MASS-11; ANALYSIS

FALL 2011

A.Katok

HOMEWORK \# 2

Due on Wednesday September 6
6. Let p be a prime number and let $a_{1} \in\{0, \ldots, p-1\}, i=0,1 \ldots$.
(1) Prove that the series

$$
\sum_{n=0}^{\infty} a_{n} p^{n}
$$

converges in the space \mathbb{Q}_{p} of p-adic numbers.
(2) Prove that for every p-adic number x there exists an integer K such that x has unique representation of the form

$$
\sum_{n=K}^{\infty} a_{n} p^{n}
$$

with $a_{n} \in\{0, \ldots, p-1\}$ with $a_{K} \neq 0$.
7. Prove that every triangle in \mathbb{Q}_{p} is isosceles, i.e at least two of its sides have equal lengths.
8. Let m be an arbitrary integer. Define m-adic norm $\|\cdot\|_{m}$ on \mathbb{Q} as follows: represent $\frac{a}{b}$, with a and b are relatively prime, as $m^{n} \frac{a^{\prime}}{b^{\prime}}$ where b^{\prime} is relatively prime both with a^{\prime} and with m. Then $\left\|\frac{a}{b}\right\|_{m}=m^{-n}$.

Prove that $\|\cdot\|_{m}$ is a norm and show that if m is not prime the norm of the product is not necessarily equal to the product of norms.
9. Consider the space L of piecewise-constant functions on $[0,1]$ continuous from the left with the norm $\|f\|=\sup _{0 \leq x \leq 1}|f(x)|$. Describe the completion of L as a space of functions.
10. Let D be the space of continuously differentiable functions on $[0,1]$ and $B \subset D$ be the set of continuously differentiable functions with absolute value of the derivative bounded by one with the uniform distance $d(f, g)=\max |f(x)-g(x)|$.
(1) Prove that D is dense in the space $C[0,1]$ of continuous functions with the maximum norm.
(2) Prove that B is precompact.

