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PROOF. Let a =
∫

X f dµ/µ(X ). By convexity the graph of g lies entirely above
some line through g (a) (the tangent line if it exists), that is, there exists b ∈ R

(b = g ′(a) if it exists) such that

g ( f (x)) ≥ b · ( f (x)−a)+ g (a).

Now integrate both sides. !

6. Basic topology

a. Topological spaces.
1. Topologies, bases, convergence.

DEFINITION A.6.1. A topological space (X ,T ) is a set X endowed with a col-
lection T ⊂P (X ) of subsets of X , called the topology of X , such that

(1) ∅, X ∈T ,
(2) if O ⊂T then

⋃
O :=⋃

O∈O O ∈T ,
(3) if O ⊂T is finite then

⋂
O ∈T ,

that is, T contains X and ∅ and is closed under union and finite intersection.
The chaotic or trivial topology is T =N :={∅, X }, and the discrete topology con-
sists of all subsets of X . If Y ⊂ X then TY := {O∩Y O ∈T } defines the subspace
topology or induced topology.

The sets O ∈T are called open sets, and their complements are called closed
sets. A set is clopen if it is both closed and open. If x ∈ X then an open set con-
taining x is said to be a neighborhood of x. The closure Ā of a set A ⊂ X is the
smallest closed set containing A, that is, Ā :=⋂

{C A ⊂C and C closed}. x is said
to be an accumulation point of A ⊂ X if every neighborhood of x contains infin-
itely many points of A. A set is perfect if it is equal to the set of its accumulation
points.

A base for the topology T is a subcollection β⊂T such that for every O ∈T
and x ∈ O there exists B ∈ β such that x ∈ B ⊂ O. A base at x is a subcollection
βx ⊂ T such that for every O ∈ T with x ∈ O there exists B ∈ βx such that x ∈
B ⊂ O. T is said to be first countable if there is a countable base at x for every
x ∈ X and second countable if there is a countable base for T . A topology S is
said to be finer than T if T ⊂ S , coarser if S ⊂ T . If Y ⊂ X then Y can be
made into a topological space in a natural way by taking the induced topology
TY := {O ∩Y O ∈T }.

A sequence {xi }i∈N ⊂ X is said to converge to x ∈ X if for every open set O
containing x there exists N ∈N such that {xi }i>N ⊂O.

{Oα}α∈A ⊂ T is said to be an open cover of X if X = ⋃
α∈A Oα, and a finite

open cover if A is finite.
Let (X ,T ) be a topological space. A set D ⊂ X is said to be dense in X if

D̄ = X . X is said to be separable if it has a countable dense subset.

DEFINITION A.6.2. If (Xα,Tα), α ∈ A are topological spaces and A is any set,
then the product or Tychonoff topology on

∏
α∈A Xα is the topology generated by

the base {
∏

αOα Oα ∈ Tα, Oα '= Xα for only finitely many α}. With or without
a topology in mind we write X A :=

∏
α∈A X . This is the collection of maps from
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A to X . A special case is 2A := {0,1}A , which (viewing the maps as characteristic
functions) represents the collection of all subsets of A.

Rn with the usual open and closed sets is a familiar example of a topological
space and of a product space. The open balls (or open balls with rational radius,
open balls with rational center and radius) form a base. Points of a Hausdorff
space are closed sets.

2. Separation axioms, compactness.

DEFINITION A.6.3 (Separation Axioms). (1) (X ,T ) is called a Tychonoff
space if for any two x1, x2 ∈ X there exists O ∈ T such that x1 ∈ O and
x2 ∉O.

(2) (X ,T ) is called a Hausdorff space if for any two x1, x2 ∈ X there exist
O1,O2 ∈T such that xi ∈Oi and O1 ∩O2 =∅.

(3) (X ,T ) is said to be regular if it is Hausdorff and for any x ∈ X and closed
C ⊂ X there exist O1,O2 ∈T such that x ∈O1, C ⊂O2 and O1 ∩O2 =∅.

(4) (X ,T ) is said to be normal if it is Hausdorff and for any two closed
C1,C2 ⊂ X there exist O1,O2 ∈T such that Ci ⊂Oi and O1 ∩O2 =∅.

DEFINITION A.6.4 (Compactness). (X ,T ) is said to be compact if every open
cover has a finite subcover, locally compact if every point has a neighborhood
with compact closure, and sequentially compact if every sequence has a con-
vergent subsequence. X is said to be σ-compact if it is a countable union of
compact sets.

PROPOSITION A.6.5. A closed subset of a compact set is compact.

PROOF. If K is compact, C ⊂ K is closed, and Γ is an open cover for C then
Γ∪ {K *C } is an open cover for K , hence has a finite subcover Γ′ ∪ {K *C }, so Γ′

is a finite subcover (of Γ) for C . !

PROPOSITION A.6.6. A compact subset of a Hausdorff space is closed.

