we take a free product with respect to a
subgroup, what is sometimes called a free product with amalgamation. In
this case, it amounts to taking groups G and H together with isomorphic
normal subgroups G1 ⊂ G and H1 ⊂ H, and then constructing the quotient
group G∗H/N , whereN is the smallest normal subgroup of G∗H containing

{gφ(g)−1 | g ∈ G1},
with φ the isomorphism between G1 and H1.

b. The space of lattices. Earlier in the course, we spent a decent
bit of time with the various algebraic and geometric properties of various
two-dimensional tori. These tori were obtained as factors R2/L, where

(31.7) L = L(u,v) = {au + bv | a, b ∈ Z}
is the lattice generated by two linearly independent vectors u,v ∈ R2. Be-
cause R2 is abelian, the lattice L is a normal subgroup of R2, and hence the
torus R2/L is a topological group.

The general narrative of all this is repeated in the present setting:
SL(n,Z) is a discrete subgroup of SL(n,R), and so we may consider the
quotient SL(n,R)/SL(n,Z). In this case, however, SL(n,Z) is not a nor-
mal subgroup, and so the quotient is not a group. Rather, the collection of
cosets of SL(n,Z) in SL(n,R) forms a homogeneous space, which inherits
a topological and geometric structure from SL(n,R) in the same way that
Rn/Zn inherits a topological and geometric structure from Rn.

In fact, the relationship with the example of the torus goes even deeper
than this superficial similarity. Given n linearly independent vectors v1, . . . ,vn ∈
Rn, we have a lattice

(31.8) L = L(v1, . . . ,vn) = {a1v1 + · · · + anvn | a1, . . . , an ∈ Z},
and we can consider the factor torus Rn/L. Of course, different choices of
vectors may give the same (geometric) lattice, and hence the same factor
torus. For example, the following three pairs of vectors all generate the
integer lattice in R2, and hence give the usual torus R2/Z2:

(31.9)

{(
1
0

)
,

(
0
1

)}
,

{(
1
0

)
,

(
−1
1

)}
,

{(
1
1

)
,

(
1
2

)}
.

Similarly, the lattice whose points are the vertices of a tiling of the plane by
equilateral triangles with side length 2 is generated by any of the following
pairs of vectors:

(31.10)

{(
2
0

)
,

(
1√
3

)}
,

{(
2
0

)
,

(−1√
3

)}
,

{(
3√
3

)
,

(
4

2
√

3

)}
.
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The astute reader will observe that the second and third pairs of vectors
in (31.9) can be obtains from the first pair via left multiplication by the
matrices ( 1 −1

0 1 ) and ( 1 1
1 2 ), respectively. The even more astute reader will

observe that the same thing is true in (31.10).
Indeed, this is quite a general fact. Given a lattice L = L(v1, . . . ,vn) ⊂

Rn, the parallelepiped spanned by v1, . . . ,vn is a fundamental domain for
the action of Zn on Rn. If the n-dimensional volume of this fundamental
domain is 1, we say that L is unimodular. Because the determinant of a
matrix is the volume of the parallelepiped spanned by its row (or column)
vectors, the row vectors of any matrix X ∈ SL(n,R) generate a unimodular
lattice. Furthermore, two bases {v1, . . . ,vn} and {w1, . . . ,wn} generate the
same (unimodular) lattice if and only if there exists a matrix A ∈ SL(n,Z)
such that viA = wi for all i, and so two matrices X,Y ∈ SL(n,R) generate
the same lattice if and only if Y = XA for some A ∈ SL(n,Z)—that is, if
and only if X and Y represent the same coset in SL(n,R)/SL(n,Z). The
upshot of all this is that the homogeneous space SL(n,R)/SL(n,Z) can be
equated to the space of all unimodular lattices in Rn.

For n = 2 this homogeneous space is closely related to the modular
surface H2/PSL(2,Z), that can be identified with the double coset space
SO(2){}SL(2,R)/SL(2,Z) and like that surface, it is non-compact. This
non-compactness has important implications in number theory, but we do
not consider them here. For larger values of n it is still non-compact
and the role of the hyperbolic plane H2 is played by the symmetric space
SO(n){}SL(nR) a fascinating geometric object with an even more fascinat-
ing boundary that is a far cry from the plain round sphere of the appropriate
dimension. The role of the modular surface is then played by the double
coset space SO(n){}SL(n,R)/SL(n,Z), non-compact again in a much more
interesting way that the plain cusp of the modular surface.

c. The structure of SL(n,Z). In our investigation of the algebraic
structure of SL(2,Z), we saw that it is finitely generated, finitely presented,
and commensurable to a free group. It is natural to ask if the same properties
hold for SL(n,Z) with n ≥ 3; it turns out that the first two do, but the third
does not. In fact, we will see along the way that SL(n,Z) with n ≥ 3 is a
representative of a totally new species of finitely generated groups: “large”
in the sense of having exponential growth and many free subgroups but
much more “rigid” or structured” that free groups or free products in the
sense of having many “small” infinite subgroups such as abelian subgroups
or rank ≥ 2 and nilpotent groups.

