MASS-11; ANALYSIS

FALL 2011

A.Katok
 HOMEWORK \# 7

Due on Wednesday October 26

PROBLEMS 28 AND 30 HAVE BEEN CORRECTED

28. Let K be a non-empty closed convex subset of a Hilbert space H (real or complex). Prove that for any $x \in H$ there exist a unique point $y \in K$ closest to K.
29. Let L be a closed linear subspace of a real Hilbert space X. Prove that for any $x \in H$ the angle between x and $y \in L,\|y\|=1$ reaches its minimum at a unique point y.
30. Let L_{1} be a closed linear subspace and L_{2} a finite-dimensional subspace of a real Hilbert space H. Prove that the angle between nonzero vectors $x \in L_{1}$ and $y \in L_{2}$ reaches its minimum and that minimum is positive if and only if $L_{1} \cap L_{2}=\{0\}$.
31. Find expansion coefficients with respect to the trigonometric basis $\exp 2 \pi i n x, n \in \mathbb{Z}$ in the space $L^{2}([0,1])$ for the following functions:
(1) $\exp a x, a \in \mathbb{R}$
(2) $\operatorname{sgn}(2 x-1)$
(3) $x \exp x$.
32. Let m be a natural number and $\phi_{m}(x)=(-1)^{\left[2^{m} x\right]} 0 \leq x \leq 1$. Let $m_{1}<m_{2}<\cdots<m_{n}$. Prove that the the constant function equal to one and the functions

$$
\phi_{m_{1}} \cdot \phi_{m_{2}} \cdot \ldots \cdot \phi_{m_{n}}
$$

for different collections m_{1}, \ldots, m_{n} form an orthonormal basis in $L^{2}([0,1])$ (real or complex). Here [•] denotes the integral part of the number.
33. Consider the following complex inner product in the space of polynomials of one complex variable $z=x+i y$:

$$
(P, Q)=\iint_{\substack{|z| \leq 1 \\ 1}} P(z) \overline{Q(z)} d x d y
$$

Apply the orthogonalization process to the sequence of monomials $1, z, z^{2}, \ldots$ and find the corresponding orthonormal basis in that Hilbert space.