PROOF. If X is Hausdorff and C ⊂ X compact fix x ∈ X *C and for each y ∈
C take neighborhoods Uy of y and Vy of x such that Uy ∩Vy = ∅. The cover⋃

y∈C Uy ⊃C has a finite subcover {Uxi 0 ≤ i ≤ n} and hence Nx :=
⋂n

i=0 Vyi is a
neighborhood of x disjoint from C . Thus X *C =

⋃
x∈X*C Nx is open and C is

closed. !

PROPOSITION A.6.7. A compact Hausdorff space is normal.

PROOF. First we show that a closed set K and a point p ∉ K can be separated
by open sets. For x ∈ K there are open sets Ox , Ux such that x ∈ Ox , p ∈Ux and
Ox ∩Ux = ∅. Since K is compact there is a finite subcover O :=⋃n

i=1 Oxi ⊃ K ,
and U :=⋂n

i=1Uxi is an open set containing p disjoint from O. Now suppose K ,
L are closed sets and for p ∈ L consider open disjoint sets Op ⊃ K , Up - p . By
compactness of L there is a finite subcover U :=

⋃m
j=1Up j ⊃ L and O :=

⋂m
j=1 Op j ⊃

K is an open set disjoint from U . !

A useful consequence of normality is the following extension result:
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THEOREM A.6.8. If X is a normal topological space, Y ⊂ X closed, and f : Y →
R continuous (Definition A.6.15), then there is a continuous extension of f to X .

A collection of sets is said to have the finite intersection property if every
finite subcollection has nonempty intersection.

PROPOSITION A.6.9. A collection of compact sets with the finite intersection
property has nonempty intersection.

PROOF. It suffices to show that in a compact space every collection of closed
sets with the finite intersection property has nonempty intersection. To that end
consider a collection of closed sets with empty intersection. Their complements
form an open cover. Since it has a finite subcover the finite intersection property
does not hold. !

DEFINITION A.6.10. The one-point compactification of a noncompact Haus-
dorff space (X ,T ) is X̂ := (X ∪ {∞},S ), where S :=T ∪ {(X ∪ {∞}) * K K ⊂
X compact} and ∞ is a symbol representing an adjoined point.

It is easy to see that X̂ is a compact Hausdorff space.

THEOREM A.6.11 (Tychonoff Theorem). The product of compact spaces is
compact.

This result is useful in situations where a natural topology can be viewed as a
product topology or is induced by a product topology. The topology of pointwise
convergence is an example: the topology of pointwise convergence of maps X →
Y is the Tychonoff topology of Y X .❽

❽Remark here on
difference between
cluster points of a
sequence and limit
of a subsequence.
Relevant for distal.

While most topological spaces we consider are Hausdorff spaces, in alge-
braic geometry a natural topology has the Tychonoff property but is not Haus-
dorff.

DEFINITION A.6.12. The Zariski topology on Cn is defined by saying that
V ⊂ C n is Zariski-closed if there are polynomials P1, . . . ,Pm on C n such that
V =

⋂m
i=1 P−1

i ({0}). A class of sets larger than that of Zariski-closed sets is given
by sets of the form

⋃k
i=1 Vi *V ′

i , where Vi ,V ′
i are Zariski-closed and V ′

i ⊂ Vi for
all i ; these are said to be constructible.

THEOREM A.6.13. Let π : Cn ×C m → Cn be the natural projection. If V ⊂
Cn ×C m is constructible then so is π(V ).

We digress to note in this context an analog of the Sard Theorem A.11.24.

THEOREM A.6.14. If π : Cn ×Cm →Cn is the natural projection and A ⊂Cn ×
Cm is constructible then there exist Zariski-open X ⊂ A and Y ⊂ Cn such that
π " X : X → Y is locally invertible.

3. Continuity.

DEFINITION A.6.15 (Continuity). Let (X ,T ) and (Y ,S ) be topological spaces.
A map f : X → Y is said to be continuous if O ∈ S implies f −1(O) ∈ T , open if
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O ∈T implies f (O) ∈S , closed if X *O ∈T implies Y * f (O) ∈S , and a home-
omorphism if it is continuous and bijective with continuous inverse. If there is
a homeomorphism X → Y then X and Y are said to be homeomorphic. We de-
note by C 0(X ,Y ) the space of continuous maps from X to Y and write C 0(X ) for
C 0(X ,R). A map f from a topological space to R is said to be upper semicontin-
uous if f −1(−∞,c) ∈ T for all c ∈ R, lower semicontinuous if f −1(c ,∞) ∈ T for
c ∈R.

A property of a topological space that is the same for any two homeomor-
phic spaces is said to be a topological invariant.

PROPOSITION A.6.16. The image of a compact set under a continuous map is
compact.

PROOF. If C is compact and f : C → Y continuous and surjective then any
open cover Γ of Y induces an open cover f∗Γ := { f −1(O) O ∈ Γ} of C which by
compactness has a finite subcover {f −1(Oi ) i = 1, . . . ,n}. By surjectivity {Oi }n

i=1
is a cover for Y . !

