FALL 2011

A.Katok

HOMEWORK # 1

Due on Wednesday August 31

1. Consider two norms in the standard *n*-dimensional vector space \mathbb{R}^n : Euclidean norm $||(x, \ldots, x_n)||_2 = (\sum_{i=1}^n x_i^2)^{1/2}$ and maximal norm $||(x, \ldots, x_n)||_{\infty} = \max(|x_1, \ldots, |x_n|).$

Prove that there exist a constant $C_n > 0$ such that

$$C_n ||(x_1, \dots, x_n)||_2 \le ||(x_1, \dots, x_n)||_{\infty} \le C_n^{-1} ||(x_1, \dots, x_n)||_2.$$

2. Let p be a positive number. For $x = (x_1, x_2) \in \mathbb{R}^2$ define

$$||x||_p = (|x_1|^p + |x_2|^p)^{1/p}.$$

For what values of $p ||x||_p$ is a norm? Give the answer with complete proof.

3. Prove that the space of polynomials of all degrees on the interval [0,1] with the metric $d(p,q) = \max_{0 \le x \le 1} |p(x) - q(x)|$ is not complete.

4. Prove that the closed unit ball space of continuous functions on the unit interval C([0,1]) with the metric $d(f,g) = \max_{0 \le x \le 1} |f(x) - g(x)|$ (i.e all functions such that $\max |f(x)| \le 1$) is not compact.

5. Recall that a metric space is *separable* if it contains an everywhere dense countable subset.

- (1) Prove that the space C([0, 1]) is separable.
- (2) Prove that the space of bounded continuous functions on the real line $C(\mathbb{R})$ with the metric $d(f,g) = \sup_{x \in \mathbb{R}} |f(x) g(x)|$ is not separable.

NOTE CORRECTIONS TO THE PRINTED VERSION!

EXTRA CREDIT PROBLEM (Due September 7)

1^{*}. Find a proper generalization of problems 4 and 5 to spaces of functions on general metric spaces.