MASS-11; ANALYSIS

FALL 2011

A.Katok

HOMEWORK # 10

Due on Wednesday November 16

Let $\alpha > 0$. A function f on a metric space (X, d) is called α -Hoelder if there exists a constant C such that for every $x, y \in X$

$$|f(x) - f(y)| \le C(d(x,y))^{\alpha}.$$

More generally, given a modulus of continuity ρ , a function is ρ continuous if it has modulus of continuity $C\rho$ for some C.

44. Prove that for any modulus of continuity ρ the ρ -continuous functions are dense in the space of C(K) where K is the Cantor set with any metric.

45. Prove that there exists a metric d on the unit interval such that for any α α -continuous functions are dense in C([0, 1]).

Note: remember that for the standard metric this is only true for $\alpha \leq 1$.

46. Prove the following generalization of the Weierstrass-Stone theorem:

Let \mathcal{A} be an algebra of real-valued functions on a compact metric space X. Say that points x, y are equivalent if f(x) = f(y) for any $f \in A$.

Then either the closure of \mathcal{A} consists of all functions constant on the equivalence classes of points or there is exactly one equivalence class E where all functions form \mathcal{A} vanish and the closure of \mathcal{A} consists of all functions vanishing at E.

47.

- (1) Prove that any closed convex subset of a Hilbert space is closed in weak topology.
- (2) Give an example of a closed set in a Hilbert space that is not closed in weak topology.

48. Prove that there exists a function f on the unit interval with modulus of continuity \sqrt{t} and norm one in C([0,1]) that cannot be represented as $\frac{g+h}{2}$ where $g \neq f$ and both g and h have the same properties as f, i.e. norm one and modulus of continuity \sqrt{t} .