A useful application of the notions of continuity, compactness, and being
Hausdorff is the following result:

PROPOSITION A.6.17 (Invariance of domain). A continuous bijection from a
compact space to a Hausdorff space is a homeomorphism.

PROOF. Suppose X is compact, Y Hausdorff, f : X → Y bijective and con-
tinuous, and O ⊂ X open. Then C :=X *O is closed, hence compact, and f (C ) is
compact, hence closed, so f (O) = Y * f (C ) (by bijectivity) is open. !

4. Connectedness.

DEFINITION A.6.18 (Connectedness). A topological space (X ,T ) is said to
be connected if no two disjoint open sets cover X . (Equivalently, there is no
proper clopen subset.)

(X ,T ) is said to be path-connected if for any two points x0, x1 ∈ X there ex-
ists a continuous curve c : [0,1] → X with c(i ) = xi . A connected component is a
maximal connected subset of X .

(X ,T ) is said to be totally disconnected if every point is a connected compo-
nent. A perfect, totally disconnected compact space it called a Cantor set.

The ternary Cantor set and Q ⊂ R are totally disconnected. It is not hard to
see that connected components are closed. Thus connected components are
open if there are only finitely many and, more generally, if every point has a
connected neighborhood (that is, the space is locally connected). This is not the
case for Q.

THEOREM A.6.19. Every Cantor set is homeomorphic to the ternary Cantor
set.

THEOREM A.6.20. A continuous image of a connected space is connected.
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REMARK A.6.21. This implies that a path-connected space is connected. The
converse is false as is shown by the closure of the graph of sin1/x in R2.

THEOREM A.6.22. The product of two connected topological spaces is con-
nected.

5. Manifolds.

DEFINITION A.6.23. A topological manifold is a Hausdorff space X with a
countable base for the topology such that every point is contained in an open
set homeomorphic to a ball in Rn . A pair (U ,h) of such a neighborhood and
a homeomorphism h : U → B ⊂ Rn is called a chart or a system of local coor-
dinates. A topological manifold with boundary is a Hausdorff space X with a
countable base for the topology such that every point is contained in an open
set homeomorphic to an open set in Rn−1 × [0,∞).

REMARK A.6.24. One easily sees that if X is connected then n is constant. In
this case it is called the dimension of the topological manifold. Path connected-
ness and connectedness are equivalent for topological manifolds.

DEFINITION A.6.25. Consider a topological space (X ,T ) and suppose there
is an equivalence relation ∼ defined on X . Then there is a natural projection
π to the set X̂ of equivalence classes. The identification space or factor space
X /∼ := (X̂ ,S ) is the topological space obtained by saying that a set O ⊂ X̂ is
open if π−1(O) is open, that is, taking on X̂ the finest topology with which π is
continuous.

An important class of factor spaces appears when there is a group G of home-
omorphisms acting on X such that the orbits are closed. Then one identifies
points on the same orbit and obtains an identification space which in this case
is denoted by X /G and called the quotient of X by G . For the case where X = S1

and G is the cyclic group of iterates of a rational rotation we get X /G 3 X . If
X =R2 and G is the group of translations parallel to the x-axis then X /G 3R. The
torus is obtained fromRn by identifying points moduloZn , that is, two points are
equivalent if their difference is in Zn . Equivalently, one obtains it from identi-
fying pairs of opposite sides of the unit square (or any rectangle) with the same
orientation. A cone over a space X is the space obtained from identifying all
points of the form (x,1) in (X × [0,1],product topology). The sphere is obtained
by identifying all boundary points of a closed ball.

A priori the topology of an identification space may not be very nice. Unless
the equivalence classes are all closed, for example, the identification space is
not even a Hausdorff space. In particular the space of orbits of a dynamical sys-
tem with some recurrent behavior is not a very good object from the topological
point of view. An example is X /G , where X = S1 and G is the group of iterates of
an irrational rotation.

b. Homotopy theory.
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DEFINITION A.6.26. Two continuous maps h0,h1 : X → Y between topolog-
ical spaces are said to be homotopic if there exists a continuous map h : [0,1]×
X → Y (the homotopy) such that h(i , ·) = hi for i = 0,1. If h0(x) = h1(x) = p for
some x ∈ X then h0,h1 : X → Y are said to be homotopic rel p if h can be cho-
sen such that h(·, x)= p . If X = [0,1], h0(0) = h1(0), and h0(1) = h1(1) then we say
that h0, h1 are homotopic rel endpoints if h(·,0) and h(·,1) can be taken constant.
h is said to be null-homotopic if it is homotopic to a constant map. If h1,h2 are
homeomorphisms they are said to be isotopic if h can be taken such that every
h(t , ·) is a homeomorphism. X and Y are said to be homotopically equivalent if
there exist maps g : X → Y and h : Y → X such that g ◦h and h◦g are homotopic
to the identity. X is said to be contractible if it is homotopic to a point. A prop-
erty of a topological space which is the same for any homotopically equivalent
space is called a homotopy invariant.

