MASS-11; ANALYSIS

FALL 2011

A.Katok HOMEWORK \# 3

Due on Wednesday September 14
11. Let for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$
(1) Find the maximal number C_{n} such that

$$
\|\mathbf{x}\|_{2} \geq C_{n}\|\mathbf{x}\|_{1}
$$

(2) Find the minimal number C_{n} such that

$$
\|\mathbf{x}\|_{2} \leq C_{n}\|\mathbf{x}\|_{\infty}
$$

12. Give a geometric interpretation of the results of the previous problem for $n=3$. Provide a drawing.
13. A norm in \mathbb{R}^{n} is called strictly convex if $\|x+y\|=\|x\|+\|y\|$ implies that $y=\alpha x$ for an $\alpha \in \mathbb{R}$.

Prove that the norm is strictly convex if and only if the unit "sphere" $B=\{x:\|x\|=1\}$ does not contain a line segment.
14. Given a basis $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ in \mathbb{R}^{n} find the number of different orthonormal bases $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$ such that for $k=1, \ldots, n$ the vector \mathbf{y}_{k} is a linear combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$.

EXTRA CREDIT PROBLEM (Due September 28)
2^{*}.Define the sum $A+B$ of two sets in \mathbb{R}^{n} as the set of all sums $x+y$ where $x \in A$ and $y \in B$. Similarly define αA for $\alpha \in \mathbb{R}$.

Prove that for convex bounded sets A_{1}, \ldots, A_{k} in \mathbb{R}^{2} the area of the set $\alpha_{1} A_{1}+\cdots+\alpha_{k} A_{k}$ is a quadratic form in variables $\alpha_{1}, \ldots, \alpha_{k}$.

If you want a real challenge, try to generalize this problem to arbitrary dimension.