First we examine how far SL(n,Z) is from being free. Observe that if
a group G is commensurable to a free group (that is, if G is virtually free),
then so is every subgroup of G. In particular, G cannot have any solvable
subgroups that are not virtually cyclic.
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c.1. Nilpotent subgroups. However, such subgroups exist in SL(3,Z),
and hence in SL(n,Z) for any n ≥ 3. Indeed, the subgroup Un(Z) of upper-
triangular unipotent n × n matrices with integer entries is nilpotent, and
hence solvable, but is not virtually cyclic, and it follows that SL(n,Z) does
not have a finite index free subgroup for any n ≥ 3.

Notice that this is not just an isolated freak, such as a center or a
commutator. The subgroup Un(Z) is very far from being normal in SL(n,Z);
it has lots of conjugates and in fact its conjugates generate the whole group
SL(n,Z)

c.2. Abelian unipotent subgroups. Actually, we can do even better than

nilpotent. SL(n,Z) contains an abelian subgroup of rank n2

4 if n is even,

and rank n2−1
4 if n is odd. To see this, consider the subgroup

(31.11) G = {I +A | Aij = 0 whenever i ≤ n/2 and j > n/2},

which contains matrices whose only non-zero off-diagonal entries occur in
the upper right quadrant of the n2 total entries.

To see that introduce the elementary matrices Eij = Id+eij , i 6= j
where eij if the matrix with entry 1 in the intersection of the ith row and
jth column, and zeroes elsewhere. We encountered elementary matrices
in Lecture 18.a where we proved in particular that Eij and Ekl commute
unless k = j or i = l. Since elementary matrices have infinite order and G

is generated by Eij , i ≤ n/2, j > n/2 we see that G is isomorphic to Zn
2/4

for n even and to Z(n2−1)/4 for n odd. We will extensively use elementary
matrices later.

c.3. Semisimple(diagonalizable) abelian subgroups. The last construction
relies on the presence of Jordan blocks: one may ask if such an example can
be found where the matrices in question are diagonalisable. That is, does
there exist a matrix C ∈ SL(n,R) such that CDnC

−1 ∩ SL(n,Z) is an
abelian subgroup of rank greater than 1? Observe that

Dn = {diag(et1 , . . . , etn} |
∑

ti = 0}

is isomorphic to Rn−1, and so such a subgroup can have rank at most n− 1.
To answer this question, we need the following definition.

Definition 31.2. A matrix A ∈ SL(n,Z) is irreducible over Q if its
characteristic polynomial p(λ) = det(A−λI) does not factor as the product
of two polynomails with rational coefficients and smaller degree.

Remark. Irreducibility over Q implies that all eigenvalues are different,
and hence the matrix is diagonalisable (over C). Geometrically, irreducibility
is the statement that there does not exist an invariant rational subspace (one
that is defined by a linear equation with rational coefficients). Thus matrices
in Un are in some sense the opposite of irreducible, since they have invariant
subspaces of every dimension.
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The following is a particular case of the famous 1846 Dirichlet Unit
Theorem that plays a central role in the the theory of algebraic number
fields:

Theorem 31.3. Let A ∈ SL(n,Z) be irreducible over Q, and suppose
all the eigenvalues of A are real. Then there exists a subgroup S ⊂ SL(n,Z)
such that A ∈ S and S is abelian with rank n− 1.

We omit the proof of this result, and instead turn our attention to the
first question we asked at the beginning of this section: Is SL(n,Z) (or
equivalently, GL(n,Z)) finitely generated?
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Lecture 32. Wednesday, November 18

a. Generators and generating relations for SL(n,Z). Fix n ∈ N,
and recall that eij is the n × n matrix whose (i, j)-th entry is 1, and which
has all other entries equal to 0. For all i 6= j, write Eij = I + eij , and recall
from Lecture 18.a that we proved that

(32.1) [Eij , Ekℓ] =





Eiℓ j = k, i 6= ℓ,

−Ekj j 6= k, i = ℓ,

I j 6= k, i 6= ℓ

Proposition 32.1. SL(n,Z) is generated by the matrices Eij, 1 ≤ i, j ≤
n, i 6= j..