Obviously homeomorphic spaces are homotopically equivalent. The circle
and the cylinder are homotopically equivalent but not homeomorphic. Balls
and cones are contractible. Contractible spaces are connected.

DEFINITION A.6.27. Let M be a topological manifold, p ∈ M , and consider
the collection of curves c : [0,1] → M with c(0) = c(1) = p . If c1 and c2 are such
curves then let c1 ·c2 be the curve given by

c1 ·c2(t ) :=
{

c1(2t ) when t ≤ 1
2 ,

c2(2t −1) when t ≥ 1
2 .

Upon identifying curves homotopic rel endpoints one obtains a group called the
fundamental group π1(M , p) of M at p . A space with trivial fundamental group
is said to be simply connected, 1-connected if it is also connected.

We are mostly interested in connected manifolds where path-connectedness
ensures that the groups obtained at different p are isomorphic. Thus we simply
write π1(M ). Since the fundamental group is defined modulo homotopy, it is
the same for homotopically equivalent spaces, that is, it is a homotopy invari-
ant. The free homotopy classes of curves (that is, with no fixed base point) cor-
respond exactly to the conjugacy classes of curves modulo changing base point,
so there is a natural bijection between the classes of freely homotopic closed
curves and conjugacy classes in the fundamental group.

DEFINITION A.6.28. If M , M ′ are topological manifolds and π : M ′ → M is a
continuous map such that cardπ−1(y) is independent of y ∈ M and every x ∈
π−1(y) has a neighborhood on which π is a homeomorphism to a neighborhood
of y ∈ M then M ′ (or (M ′,π)) is said to be a covering (space) or cover of M . If
n = cardπ−1(y) is finite then (M ′,π) is said to be an n-fold covering. If f : N → M
is continuous and F : N → M ′ is such that f =π◦F then F is said to be a lift of f .
If f : M → M is continuous and F : M ′ → M ′ is continuous such that f ◦π=π◦F
then F is said to be a lift of f as well. A simply connected covering is called
the universal cover. A homeomorphism of a covering M ′ of M is called a deck
transformation if it is a lift of the identity on M .
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REMARK A.6.29 (Examples). (R,exp(2πi (·))) is a covering of the unit circle.
Geometrically one can view this as the helix (e2πi x , x) covering the unit circle
under projection. The map defined by taking the fractional part likewise defines
a covering of the circle R/Z by R. The torus is covered by the cylinder which is
in turn covered by R2. Notice that the fundamental group Z of the cylinder is a
subgroup of that of the torus (Z2) and R2 is a simply connected cover of both.
The expanding maps on the circle (2.8.1) define coverings of the circle by itself.
Factors of the Poincaré upper half-plane are covered by the upper half-plane
(Subsection 7.3e).

There is a natural bijection between conjugacy classes of subgroups ofπ1 (M )
and classes of covering spaces modulo homeomorphisms commuting with deck
transformations. In particular the universal cover is unique. This bijection can
be described as follows. Suppose (M ′,π) is a covering of M and x0, x1 ∈ π−1(y).
Since M ′ is path-connected there are curves c : [0,1] → M ′ with c(i ) = xi for
i = 1,2. Under π these project to loops on M . Any continuous map induces a
homomorphism between the fundamental groups. Any continuous map pos-
sesses a lift, so a homotopy of the loop π◦ c rel y can be lifted to a homotopy of
the curve c and since by hypothesis π−1(y) is discrete, this homotopy is a homo-
topy rel endpoints. In particular homotopic curves project to homotopic curves
and, by considering the case x1 = x2, the fundamental group of M ′ injects into
the fundamental group of M as a subgroup. This is the subgroup corresponding
to the covering. Furthermore this subgroup is a proper subgroup whenever π is
not a homeomorphism, that is, the cover is a nontrivial covering. Thus a simply
connected space has no proper coverings. One can also see that any two cov-
erings M ′

1 and M ′
2 of M have a common covering M ′′, so the universal cover is

unique. Any topological manifold has a universal cover.

c. Metric spaces. For several quite natural notions a topological structure
is not adequate, but one rather needs a uniform structure, that is, a topology in
which one can compare neighborhoods of different points. This can be defined
abstractly and is realized for topological vector spaces (see Definition A.10.1),
but it is a little more convenient to introduce these concepts for metric spaces.

1. Metric, completeness.

DEFINITION A.6.30 (Metric). If X is a set then d : X ×X →R is called a metric
if

(1) d (x, y)= d (y, x),
(2) d (x, y)= 0 ⇔ x = y ,
(3) d (x, y)+d (y, z)≥ d (x, z) (triangle inequality).

If d is a metric then (X ,d ) is said to be a metric space. The set B (x,r ) := {y ∈
X d (x, y)< r } is called the (open) r -ball around x.

