
CHAPTER 3

Groups of matrices: Linear algebra and symmetry

in various geometries

Lecture 14

a. Orthogonal matrices and isometries of Rn. Using the standard
scalar product on Rn, let I be an isometry of Rn which fixes 0; thus I is
a linear map which preserves the standard scalar product. In particular, if
E = {e1, . . . , en} is an orthonormal basis, then the set IE = {Ie1, . . . , Ien}
is still an orthonormal basis, since

〈
Iei, Iej

〉
=

〈
ei, ej

〉
.

Let B be the n× n matrix which represents the linear transformation I
in the basis E—that is, bij =

〈
Iei, ej

〉
, so

Iei =
n∑

j=1

bije
j .

Then the statement that IE is an orthonormal basis is equivalent to the
statement that the row vectors of B are orthonormal, because in this case

〈
Iei, Iej

〉
=

n∑

k=1

bikbjk = 0

for i "= j, and
〈
Iei, Iei

〉
=

n∑

j=1

b2
ij = 1.

Recall from the rules for matrix multiplication that this is equivalent to the
condition BBT = Id, or BT = B−1. This is in turn equivalent to BTB = Id,
which is the statement that the column vectors of B are orthonormal.

Alternately, one may observe that if we let x denote a column vector
and xT a row vector, then the standard form of the scalar product (13.2)
becomes 〈x,y〉 = xT y, and so we have the following general relationship:

(14.1) 〈x, Ay〉 = xT Ay = (AT x)T y =
〈
AT x,y

〉
.

Thus if B is the matrix of I, which preserves scalar products, we have

〈x,y〉 = 〈Bx, By〉 =
〈
BTBx,y

〉

for every x,y ∈ Rn, which implies BT B = Id, as above.

Definition 14.1. A matrix B such that BT = B−1 is called orthogonal.
The group of orthogonal n × n matrices is denoted O(n).
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104 3. GROUPS OF MATRICES

It should come as no surprise by now that the group of orthogonal ma-
trices is identified with the group of isometries which fix the origin. Fur-
thermore, since detBT = det B, we see that any orthogonal matrix has

1 = det Id = det(BTB) = (detBT )(det B) = (det B)2,

and hence detB = ±1. Matrices with determinant 1 correspond to even
isometries fixing the origin and compose the special orthogonal group that is
denoted by SO(n); matrices with determinant −1 correspond to odd isome-
tries fixing the origin.

In SO(3), we saw that the conjugacy class of a rotation contained all
rotations through the same angle θ. Later in this lecture, we will sketch a
proof of the analogous result in higher dimensions, which states that given
any B ∈ O(n), there exists A ∈ O(n) such that the matrix A−1BA has the
form

(14.2)





1
. . .

1
−1

. . .
−1

Rθ1

. . .
Rθk





,

where all entries not shown are taken to be 0, and where Rθ is the 2 × 2
rotation matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
,

and the θi may be the same or may be different but not equal to 0 or π.
One can also combine pairs of 1’s into rotations by angle 0 and pairs of

−1’s into rotations by π. Then no more than one “loose” diagonal element
1 and −1 is left. In the even dimension n for an SO(n) matrix no loose
elements remain and for a matrix with determinant −1 there is one 1 and
one −1. in the odd dimension exactly one loose element remains and it is 1
or −1 according to the sign of the determinant.

Geometrically, this means that Rn can be decomposed into the orthogo-
nal direct sum of a number of one-dimensional subspaces Xi which are fixed
by B, a number of one-dimensional subspaces Yi on which B acts as the map
x '→ −x (that is, a reflection), and a number of two-dimensional subspaces
Zi on which B acts as a rotation by θi. Since the rotation is a product of
two reflections this also gives a representation of isometry as the product of
at most n reflections. To summarize:

The isometry determined by the matrix B can be written as the product
of commuting reflections in the orthogonal complements of Yi (reflection is
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always around an affine subspace of codimension one) together with commut-
ing rotations in the orthogonal complements of Zi (rotation is always around
an affine subspace of codimension two). The number of subspaces Yi—that
is, the number of times −1 occurs on the diagonal—determines whether the
isometry given by B is even or odd.

Notice that any isometry of Rn with a fixed point is conjugate to an
isometry fixing the origin by a translation. Thus linear algebra gives us a
complete description of isometries of Rn with a fixed point.