Proof. First observe that for n = 2, we have

E12 =

(
1 1
0 1

)
, E21 =

(
1 0
1 1

)
,

and that

(32.2) E21E
−1
12 E21 = B =

(
0 −1
1 0

)
.

Thus we have in particular

(32.3) (E21E
−1
12 E21)

4 = Id .

By Proposition 31.1, the matrix B, together with E12, generates SL(2,Z):
it follows that 〈E12, E21〉 = SL(2,Z).

We now prove that the matrices Eij generate SL(n,Z). By induction,
we may assume that the elementary (n− 1)× (n− 1) matrices Eij generate
SL(n − 1,Z). Our goal is to reduce to this case by proceeding along the
same lines as the proof of Proposition 31.1.

Begin by letting P (X) = |x11| + |x21| + · · · + |xn1| be the sum of the
absolute values of the entries in the first column of X ∈ SL(n,Z). Observe
that if all but one of these entries vanish, then the remaining entry divides
the determinant of X, and hence must be ±1; in this case P (X) = 1. Thus
for P (X) > 1, there exist 1 ≤ i, j ≤ n, i 6= j, such that xi1 and xj1 are both
non-zero. Let P0 = P (X) − |xi| − |xj | be the sum of the absolute values of
the entries in the first column of X apart from xi and xj . Then a simple
matrix multiplication shows that

P (EijX) = P0 + |xi + xj| + |xj| ,
P (E−1

ij X) = P0 + |xi − xj| + |xj| ,
P (EjiX) = P0 + |xi| + |xj + xi| ,
P (E−1

ji X) = P0 + |xi| + |xj − xi| ,
Now there are four possibilities:
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(1) If |xi| ≥ |xj | and xixj < 0, then P (EijX) < P (X).

(2) If |xi| ≥ |xj | and xixj > 0, then P (E−1
ij X) < P (X).

(3) If |xi| ≤ |xj | and xixj < 0, then P (EjiX) < P (X).

(4) If |xi| ≤ |xj | and xixj > 0, then P (E−1
ji X) < P (X).

It follows that there exists a matrix C ∈ 〈{Eij}〉 such that P (CX) = 1.
Furthermore, by the above remarks, the first column of CX is the vector
±ei for some i.

Now we observe that for every i 6= j, a computation analogous to (32.2)
shows that the matrix Rij = EijE

−1
ji Eij has the following action:

Rijei = −ej, Rijej = ei, Rijek = ek for all k 6= i, j.

(Similar relations hold if Rij acts from the right.)
In particular, choosing R = R1i if (CX)i1 = 1, and R = Ri1 if (CX)i1 =

−1, we see that

(32.4) RCX =

(
1 b
0 X ′

)
,

where b ∈ Rn−1 is a row vector, 0 is the (n − 1) × 1 zero vector, and
X ′ ∈ SL(n− 1,R).

Now observe that if we carry out the procedure described above but
let the elementary matrices act from the right instead of the left, we can
produce a matrix C ′ ∈ 〈{Eij}〉 such that

(32.5) RCXC ′ =

(
1 0
0 X ′

)
.

Finally, by the induction hypothesis X ′ ∈ 〈{Eij}〉, and so RCXC ′ ∈ 〈{Eij}〉
as well. It follows that X = C−1R−1(RCXC ′)(C ′)−1 is a product of ele-
mentary matrices Eij. �

Relations (32.1) (called commutator relations) and the additional re-
lation (32.3) that does not follow from the commutator relations, form a
system of generating relations in the group SL(n,Z).

Elementary matrices form a very natural and convenient systems of gen-
erators for SL(n,Z), however their number grows with n. One can easily
construct the system of three generators using the following observations:

(1) All elementary matrices are conjugate via permutations of coordi-
nates;

(2) permutations are realized by matrices in GL(n,Z); even permuta-
tions by matrices in SL(n,Z);

(3) permutation group Sn is generated by a cyclic permutation and a
single transposition;

(4) for a matrix of an odd permutation changing the sign of one of one
non -zero entry brings it into SL(n,Z).

The generators then are: The generators A and B of SL(2,Z) extended
by ones on the rest of the main diagonal (the first one is simply E12), and
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either the matrix of a cyclic permutation of coordinates (for odd n or such
a matrix with one of the entries changed to −1 (for odd n).

b. Semi-direct products. In Lecture 30, we observed that SL(n,Z)
appears as the automorphism group Aut(Zn), illustrating that we can find
new and interesting groups by consider automorphisms of already familiar
examples. We now introduce another use of automorphisms to construct
new groups from old.