O ⊂ X is said to be open if for every x ∈O there exists r > 0 such that B (x,r )⊂
O. A toplogical space is said to be metrizable if the topology consists of the open
sets for a metric. (For example, the discrete metric δ(x, y) = 1 if x '= y , δ(x, x) = 0
induces the discrete topology.)
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For A ⊂ X the set A :={x ∈ X ∀r > 0 B (x,r )∩A '=∅} is called the closure of
A. A is said to be closed if A = A.

A sequence {xi }i∈N is said to be a Cauchy sequence if for all ε> 0 there exists
an N ∈ N such that d (xi , x j ) < ε whenever i , j ≥ N. X is said to be complete
if every Cauchy sequence converges. A complete separable metric space (or a
topological space homeomorphic to such a space) is called a Polish space.

REMARK A.6.31. We say that x is close to y if d (x, y)< ε, with ε not specified
but understood to be small. For instance, to say that a property P(x) holds for
all x sufficiently close to y means that there is an ε > 0 such that P(x) for all
x ∈ B (y,ε).

The collection of open sets induces a topology with the open balls as a base.
Closed sets have open complements. The definitions are consistent with those
made for topological spaces. For metric spaces the notions of compactness and
sequential compactness are equivalent.

DEFINITION A.6.32. For an open cover of a compact metric space there ex-
ists a number δ such that every δ-ball is contained in an element of the cover.
The largest such number is called the Lebesgue number of the cover.

Completeness is an important property since it allows us to perform limit
operations which arise frequently in our constructions. Notice that it is not pos-
sible to define a notion of Cauchy sequences in an arbitrary topological space
since one lacks the possibility of comparing neighborhoods at different points.
A useful observation is that compact sets are complete by sequential compact-
ness.

THEOREM A.6.33 (Baire Category Theorem). In a complete metric space a
countable intersection of open dense sets is dense. The same holds for a locally
compact Hausdorff space.

PROOF. If {Oi }i∈N are open and dense in X and ∅ '= B0 ⊂ X is open then
inductively choose a ball Bi+1 of radius at most ε/i such that B̄i+1 ⊂ Oi+1 ∩Bi .
The centers converge by completeness, so ∅ '= ⋂

i B̄i ⊂ B0 ∩
⋂

i Oi . For locally
compact Hausdorff spaces take Bi open with compact closure and use the finite
intersection property. !

PROPOSITION A.6.34. Any metric space is normal and hence Hausdorff. A
metric space has a countable base if and only if it is separable.

Conversely (using Proposition A.6.7) we have

PROPOSITION A.6.35. A normal space with a countable base for the topology,
hence any compact Hausdorff space with a countable base, is metrizable.

2. Continuous maps.

DEFINITION A.6.36 (Regularity). Let (X ,d ), (Y ,dist) be metric spaces. A map
f : X → Y is said to be uniformly continuous if for all ε > 0 there is a δ > 0 such
that for all x, y ∈ X with d (x, y) < δ we have dist( f (x), f (y)) < ε. A uniformly
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continuous bijection with uniformly continuous inverse is said to be a uniform
homeomorphism.

A family F of maps X → Y is said to be equicontinuous if for every x ∈ X and
ε> 0 there is a δ> 0 such that d (x, y)< δ implies dist( f (x), f (y)) < ε for all y ∈ X
and f ∈F .

A map f : X → Y is said to be Hölder continuous with exponent α, or α-
Hölder, if there exist C ,ε> 0 such that d (x, y)< ε implies dist( f (x), f (y)) ≤C (d (x, y))α,
Lipschitz continuous if it is 1-Hölder, in which case C is said to be a Lipschitz con-
stant of f , and the smallest of these is called the Lipschitz constant. A Hölder
continuous map with Hölder continuous inverse is said to be bi-Hölder, and we
say that f is bi-Lipschitz if it is Lipschitz and has a Lipschitz inverse.

A map f : X → Y is said to be an isometry if d ( f (x), f (y)) = d (x, y) for all
x, y ∈ X .

For a map g : S1 → X or g : I → X , where I ⊂R, the total variation is Var(g ):=
sup

∑n
k=1 d (g (xk ), g (x ′

k
)). Here the sup is taken over all finite collections {xk , x ′

k
}n
k=1

such that xk , x ′
k

are endpoints of an interval Ik and Ik ∩ I j = ∅ for k '= j . The
function is said to be of bounded variation if Var(g ) is finite.

REMARK A.6.37. Every Lipschitz function and hence every continuously dif-
ferentiable function has bounded variation.

It is not hard to show

PROPOSITION A.6.38. A uniformly continuous map from a subset of a metric
space uniquely extends to the closure.

A metric space can be made complete in the following way:

DEFINITION A.6.39. If X is a metric space and there is an isometry from X
onto a dense subset of a complete metric space X̂ then X̂ is called the completion
of X .