The three dimensional case is particularly easy then: there is one rota-
tion block (possibly the identity) and either 1 on the diagonal (resulting in
a rotation or the identity map) or −1 (resulting in a rotatory reflection or a
pure reflection).

Exercise 14.1. Using the representation (14.2) give a complete classifi-
cation of isometries in R4 with a fixed point and describe conjugacy classes
in SO(4) and O(4).

b. Eigenvalues, eigenvectors, and diagonalizable matrices. We
stated above that every orthogonal matrix A ∈ O(n) can be put in the
form (14.2) by a suitable change of coordinates—that is, a transformation
of the form A '→ CAC−1, where C ∈ O(n) is the change of basis matrix.
This is related to perhaps the most important result in linear algebra, Jor-
dan normal form. Now we will review the relevant concepts from linear
algebra and show why every orthogonal transformation can be so repre-
sented. Along the way we will learn importance of complexification, when
objects defined over the field of real numbers (in our case, linear spaces,
linear transformations and scalar products) are extended to the complex
field.

Before diving into the details, we observe that our mission can be de-
scribed both geometrically and algebraically. Geometrically, the story is
this: we are given a linear transformation L : Rn → Rn, and we wish to find
a basis in which the matrix of L takes on as simple a form as possible. In
algebraic terms, we are given a matrix L ∈ GL(n, R), and we wish to de-
scribe the conjugacy class of L—that is, we want to characterise all matrices
L′ such that L′ = CLC−1 for some C ∈ GL(n, R).1 Ideally, we would like
to select a good representative from each conjugacy class, which will be the
normal form of L.

Definition 14.2. Let L be an n×n matrix with real entries. An eigen-
value of L is a number λ such that

(14.3) Lv = λv

1If L ∈ O(n), then we would like to take the conjugating matrix C to be orthogonal
as well. In this case there is no difference between conjugacy in the group GL(n, R) and
conjugacy in the subgroup O(n), but this is not always the case; recall that rotations Rx

θ

and Rx

−θ are conjugate in Isom(R2), but not in Isom+(R2).



106 3. GROUPS OF MATRICES

for some vector v ∈ Rn, called an eigenvector of L. The set of all eigenvectors
of λ is a subspace of Rn, called the eigenspace of λ. The multiplicity of λ is
the dimension of this subspace.

Although this definition only allows real eigenvalues, we will soon see
that complex eigenvalues can also exist, and are quite important.

Exercise 14.2. Let v1, . . . ,vk be eigenvectors of L, and let λ1, . . . ,λk

be the corresponding eigenvalues. Suppose that λi "= λj for i "= j, and show
that the eigenvectors vi are linearly independent.

It follows from Exercise 14.2 that there are only finitely many eigenval-
ues for any matrix. But why should we be interested in eigenvalues and
eigenvectors? What purpose does (14.3) serve?

One important (algebraic) reason is that the set of eigenvalues of a ma-
trix is invariant under conjugacy.

An important geometric reason is that (14.3) shows that on the sub-
space containing v, the action of the linear map L : Rn → Rn is particularly
simple—multiplication by λ! If we can decompose Rn into a direct product
of such subspaces, then we can legitimately claim to have understood the
action of L.

Definition 14.3. L is diagonalizable (over R) if there exists a basis
v1, . . . ,vn ∈ Rn such that each vi is an eigenvector of L.

Suppose {vi} is a basis of eigenvectors with eigenvalues {λi}, and let
C ∈ GL(n, R) be the linear map such that Cvi = ei for each 1 ≤ i ≤ n.
Observe that

CLC−1ei = CLvi = C(λivi) = λiei;

hence the matrix of CLC−1 is

(14.4) diag(λ1, . . . ,λn) =





λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




.

It follows from Exercise 14.2 that L has no more than n eigenvalues.
So far, though, nothing we have said prevents it from having fewer than n
eigenvalues, even if we count each eigenvalue according to its multiplicity.
Indeed, one immediately sees that any rotation of the plane by an angle not
equal to 0 or π is a linear map with no real eigenvalues. Thus we cannot
expect to diagonalise every matrix, and must look to more general forms for
our classification.

The eigenvalue equation (14.3) characterises eigenvectors (and hence
eigenvalues) geometrically: v is an eigenvector if and only if it is parallel to
its image Lv. An algebraic description of eigenvalues can be obtained by
recalling that given an n×n matrix A, the existence of a vector v such that
Av = 0 is equivalent to the condition that detA = 0. We can rewrite (14.3)
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as (L − λ Id)v = 0, and so we see that λ is an eigenvalue of L if and only if
det(L − λ Id) = 0.