As motivation, consider the group Isom+(Rn) of even isometries of Eu-
clidean space Rn. There are two naturally occurring subgroups of Isom+(Rn):
first, the group SO(n), which comprises all isometries fixing the origin,and
second, the translation group Rn, which simply comprises all translations.
The following features of this example are of particular importance:

(1) The two subgroups SO(n) and Rn generate the group Isom+(Rn): every
even isometry of Rn can be written in the form S : x 7→ Ax + v =
T ◦R(x), where R : x 7→ Ax is in SO(n) and T : x 7→ x + v is in Rn.

(2) This decomposition is unique: v is uniquely determined by the fact that
v = S0, and A is uniquely determined by the fact that Ax = S(x−S0).

(3) The translation subgroup Rn is normal, and hence “canonical” in some
sense: there is only one subgroup of Isom+(Rn) that is isomorphic to
Rn. Since it is normal, we can take the quotient group, and we find that
Isom+(Rn)/Rn is isomorphic to SO(n).

(4) The subgroup SO(n) is not normal in Isom+(Rn), and is isomorphic to
all of its conjugates. Indeed, given an even isometry S : Rn → Rn and
an isometry R ∈ SO(n), we see that S ◦R ◦ S−1 is an even isometry of
Rn that fixes p = S0. Thus Gp = S ◦ SO(n) ◦ S−1 is the group of all
even isometries that fix p. Gp is isomorphic to SO(n), and thus we see
that there is one isomorphic copy of SO(n) for every p ∈ Rn.

The first two properties above are reminiscent of the direct product
construction, where we construct a group G as H × K, and observe that
isomorphic copies of H and K sit inside the direct product G as normal
subgroups. The third property is also reminiscent of that situation, but the
fourth is new.

The difference between the direct product case and our current situation
can also be seen as follows: thanks to the first two properties, there is a
one-to-one correspondence between elements of G (or of Isom+(Rn)) and
ordered pairs h ⋆ k (or R ⋆ T ), where we use this notation rather than
(h, k) to emphasise the relationship with the free product. To obtain the
multiplication rule for elements of the product, we need a way of going from
the concatenation h1 ⋆ k1 ⋆ h2 ⋆ k2 to something of the form h ⋆ k. That is,
we need to equate the expression k1 ⋆ h2 with a pair h ⋆ k (it suffices to do
this since we already know how to multiply elements within H and K).

For a direct product H×K, this is given by declaring that elements of H
andK commute, and so k⋆h = h⋆k. For the product in the example, we have
a different rule, which is specified for us by function composition. Taking
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H = Rn and K = SO(n), we have the following rule for S1 = Tv1
◦RA1

and
S2 = Tv2

◦RA2
:

(32.6) (S1 ◦ S2)(x) = S1(A2x + v2) = A1A2x +A1v2 + v1.

Observe that the map ψA : v 7→ Av is an automorphism of Rn. Writing
ki = Ai and hi = vi, we may write (32.6) as

(32.7) h1 ⋆ k1 ⋆ h2 ⋆ k2 = (h1 ⋆ ψk1(h2)) ⋆ (k1 ⋆ k2),

where ⋆ denotes both the binary operation of H and the binary operation
of K, and ψk1 : H → H is the automorphism described above.

This procedure is very general. Let G be any group, and suppose H,K
are subgroups of G with the following properties:

(1) H is normal.
(2) G = HK. That is, for every g ∈ G there exist h ∈ H and k ∈ K such

that g = hk.
(3) H ∩K = {e}, and consequently the decomposition in (2) is unique.

Then we see that the binary operation in G can be (almost) reconstructed
from the binary operations in H and K as follows:

(32.8) g1g2 = h1k1h2k2 = (h1k1h2k
−1
1 )(k1k2).

Because H is normal, the product khk−1 is in H for all h ∈ H, k ∈ K,
and so ψk : h 7→ khk−1 defines an automorphism of H (which comes from
an inner automorphism of G). This automorphism (or rather, collection of
automorphisms) is all the extra information needed to reconstruct G from
its subgroups H and K, via (32.7). We say that G is a semi-direct product
of H and K, and write G = H ⋉K. (Note that this is not the same thing
as K ⋉H.)

