FALL 2011

A.Katok

HOMEWORK # 6

Due on Wednesday October 5

23. Let B be the closed unit ball in the space ℓ^1 of absolutely summable sequences.

(1) Prove that not every point of B can be represented as

$$\sum_{i=1}^{n} s_i x_i$$

where x_i , $i = 1, \ldots, n$ are extreme points, $0 \le s_i \le 1$, $\sum_{i=1}^{n} s_i = 1.$ (2) Prove that every point of *B* is the limit of points of above form.

24. Consider a norm in \mathbb{R}^n such that the unit ball *B* is a convex polyhedron. Construct a natural correspondence between k-dimensional faces of B and n - k-dimensional faces of the unit ball B' in the dual norm.

25. Consider a norm in \mathbb{R}^4 such that the unit ball *B* is the octacube. Describe the dual norm in \mathbb{R}^4 . Find a coordinate system in which the unit ball in the dual space is the octacube.

26. Prove that if in a family of of convex subsets in \mathbb{R}^n every n+1sets in the family have a non-empty intersection, then all sets from the family have a non-empty intersection.

Hint: Show that it is enough to consider finite families. After that use induction in the number of sets and in the dimension.

27. Find a two-dimensional subspace L of the space C([0,1]) such that the restriction of the norm to this space makes it isometric to the plane \mathbb{R}^2 with Euclidean norm.

3*. Prove that there does not exist a Banach space whose dual is isometric to ℓ^1 .

4*. Prove that \mathbb{R}^2 with any norm can be isometrically embedded into C([0,1]), i.e. as in the problem 27 there exists a a two-dimensional subspace L of the space C([0,1]) such that the restriction of the norm to this space makes it isometric to the plane \mathbb{R}^2 with the given norm.

5*. Let B be the unit ball in the dual space to a separable Banach space. Prove that every element of B is the limit os elements of the form

$$\sum_{i=1}^{n} s_i x_i$$

where x_i , i = 1, ..., n are extreme points of B, $0 \le s_i \le 1$, $\sum_{i=1}^n s_i = 1$.