FALL 2011

A.Katok

HOMEWORK # 2

Due on Wednesday September 6

- 6. Let p be a prime number and let $a_1 \in \{0, ..., p-1\}, i = 0, 1...$
- (1) Prove that the series

$$\sum_{n=0}^{\infty} a_n p^n$$

converges in the space \mathbb{Q}_p of *p*-adic numbers.

(2) Prove that for every p-adic number x there exists an integer K such that x has unique representation of the form

$$\sum_{n=K}^{\infty} a_n p^n$$

with $a_n \in \{0, ..., p-1\}$ with $a_K \neq 0$.

7. Prove that every triangle in \mathbb{Q}_p is isosceles, i.e at least two of its sides have equal lengths.

8. Let *m* be an arbitrary integer. Define *m*-adic norm $\|\cdot\|_m$ on \mathbb{Q} as follows: represent $\frac{a}{b}$, with *a* and *b* are relatively prime, as $m^n \frac{a'}{b'}$ where *b'* is relatively prime both with *a'* and with *m*. Then $\|\frac{a}{b}\|_m = m^{-n}$.

Prove that $\|\cdot\|_m$ is a norm and show that if m is not prime the norm of the product is not necessarily equal to the product of norms.

9. Consider the space L of piecewise-constant functions on [0, 1] continuous from the left with the norm $||f|| = \sup_{0 \le x \le 1} |f(x)|$. Describe the completion of L as a space of functions.

10. Let D be the space of continuously differentiable functions on [0,1] and $B \subset D$ be the set of continuously differentiable functions with absolute value of the derivative bounded by one with the uniform distance $d(f,g) = \max |f(x) - g(x)|$.

- (1) Prove that D is dense in the space C[0,1] of continuous functions with the maximum norm.
- (2) Prove that B is precompact.