This description of semi-direct products assumes that we already know
the group G, and are interested in decomposing it into a product of two
subgroups, one of which is normal. This is an internal semi-direct product,
since everything happens within a setting that is already known. One may
also define an external semi-direct product: given two groups H and K and
a homomorphism ψ : k 7→ ψk ∈ Aut(H), the semi-direct product of H and K
with respect to the family of automorphisms ψk is the group whose elements
are ordered pairs (h, k), and whose binary operation is given by

(32.9) (h1, k1) ⋆ (h2, k2) = (h1ψk1(h2), k1k2).

Exercise 32.1. Show that H is isomorphic to a normal subgroup of
H ⋉K. Show that the isomorphic image {eH} ×K ⊂ H ⋉K is not normal
unless ψk is the identity automorphism for all k.

Remark. We have now seen three sorts of products of groups: direct,
semi-direct, and free. These three constructions are related. To begin with,
a direct product is a special case of a semi-direct product, where each auto-
morphism ψk is taken to be the identity automorphism. Furthermore, both
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direct and semi-direct products can be obtained as factor groups of the free
product, as follows:

H ×K = H ∗K/〈{[h, k]}〉,
H ⋉K = H ∗K/〈{ψk(h)kh−1k−1}〉.

The generating relations forH×K ensure that hk = kh, while the generating
relations for H ⋉K ensure that kh = ψk(h)k.

c. Examples and properties of semi-direct products. We are now
in a position to construct many of our familiar examples using very simple
building blocks. For example, returning to the example of Isom+(Rn), we
see that

(32.10) Isom+(Rn) = Rn ⋉ SO(n).

In particular, because SO(2) can be identified with S1 = {z ∈ C | |z| = 1},
we have

(32.11) Isom+(R2) = R2 ⋉ S1.

If we broaden our horizons to the group Sim+(R2) of orientation-preserving
similarity transformations—that is, maps of the form x 7→ ρAx + v, where
A ∈ SO(2) and ρ > 0—then we may observe that every such transformation
can be written as an affine transformation of C, as z 7→ w1z + w2, where
w1 ∈ C∗ = C \ {0} and w2 ∈ C. Thus

(32.12) Sim+(R2) = Aff+(C) = R2 ⋉ C∗ = R2 ⋉ (S1 × R+).

Example 32.2. A more intricate example occurs if we consider the sub-
group G of Aff+(R) generated by E : x 7→ 2x and T : x 7→ x + 1. This
group consists of all transformations of the form

(32.13) x 7→ 2nx+ p2kx, n, k, p ∈ Z.

Its translation group is not finitely generated. In fact, this translation
group is isomorphic to the additive group Z(1

2) = {k/2n | k ∈ Z, n ∈ N} of
dyadic rationals. On the one hand, any two of its elements have a common
multiple, hence it does not contain a copy of Z2.On the other hand it is
torsion free, and if it were finitely generated, then by Theorem29.3 it would
have to be isomorphic to Z that is obviously not the case. The factor group
G/Z(1

2 ) is isomorphic to Z Let ψ : Zn → Z(1
2) be defined by ψ(n) = 2n.

Identify the element (32.13) with the pair (p2k, 2n). Then multiplication in
G is given by (32.9) hence

G = Z
(

1

2

)
⋉ Z.

An important property of the semi-direct product is its behaviour with
respect to solvability.

Proposition 32.3. The semi-direct product H⋉K where H and K are
solvable groups, is solvable.
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Proof. It follows for (32.9) that [G,G] ⊂ H ⋉ [K,K]. By iterating the
commutator we get down to [H,H] and hence eventually to the identity. �

The fact that semi-direct products of solvable groups are themselves solv-
able allows us to build many solvable groups from familiar building blocks.
We can use elements and, more generally subgroups of GL(n,Z) as auto-
morphisms of Zn to construct interesting finitely generated nilpotent and
solvable groups all of whose subgroups are finitely generated.

In general even if both groups H and K are abelian the semi-direct
product H ⋉ K is not nilpotent as Example 32.2 or the following example
show.

Example 32.4. Let ψ(n) =

(
2 1
1 1

)n
and let G be the corresponding

semi-direct product Z2 ⋉ Z. One sees form the multiplication formula that
[G,G] = Z2 and hence [[G,G], G] = [G,G].

However sometimes one gets more lucky.

Exercise 32.2. Consider a homomorphism ψ : Zn → ΓN , the group of
upper-diagonal N ×N unipotent matrices with integer entries. Prove that
the semi-direct product ZN ⋉ Zn with multiplication rule (32.9) is a finitely
generated nilpotent group.