Up to isometry the completion of X is unique: If there are two completions
X1 and X2 then by construction there is a bijective isometry between dense sub-
sets and therefore this isometry extends (by uniform continuity) to the entire
space. On the other hand completions always exist by virtue of the construction
used to obtain the real numbers from the rational numbers. This completion
is obtained from the space of Cauchy sequences on X by identifying two se-
quences if the distance between corresponding elements converges to zero. The
distance between two (equivalence classes of) sequences is defined as the limit
of the distance between corresponding elements. The isometry maps points to
constant sequences.

DEFINITION A.6.40. If X is a compact metrizable topological space (for ex-
ample, a compact manifold), then the space C (X ,Y ) of continuous maps from
X to a metric space Y possesses the C 0 or uniform topology. It arises by fixing a
metric ρ in Y and defining the distance d between f , g ∈C (X ,Y ) by

d ( f , g ) :=max
x∈X

ρ( f (x), g (x)).
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We define C (X ) :=C (X ,R).

REMARK A.6.41. The subset Hom(X ) of C (X , X ) of homeomorphisms of X
is neither open nor closed in the C 0 topology. It possesses, however, a natural
topology as a complete metric space induced by the metric

dH ( f , g ) :=max(d ( f , g ),d ( f −1, g−1)).

THEOREM A.6.42. If X is a compact Hausdorff space then the following are
equivalent.

(1) X is metrizable.
(2) X is second countable.
(3) C (X ) and C (X ,C ) are separable.

If X is σ-compact we introduce the compact–open topologies for maps and
homeomorphisms, that is, the topologies of uniform convergence on compact
sets.

We sometimes use the fact that equicontinuity and uniform boundedness
give some compactness of a family of continuous functions in the uniform topol-
ogy.

THEOREM A.6.43 (Arzelá–Ascoli Theorem). Let X , Y be metric spaces, X sep-
arable, and F an equicontinuous family of maps. If { fi }i∈N ⊂F such that { fi (x)}i∈N
has compact closure for every x ∈ X then there is a subsequence converging uni-
formly on compact sets to a function f .

Thus in particular a closed bounded equicontinuous family of maps on a
compact space is compact in the uniform topology (induced by the maximum
norm).

SKETCH OF PROOF. Since { fi (x)}i∈N has compact closure for every point x of
a countable dense subset S of X , a diagonal argument shows that there is a sub-
sequence fik which converges at every point of S. Use equicontinuity to show
that for every x ∈ X the sequence fik (x) is Cauchy, hence convergent (since
{ fi (x)}i∈N has compact, hence complete, closure). Using equicontinuity again
yields continuity of the pointwise limit. Finally a pointwise convergent equicon-
tinuous sequence converges uniformly on compact sets. !

3. Hausdorff metric. We introduce the following metric in the space of closed
subsets of a metric space X :

DEFINITION A.6.44. The Hausdorff metric is defined by setting❾
❾We replaced “+” by
“max”; check
whether this
necessitates changes
elsewhere.

d (A,B ) :=max{sup{d (x,B ) x ∈ A},sup{d (A, y) y ∈ B }}

for any two closed sets A,B . We refer to a limit with respect to the topology
induced by the Hausdorff metric as a Hausdorff limit.

We make two observations:

LEMMA A.6.45. The Hausdorff metric on the closed subsets of a compact met-
ric space defines a compact topology.
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PROOF. We need to verify total boundedness and completeness. Pick a fi-
nite ε/2-net N . Any closed set A ⊂ X is covered by a union of ε-balls centered
at points of N and the closure of the union of these has Hausdorff distance at
most ε from A. Since there are only finitely many such sets, we have shown that
this metric is totally bounded. To show that it is complete consider a Cauchy
sequence (with respect to the Hausdorff metric) of closed sets An ⊂ X . If we let
A :=

⋂
k∈N

⋃
n≥k An then one can easily check that d (An , A) → 0. !

Notice that any homeomorphism f of a compact metric space X induces a
natural homeomorphism of collection of closed subsets of X with the Hausdorff
metric, so we may conclude the following:

LEMMA A.6.46. The set of closed invariant sets of a homeomorphism f of a
metric space is a closed set with respect to the Hausdorff metric.

PROOF. This is just the set of fixed points of the induced homeomorphism,
hence is closed. !

7. Cantor sets and sequence spaces

a. Sequence spaces. For each natural number N ≥ 2 consider the space

ΩN := {0, . . . , N −1}Z = {ω= (. . . ,ω−1.ω0,ω1, . . . ) ωi ∈ {0, . . . , N −1} for i ∈Z}

of two-sided sequences of N symbols and a similar one-sided space

Ω
R
N := {0, . . . , N −1}N0 = {ω= (ω0,ω1,ω2, . . . ) ωi ∈ {0, . . . , N −1} for i ∈N0}.

The standard topology on these spaces is obtained as the product topology aris-
ing from the discrete topology on {0,1, . . . ,N−1}. Thus,ΩN is a Cantor set (Definition
A.6.18).