The determinant of an n×n matrix is the sum of n! terms, each of which
is a product of n entries of the matrix, one from each row and column. It
follows that p(λ) = det(L − λ Id) is a polynomial of degree n, called the
characteristic polynomial of the matrix L, and that the coefficients of p are
polynomial expressions in the entries of the matrix. Incidentally, we see
from this that indeed there are no more than n eigenvalues, real or complex.

The upshot of all this is that the eigenvalues of a matrix are the roots of
its characteristic polynomial, and now we see the price we pay for working
with the real numbers—R is not algebraically closed, and hence the char-
acteristic polynomial may not factor completely over R! Indeed, it may
not have any roots at all; for example the characteristic polynomial of the
rotation matrix

(
cos θ − sin θ
sin θ cos θ

)
is p(λ) = λ2 − 2 cos θ + 1.

We can resolve this difficulty and ensure that L has “enough eigenvalues”
by passing to the complex numbers, over which every polynomial factors
completely, and declaring any complex root of p(λ) = 0 to be an eigenvalue
of L. Then the Fundamental Theorem of Algebra gives us

(14.5) p(λ) = det(L − λ Id) =
n∏

i=1

(λ− λi),

where {λ1, . . . ,λn} ⊂ C are the eigenvalues of L.
The set of all eigenvalues of L is called the spectrum of L.

Exercise 14.3. Given an n × n matrix L and a change of coordinates
C ∈ GL(n, R), show that L and L′ = CLC−1 have the same spectrum, and
that C takes eigenvectors of L into eigenvectors of L′.

At this point, it is not at all clear what geometric significance a complex
eigenvalue has, if any. After all, if λ ∈ C \ R is an eigenvalue of L and v is
a vector in Rn, what does the expression λv even mean?

c. Complexification, complex eigenvectors and rotations. The
difficulty in interpreting the expression λv for λ ∈ C and v ∈ Rn is that
vectors in Rn must have real coordinates. We can solve this problem in
a rather simple-minded way—just let the coordinates be complex! If we
consider vectors v ∈ Cn, the n-dimensional complex vector space, then λv
makes perfect sense for any λ ∈ C; thus (14.3) may still be used as the
definition of an eigenvalue and eigenvector, and agrees with the definition
in terms of the characteristic polynomial.

The same procedure can be put more formally: Cn is the complexification
of the real vector space Rn, and is equal as a real vector space to the direct
sum of two copies of Rn. We call these two copies VR and VI (for real and
imaginary); given vectors x ∈ VR and y ∈ VI , we intertwine the coordinates
and write

(14.6) z = (x1, y1, x2, y2, . . . , xn, yn) ∈ R2n
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for the vector with real part x and imaginary part y. As a vector with n
complex coordinates, we write z as

(14.7) z = (x1 + iy1, x2 + iy2, . . . , xn + iyn).

In order to go from the formulation (14.6) to the complex vector space (14.7),
we must observe that multiplication by i acts on R2n as the linear operator

J : (x1, y1, . . . , xn, yn) '→ (−y1, x1, . . . ,−yn, xn).

That is, if we decompose R2n as the direct sum of n copies of R2, the action
of J rotates each copy of R2 by π/2 counterclockwise, which is exactly the
effect multiplication by i has on the complex plane.2

Having defined Cn, we observe that since L and J commute, L extends
uniquely to a linear operator LC : Cn → Cn. All the definitions from the
previous section go through for LC, and now the fundamental theorem of
algebra guarantees that (14.5) holds and the characteristic polynomial fac-
tors completely over C. We refer to any eigenvalue of LC as an eigenvalue
of L itself, and this justifies our definition of spectrum of L as a subset of
C. But now we must ask: What do the (complex-valued) eigenvalues and
eigenvectors of LC have to do with the geometric action of L on Rn?

To answer this, we consider an eigenvalue λ ∈ C\R and the correspond-
ing eigenvector z ∈ Cn. Obviously since λ /∈ R we have z /∈ Rn; how do we
extract a real-valued vector from z on which the action of L is related to λ?