We finish our discussion of semi-direct products with the following ob-
servation. Given a group G and a normal subgroupH ⊂ G, one can consider
the factor group K = G/H and try to construct G as a semi-direct product
of H and K. After all, this is more or less exactly what we did in the case
G = Isom+(Rn), H = Rn. However, that example had one further key prop-
erty: the factor group G/H = SO(n) occurs as a subgroup of G that sits
“orthogonally” to H. We say that the group G splits over H. This is not
always the case, and when it fails, it is impossible to write G = H ⋉G/H.

Exercise 32.3. Let Γ3 be the group of upper-triangular unipotent ma-
trices with integer entries, and let H = Z(Γ3). Show that H = Z and
Γ3/H = Z2, and show that there is no subgroup K ⊂ Γ3 such that

(1) K is isomorphic to Z2.
(2) HK = Γ3.
(3) H ∩K = {I}.
Finally, show that Γ3 cannot be written as a semi-direct product of Z and
Z2.
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Lecture 33. Friday, November 20

a. Quasi-isometries. Having already seen a number of connections
between groups and geometry, we now look at groups themselves as geo-
metric objects. We will be interested not in local geometric properties—
those having to do with small scales—but rather with global properties, the
coarse geometry associated to a group. These methods have their origins in
the pioneering work of Mikhail Gromov, which uses soft arguments to de-
rive powerful results about both the algebraic structure and the large-scale
structure of broad classes of groups.

We begin with some purely metric definitions. Given metric spaces
(X, d) and (X ′, d′), we want to weaken the notion of an isometry between
X and X ′ to allow maps that may lose the small-scale structure, but still
capture large-scale structure. For example, one could consider bi-Lipschitz
maps—that is, maps f : X → X ′ for which there exists a constant L > 0
such that

(33.1)
1

L
d(x, y) ≤ d′(f(x), f(y)) ≤ Ld(x, y)

for every x, y ∈ X. However, this definition is still too restrictive for our pur-
poses: in particular, every invertible bi-Lipschitz map is a homeomorphism
and therefore relates the local topological structure of X and X ′. We are
interested in maps that allow us to disregard this structure: the appropriate
definition is as follows.

Definition 33.1. A map f : X → X ′ is a quasi-isometric embedding if
there exist constants A,B > 0 such that

(33.2) d′(f(x), f(y)) ≤ Ad(x, y) +B

for all x, y ∈ X. The metric spaces (X, d) and (X ′, d′) are quasi-isometric
if there exist quasi-isometric embeddings f : X → X ′ and g : X ′ → X and a
constant C > 0 such that

(33.3)
d(g ◦ f(x), x) ≤ C,

d′(f ◦ g(x′), x′) ≤ C

for all x ∈ X, x′ ∈ X.

Remark. If we require B = C = 0, then this definition reduces to the
definition of an invertible bi-Lipschitz map. By allowing B and C to be
positive (indeed, arbitrarily large), we can ignore all finite-scale properties
of the space and focus on the global (coarse) properties.

Example 33.2. Observe that the natural embedding f : Z → R given
by f(n) = n is a quasi-isometric embedding with A = 1, B = 0. The nature
of the definition is shown more clearly by the map

g : R → Z

x 7→ ⌊x⌋,
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which is a quasi-isometric embedding with A = 1, B = 1. (In partic-
ular, quasi-isometric embeddings need not be continuous!) Furthermore,
g◦f : Z → Z is the identity map, and f ◦g : R → R is given by f ◦g(x) = ⌊x⌋,
and hence satisfies (33.3) with C = 1. Thus Z and R are quasi-isometric.

Example 33.3. A similar argument shows that Zn is quasi-isometric to
Rn for any n ∈ N. More generally, given a metric space (X, d), we say that a
subset N ⊂ X is an ε-net for some ε > 0 if every x ∈ X is within a distance
ε of a point n ∈ N . We may also suppress the precise value of ε and simply
say that N is a net in X. Observe that Zn is a net in Rn (here ε >

√
n/2).

Given an ε-net N ⊂ X, let f : N → X be the natural inclusion map,
and let g : X → N be the map that takes a point in X to the nearest point
in N . Then f and g are quasi-isometric embeddings and their compositions
satisfy (33.3), so X and N are quasi-isometric.

Example 33.4. Let G ⊂ PSL(2,R) be a cocompact Fuchsian group,
and let Orb(z) be the orbit of a point z ∈ H2. Then Orb(z) is a net in H2,
and hence Orb(z) and H2 are quasi-isometric.

Example 33.5. Suppose X has finite diameter—that is, there exists
C > 0 such that d(x, y) < C for all x, y ∈ X. Then X is quasi-isometric
to a point—that is, to a metric space with a single element. In particular,
every compact metric space is quasi-isometric to a point.

Proposition 33.6. Quasi-isometry is an equivalence relation.