Since {0,1, . . . , N −1} =Z/nZ is a group, these sequence spaces, being prod-
ucts, are compact abelian topological groups.

Fix integers n1 < n2 < ·· · < nk and numbers α1, . . . ,αk ∈ {0,1, . . . , N −1} and
call the subset

(A.7.1) C n1,...,nk
α1,...,αk

:= {ω ∈ΩN ωni =αi for i = 1, . . . ,k}

a cylinder and the number k of fixed digits the rank of that cylinder. Cylinders in
the space ΩR

N are defined similarly. Then cylinders are open sets and form a base
for the topology. Thus, every cylinder is also closed because the complement to
a cylinder is a finite union of cylinders. The most general open set is a countable
union of cylinders.

The topology is metrizable, for instance by the product metric

dλ(ω,ω′) =
∞∑

n=−∞

|ωn −ω′
n |

λ|n|

for any fixed λ> 1. Indeed, we have

PROPOSITION A.7.1 (Cylinders are balls). If λ > 2N − 1, then Cα1−n ...αn−1 =
Bdλ

(α,λ1−n), the λ1−n-ball around α.
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PROOF. If ω ∈Cα1−n ...αn−1 then

dλ(α,ω) =
∑

i∈Z

|αi ,ωi |
λ|i | =

∑

|i |≥n

|αi ,ωi |
λ|i | ≤

∑

|i |≥n

N −1

λ|i | =
1

λn−1

2(N −1)
λ−1

<
1

λn−1 .

Thus Cα1−n ...αn−1 ⊂Bdλ
(α,λ1−n). If ω ∉Cα1−n ...αn−1 then

dλ(α,ω) =
∑

i∈Z

δ(αi ,ωi )

λ|i | ≥λ1−n

because ωi '=αi for some |i | < n. Thus ω ∉ Bdλ
(α,λ1−n). !

The corresponding result (with the same proof) also holds for the prod-
uct metric obtained from the discrete metric δ(k , l ) = 1 if k '= l , δ(k ,k) = 0 on
{0, . . . , N −1}.

PROPOSITION A.7.2 (Cylinders are balls). If

dλ(ω,ω′) :=
∑

i∈Z

δ(ωi ,ω′
i )

λ|i | ,

for some λ> 3, then Cα1−n ...αn−1 =Bdλ
(α,λ1−n).

The choice of λ in these metrics is not particularly important:

PROPOSITION A.7.3 (Hölder structure). For anyλ,µ the identity map Id: (ΩN ,dλ) →
(ΩN ,dµ) is Hölder continuous, that is, there exist a,c > 0 such that for any ω,ω′ ∈
ΩN we have

(A.7.2) dµ(ω,ω′) < c dλ(ω,ω′)a .

The different metrics dλ not only define the same topology on ΩN (although
they are not equivalent as metrics) but also determine a Hölder structure. This
means that the notion of Hölder-continuous function (Definition A.6.36) with
respect to the metric dλ does not depend on λ. That class of Hölder-continuous
functions plays an extremely important role in applications to differentiable dy-
namics (see 23 and Chapter 24) and can be described as follows.

DEFINITION A.7.4. Let K ⊂ΩN be closed and ϕ ∈C (K ,C). For n = 0,1, . . . let

Vn(ϕ) :=max{|ϕ(ω)−ϕ(ω′)| ωk =ω′
k for |k |≤n},

where ω = (. . . ,ω−1.ω0,ω1, . . . ), ω′ = (. . . ,ω′
−1.ω′

0,ω′
1, . . . ) ∈ K . Since ΩN is com-

pact, ϕ is uniformly continuous and Vn(ϕ) → 0 as n → ∞. We say that ϕ has
exponential type if for some a,c > 0

Vn(ϕ) ≤ ce−an.

It is not difficult to see that ϕ has exponential type if and only if it is Hölder
continuous (Definition A.6.36) with respect to some (and hence any) metric dλ

(see ??).
All of the above discussion translates with obvious changes to the spaces

ΩR
N .
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b. Linear Cantor sets. The topology of Cantor sets has been discussed in
Subsection A.6a. We now discuss the geometry of Cantor sets in R (with the am-
bient metric). The motivation is that performing the Cantor construction while
taking away the middle-1/n! piece produces a Cantor set that is “thicker” than
the same construction with middle-1− 1

n! pieces removed.

DEFINITION A.7.5 (Thickness). Two intervals are said to be linked if the in-
terior of each contains exactly one endpoint of the other. Two Cantor sets are
said to be linked if their convex hulls are linked.

If C ⊂ R is a Cantor set then each connected component of R*C is called a
complementary interval.

Two Cantor sets in R are said to overlap if neither of them lies in a comple-
mentary interval of the other.

Each bounded complementary interval is called a gap.
If x ∈ C is an endpoint of a gap I then the bridge B (x) of C at x is the max-

imal interval (in R) with x as an endpoint and disjoint from all complementary
intervals whose length l (B (x)) is that of I or more.