Observe that since the entries of the matrix for L are real-valued, the
coefficients of the characteristic polynomial p(λ) are real-valued. It follows
that (14.5) is invariant under the involution λ '→ λ̄, and hence if λ ∈ C \ R
is an eigenvalue of LC, so is λ̄. Furthermore, one may easily verify that
LCz̄ = λ̄z̄, where z̄ is defined in the obvious way as

z̄ = (z̄1, z̄2, . . . , z̄n) = x− iy,

where z = x + iy for x,y ∈ Rn. Observe that x = (z + z̄)/2 and y =
i(z − z̄)/2; thus the two-dimensional complex subspace of Cn spanned by z
and z̄ intersects VR = Rn in the two-dimensional real subspace spanned by
x and y.

To see how L acts on this subspace, write λ = ρeiθ, where ρ > 0 and
θ ∈ [0, 2π). Then we have

Lx + iLy = LCz = λz

= ρ(cos θ + i sin θ)(x + iy)

= ρ(cos θx− sin θy) + iρ(cos θy + sin θx),

2It turns out that there are other settings, beyond that of linear spaces, in which one
can go from a real structure to a complex structure with the help of a linear operator J
with the property that J2 = − Id. The most accessible example (which is also one of the
most important) is the theory of Riemann surfaces.
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and so L acts on the two-dimensional subspace spanned by x and y as a
spiral motion—rotation by θ scaled by ρ, with matrix

ρRθ =

(
ρ cos θ −ρ sin θ
ρ sin θ ρ cos θ

)
.

Now suppose LC is diagonalisable over C—that is, there exists C ∈ GL(n, C)
such that

CLCC−1 = diag
(
λ1, . . . ,λj , ρ1e

iθ1 , ρ1e
−iθ1 , . . . , ρke

iθk , ρke
−iθk

)
,

where λi ∈ R, ρi > 0, θi ∈ (0,π), and j + 2k = n. Then using the above
procedure, one obtains a basis for Rn in which the matrix of L is

(14.8) diag (λ1, . . . ,λj , ρ1Rθ1
, . . . , ρkRθk

) .

Thus while L cannot be diagonalised over R, it can at least be put into
block diagonal form, provided LC can be diagonalised over C. But is even
this much always possible?

d. Differing multiplicities and Jordan blocks. Observe that since
the determinant of any upper-triangular matrix is the product of the diag-
onal entries, the characteristic polynomial of an upper-triangular matrix L
is

det(L − λ Id) =
n∏

i=1

(Lii − λ).

Thus the eigenvalues of L are simply the diagonal entries.

Example 14.4. Consider the matrix L = ( 1 1
0 1 ). Its only eigenvalue is

1, and it has (1, 0) as an eigenvector. In fact, this is the only eigenvector
(up to scalar multiples); this fact can be shown directly, or one can observe
that if L were diagonalisable, then we would have CLC−1 = ( 1 0

0 1 ) for some
C ∈ GL(n, R), which would then imply L = Id, a contradiction.

This example shows that not every matrix is diagonalisable over C, and
hence not every matrix can be put in block diagonal form over R. In gen-
eral, this occurs whenever L has an eigenvalue λ for which the geometric
multiplicity (the number of linearly independent eigenvectors) is strictly less
than the algebraic multiplicity (the number of times λ appears as a root of
the characteristic polynomial). In this case the eigenspace corresponding to
λ is not as big as it “should” be. A notion of generalised eigenspace can
be introduced, and it can be shown that every matrix can be put in Jordan
normal form.

We shall not go through the details of this here; rather, we observe that
the non-existence of a basis of eigenvectors is a result of the fact that as
we select eigenvectors v1,v2, . . . , we reach a point where there is no L-
invariant subspace transverse to the subspace spanned by v1, . . . ,vk, and
thus no further eigenvectors can be found. For orthogonal matrices, we
avoid this problem, as follows.
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Let V ⊂ Rn be an invariant subspace for L—that is, L(V ) = V —and
let V ⊥ be the orthogonal complement of Rn,

V ⊥ = {v ∈ Rn | 〈v,w〉 = 0 for all w ∈ V }.

Given v ∈ V ⊥, we have 〈Lv, Lw〉 = 〈v,w〉 for all w ∈ V , and hence
Lv ∈ V ⊥. It follows that V ⊥ is invariant, and so there exists an eigenvector
of L in V ⊥ (or perhaps a two-dimensional space on which L acts as ρRθ).
Continuing in this way, we can diagonalise LC, and hence put L in the
form (14.8).