Proof. Symmetry and reflexivity are immediate from the definition.
For transitivity, we first observe that the composition of two quasi-isometric
embeddings is again a quasi-isometric embedding. Indeed, if f : X → X ′

and f ′ : X ′ → X ′′ satisfy (33.2) for constants Af , Bf , Af ′ , Bf ′ , then

d′′(f ′◦f(x), f ′◦f(y)) ≤ Af ′d
′(f(x), f(y))+Bf ′ ≤ Af ′Afd(x, y)+Af ′Bf+Bf ′ ,

and so f ′ ◦f is a quasi-isometric embedding. Now if X ′ is quasi-isometric to
both X and X ′′, then there exist quasi-isometric embeddings f : X → X ′,
g : X ′ → X, f ′ : X ′ → X ′′, and g′ : X ′′ → X ′ such that f ◦g, g◦f , f ′◦g′, and
g′◦f ′ all satisfy (33.3). The compositions f ′◦f and g◦g′ give quasi-isometric
embedings between X and X ′′, and it remains only to check (33.3):

d(g ◦ g′ ◦ f ′ ◦ f(x), x) ≤ d(g ◦ g′ ◦ f ′ ◦ f(x), g ◦ f(x)) + d(g ◦ f(x), x)

≤ Agd(g
′ ◦ f ′ ◦ f(x), f(x)) + Cg◦f

≤ AgCg′◦f ′ + Cg◦f . �

b. Quasi-isometries and growth properties. Having seen several
examples of metric spaces that are quasi-isometric, we now give some exam-
ples of spaces that are not quasi-isometric. In general, given some abstract
equivalence relation (such as quasi-isometry) the best way to show that two
objects are not equivalent is to give a property that is invariant under equiv-
alence but differs for the two objects in question. This is the approach we
take here, and the property in question is the growth rate.
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To be precise, given a discrete metric space (X, d), a point x ∈ X, and
a radius r > 0, we let GX(x, r) be the number of points in X that lie within
a distance r of x. Observe that if we consider integer lattices in Rn, then
GZn(x, r) ≈ Crn for some constant C > 0, while if we consider a cocompact
Fuchsian group G ⊂ PSL(2,R) and a corresponding net Orb(z) ⊂ H2, then
GOrb(z)(z, r) ≈ eλn for some λ > 0.

Exercise 33.1. Show that if GX(x, r) grows exponentially in r, then
GX(y, r) does as well for any y ∈ X. Similarly, show that if GX(x, r) grows
polynomially in r, then GX(y, r) does as well for any y ∈ X, and the degree
of polynomial growth is the same.

As a consequence of Exercise 33.1, we may speak without ambiguity of
the growth rate of a metric space, since this growth rate does not depend
on the choice of centre.

Exercise 33.2. Show that if X and X ′ are quasi-isometric and X has
exponential growth, then X ′ does as well. Similarly, show that polynomial
growth is a quasi-isometric invariant, as is the degree of polynomial growth.

It follows from Exercise 33.2 that Zm and Zn are not quasi-isometric for
m 6= n, as they have different degrees of polynomial growth. Consequently,
because quasi-isometry is an equivalence relation, we see that Rm and Rn

are not quasi-isometric for m 6= n. Similarly, H2 has a net with exponential
growth, and so is not quasi-isometric to Rn for any n.

Remark. We could attempt to define an analogue of these growth rates
for non-discrete metric spaces such as Rn and H2 by using the volume;
however, we run into the problem that quasi-isometries are not necessarily
smooth or even continuous, and so it is not obvious how they transform
volume. Thus the discrete case is the better playground for these techniques.

Remark. In the next section we will apply the notion of quasi-isometry
to groups themselves. One can show (though we do not do so yet) that F2

is not quasi-isometric to H2 (and hence to the surface groups SGn), despite
the fact that they have the same growth rate. Thus growth rate is not a
complete invariant for quasi-isometry.

c. Geometric properties of groups. Let G be a finitely generated
group, and let Γ be a generating set for G. Let dΓ be the word metric on
G—that is, dΓ(g, g′) is the minimum length of a word w in the generators
Γ such that g′ = gw. Then the discussion of growth rates in the previous
section reduces to our familiar notion of the growth rate of GG,Γ(n).

Proposition 33.7. (G, dΓ) is quasi-isometric to its Cayley graph.

