MASS-11; ANALYSIS

FALL 2011

A.Katok

HOMEWORK # 3

Due on Wednesday September 14

11.Let for $\mathbf{x} = (x_1, ..., x_n)$

(1) Find the maximal number C_n such that

 $\|\mathbf{x}\|_2 \ge C_n \|\mathbf{x}\|_1.$

(2) Find the minimal number C_n such that

 $\|\mathbf{x}\|_2 \le C_n \|\mathbf{x}\|_{\infty}.$

12. Give a geometric interpretation of the results of the previous problem for n = 3. Provide a drawing.

13. A norm in \mathbb{R}^n is called *strictly convex* if ||x + y|| = ||x|| + ||y|| implies that $y = \alpha x$ for an $\alpha \in \mathbb{R}$.

Prove that the norm is strictly convex if and only if the unit "sphere" $B = \{x : ||x|| = 1\}$ does not contain a line segment.

14. Given a basis $\mathbf{x}_1, \ldots, \mathbf{x}_n$ in \mathbb{R}^n find the number of different orthonormal bases $\mathbf{y}_1, \ldots, \mathbf{y}_n$ such that for $k = 1, \ldots, n$ the vector \mathbf{y}_k is a linear combination of $\mathbf{x}_1, \ldots, \mathbf{x}_k$.

EXTRA CREDIT PROBLEM (Due September 28)

2*.Define the sum A + B of two sets in \mathbb{R}^n as the set of all sums x + y where $x \in A$ and $y \in B$. Similarly define αA for $\alpha \in \mathbb{R}$.

Prove that for convex bounded sets A_1, \ldots, A_k in \mathbb{R}^2 the area of the set $\alpha_1 A_1 + \cdots + \alpha_k A_k$ is a quadratic form in variables $\alpha_1, \ldots, \alpha_k$.

If you want a real challenge, try to generalize this problem to arbitrary dimension.