The thickness of C at an endpoint x of a gap I is then defined by

τ(C , x) :=
l (B (x))

l (I )
,

and the thickness of C is defined as τ(C ) := infx τ(C , x).

REMARK A.7.6. Note that linked Cantor sets overlap and that being linked is
an open condition (using the Hausdorff metric). Also, the thickness of a Cantor
set is invariant under linear maps.

REMARK A.7.7. For studying the behavior of thickness under nonlinear maps
an alternative definition is useful because even if lengths of gaps are changed by
only slightly different ratios under the map, bridges might not be mapped to
bridges because of a change in the order of lengths of gaps. Instead, one can fix
a labeling: We say that an ordering I := (In)n∈N of the gaps is a presentation of
C , and for an endpoint x ∈ C of a gap In the x-component C (x) of C at x is the
maximal interval (in R) with x as an endpoint and disjoint from all gaps I j for
j < n. Then τ(C ,I , x) := l (C (x))/l (I ) and

τ(C ) = sup{inf{τ(C ,I , x) x is a gap endpoint} I is a presentation}

because the supremum is attained for any presentation that is monotone in gap
lengths.

The prime application of the notion of thickness is that two sufficiently thick
overlapping Cantor sets must intersect.

PROPOSITION A.7.8 (Newhouse Gap Lemma). If C1,C2 ⊂ R are overlapping
Cantor sets with τ(C1)τ(C2) > 1 then C1 ∩C2 '=∅.

PROOF. Consider the gaps of C1. If none of them contains a point of C2 then
C2 ⊂C1 and we are done. Otherwise, consider a gap I1 of C1 that contains a point
of C2 and hence an endpoint of a gap of C2. Of the gaps of C2 with an endpoint in
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I1, there is at least one that is not contained in I1, for otherwise C2 ⊂ I1 contrary
to the overlap assumption. Calling this gap I2 we have what is called a gap pair
(I1, I2): I1 and I2 are linked.

CLAIM A.7.9. If (I1, I2) is a gap pair then there exists one of the following:

(1) a point in C1 ∩C2,
(2) a gap pair (I ′1, I2) with l (I ′1) < l (I1),
(3) a gap pair (I1, I ′2) with l (I ′2) < l (I2).

PROOF. If xi ∈ I3−i is an endpoint of Ii for i = 1,2 and Bi (·) denotes bridges
in Ci , then the thickness assumption implies

l (B1(x1))
l (I2)

·
l (B2(x2))

l (I1)
=

l (B1(x1))
l (I1)

·
l (B2(x2))

l (I2)
> 1.

Thus, at least one of the fractions on the left exceeds 1, and to fix ideas we con-
sider the case of l (B1(x1))/l (I2) > 1. If y '= x2 is the other endpoint of I2 this
implies that y ∈ B1(x1). There are two possibilities. Either y ∈ C1 and we are in
the first case (since y ∈C2) or y is in a gap I ′1 of C1 of length less than l (I1). This
gives the desired gap pair (I ′1, I2) with l (I ′1) < l (I1). (The third possibility in the
claim arises from the other fraction exceeding 1.) !

To prove Proposition A.7.8, start with the original gap pair and apply the
claim. If it yields a point in C1 ∩C2 we are done. Otherwise, we can apply the
claim to the new gap pair. Either this recursion ends in case 1 after finitely many
steps, and the proof is complete, or it gives a sequence of gap pairs. Since the gap
lengths are summable we get either a sequence I (i )

1 with l (I (i )
1 ) → 0 or a sequence

I (i )
2 with l (I (i )

2 ) → 0. Either way, the midpoints of these intervals necessarily con-
verge to a point of C1 ∩C2, which completes the proof in this last case. !

8. The Perron–Frobenius theorem for positive matrices

THEOREM A.8.1 (Perron–Frobenius Theorem). Let L be an N×N matrix with
nonnegative entries such that for some power Ln0 all entries are positive. Then
L has one (up to a scalar) eigenvector e with positive coordinates and no other
eigenvectors with nonnegative coordinates. Moreover, the eigenvalue correspond-
ing to e is simple, positive, and greater than the absolute values of all other eigen-
values.

PROOF. Denote by P the set of all vectors in RN with nonnegative coordi-
nates and by σ the unit simplex in P , that is,

σ := {(x1, . . . , xN ) ∈RN xi ≥ 0, ‖x‖1 :=
N∑

i=1
|xi | = 1}.

By assumption LP ⊂ P . Thus for every x ∈σ there exists a unique vector T x ∈σ
proportional to Lx, and we have a canonical map T : σ→σ. Since Ln0 (P) ⊂ IntP
we have T n0 (σ) ⊂ Intσ.

If S ⊂ σ is convex, then so are T S and T −1(S), and ex(T (S)) ⊂ T (ex(S)) (see
Definition A.10.25).