Proof. Exactly as for Z and R: one quasi-isometric embedding is the
natural embedding of G into its Cayley graph, and the other direction is
given by the map from a point on the Cayley graph to the nearest vertex. �
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The metric space (G, dΓ) is discrete, rendering it well-suited for the tech-
niques of the previous section. Cayley graphs have an important advantage
over this space. Namely, they are geodesic spaces—that is, they admit iso-
metric embeddings of the interval 1 and that any two points are endpoints
for such an embedding.

As always, we must ask what happens to the metric space (G, dΓ) if we
pass to a different generating set. It follows immediately from the estimates
in the proofs of Propositions 28.11 and 29.1 that (G, dΓ) and (G, dΓ′) are
quasi-isometric whenever Γ and Γ′ are finite generating sets. However, the
ballgame changes entirely if the generating set is allowed to be infinite, and
so we steer clear of this case for the time being.

Example 33.8. Suppose G acts discretely on a metric space X, and
suppose that there exists a fundamental domain in X of finite diameter.
Then G is quasi-isometric to X.

Example 33.9. Commensurable groups are quasi-isometric: it suffices
to show that if H ⊂ G is a subgroup of finite index, then H and G are
quasi-isometric. This is the same principle as the statement that a net is
quasi-isometric to the space it is embedded in: the embedding map G→ H
is the natural one, and for the mapH → G we may take the map that assigns
to each element of G the nearest element of H. That this satisfies (33.2)
and (33.3) follows from the fact that the coset representatives are at most
some fixed finite distance from the identity.

Example 33.10. Any two free groups are commensurable, and hence
quasi-isometric. Similarly, every surface group SGn, n ≥ 2, is quasi-isometric
to H2, and hence these groups are all quasi-isometric.

Now we can come to the heart of the matter. We say that geometric
properties of groups are precisely those properties that are invariant under
quasi-isometry. For example, the rate of growth of a group is a geometric
property: more precisely, the presence of exponential growth is a geometric
property, but the exponent of exponential growth is not, while both the
presence and the degree of polynomial growth are geometric properties.

Given a finitely generated group G, one can ask if it is finitely presented.
There are many finitely generated groups that are not finitely presented. It
turns out that the property of being finitely presented is also geometric, in
that it is preserved by quasi-isometries.

We end this lecture with a brief discussion of geometrically different
groups that are not distinguishable by growth rates alone. Many solvable
groups with exponential growth; for example those from Examples 32.2 and
32.4 these are not quasi-isometric to either F2 or H2 (which as we already
said, are not quasi-isometric to each other). Similarly, SL(n,Z) has expo-
nential growth for n ≥ 2 (it contains a copy of F2) but is not quasi-isometric

1This is a purely metric definition of geodesic, with no assumption of smoothness on
the embedding or the space.
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to any of these examples. In order to distinguish these four types of groups
with exponential growth one introduces geometric invariants of very different
sorts that together provide the basic toolkit for geometric group theory.

(1) We mention briefly the case of solvable groups. One way of char-
acterising a group or metric space with exponential growth is to
observe that the boundary of a ball is “fat” compared to the inte-
rior of the ball. Consider a ball of radius r that contains roughly
eλr points of X (or elements of G). Fixing a constant a > 0, the

ball of radius r − a contains roughly eλ(r−a) points, and thus the
proportion of points that are within a of the boundary is roughly

1 − eλ(r−a)

eλr
= 1 − e−λa.

This proportion stays constant as r → ∞, in marked contrast with
the polynomial case, where

1 − (r − a)n

rn
→ 0.

Thus in some sense, spaces or groups with sub-exponential growth
are characterised by the property that we can cover them with balls
whose boundaries are “thin”. One can generalise this notion to al-
low covers with other sets besides balls, and by doing so one obtains
the definition of amenable groups. We do not prove anything about
amenability here, or even give its precise definition, but we note
the following points:
(a) Amenability is a geometric property.
(b) Solvable groups are amenable.
(c) Free groups are not amenable.

(2) To distinguish free groups and surface groups from SL(n,Z), n ≥ 3
one uses the notion of a hyperbolic group. Any geodesic triangles in
such groups are very thin; they may only contain a ball of bounded
radius. This is clearly a geometric property and one shows that the
first two groups are hyperbolic while the third is not.

(3) For a hyperbolic group one introduces the notion of group boundary,
a compact topological space such that quasi-isometric groups have
homeomorphic boundaries. The boundary of a surface group is, not
surprisingly, a circle as oneguesses form the quasi-isometry with H2,
but the boundary of a free group is a Cantor set.

Within polynomial growth, we observe that Γ3 and Z4 have the same
degree of polynomial growth; nevertheless, one may show that they are not
quasi-isometric.

Is there a geometric property that lets us distinguish these examples?