Finally, we observe that any eigenvalue of an orthogonal matrix must
have absolute value one. This follows since the determinant of L restricted
to any invariant subspace is equal to 1. It follows that (14.8) reduces to the
form (14.2) and hence every orthogonal matrix can be brought to this form
by an orthogonal transformation.

Lecture 15

a. Hermitian product and unitary matrices. One can extend the
scalar product on Rn to a Hermitian product on Cn by

(15.1) 〈z,w〉 =
n∑

j=1

zjwj .

The Hermitian product satisfies similar properties to the scalar product:

(1) 〈w,w〉 ≥ 0, with equality if and only if w = 0.
(2) 〈v,w〉 = 〈w,v〉.
(3) Linearity: 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉.
(4) 〈λv,w〉 = λ 〈v,w〉 and 〈v,λw〉 = λ̄ 〈v,w〉.

This device will allow to find a natural extension of the theory of or-
thogonal matrices to the complex domain.

It may not be immediately apparent why we should use (15.1) instead
of the more natural-looking extension

∑n
j=1 zjwj. One could define a scalar

product on Cn using the latter formula; however, one would obtain a totally
different sort of beast than the one we now consider. In particular, the
Hermitian product defined in (15.1) has the following property: If z = x+iy
and w = u + iv for real vectors x,y,u,v, then

(15.2)

〈z,w〉 =
n∑

j=1

(xj + iyj)(uj − ivj)

=
n∑

j=1

(xjuj + yjvj) + i(yjuj − xjvj).

Hence the real part of 〈z,w〉 is the real scalar product of the vectors (x1, y1, . . . xn, yn)
and (u1, v1, . . . , un, vn) in R2n. Thus the Hermitian product is a natural gen-
eralisation of the real scalar product, and we see that the complex conjugate
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wj must be used in order to avoid a negative sign in front of the term yjvj

in (15.2).
Furthermore, the presence of the complex conjugate in (15.1) is crucial

in order to guarantee that

〈z, z〉 =
n∑

j=1

zjzj =
n∑

j=1

|zj |2

is a non-negative real number, which vanishes if and only if z = 0. In
particular, the Hermitian product defines a norm on Cn by ‖z‖2 = 〈z, z〉,
with the following properties.

(1) ‖z‖ ≥ 0, with equality if and only if z = 0.
(2) ‖λz‖ = |λ| ‖z‖ for all λ ∈ C.
(3) ‖z + w‖ ≤ ‖z‖ + ‖w‖ for all z,w ∈ Cn.

The norm provides a notion of length, and the Hermitian product provides
a notion of orthogonality: as in the real case, two vectors w, z ∈ Cn are or-
thogonal if 〈w, z〉 = 0. Thus we once again have a notion of an orthonormal
basis—that is, a basis {z1, . . . , zn} of Cn such that

〈
zj , zk

〉
= δjk,

where δjk is the Kronecker delta, which takes the value 1 if j = k and 0
otherwise.

As in Rn, we have a standard orthonormal basis E = {e1, . . . , en}:

ej = (0, . . . , 0, 1, 0, . . . , 0),

where the 1 appears in the jth position. An orthonormal basis corresponds
to a decomposition of the vector space into one-dimensional subspaces which
are pairwise orthogonal. In both Rn and Cn, we can generate other orthonor-
mal bases from E without changing the subspaces in the decomposition:
simply replace ej with a parallel unit vector. In Rn, the only parallel unit
vector to ej is −ej; in Cn, we can replace ej with λej, where λ ∈ S1 is any
complex number with |λ| = 1.

This distinction is related to a fundamental difference between Rn and
Cn. In the former case, replacing ej with −ej changes the orientation of
the basis, and hence we can distinguish between even and odd orientations.
In Cn, this replacement can be done continuously by moving ej to eiθej

for 0 ≤ θ ≤ π; consequently, there is no meaningful way to say where
the “orientation” reverses. In fact, in Cn we must abandon the notion of
orientation entirely, and can no longer speak of even and odd maps.

Definition 15.1. A linear map A : Cn → Cn is unitary if 〈Az, Aw〉 =
〈z,w〉 for all z,w ∈ Cn. The group of unitary n × n complex matrices is
denoted U(n).

Observe that since the real part of the Hermitian product is just the
usual real scalar product on R2n, every unitary map on Cn corresponds to
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an orthogonal map on R2n. The converse is not true; there are orthogonal
maps on R2n which are not unitary maps on Cn. Indeed, such a map may not
even be linear on Cn; it must behave properly with respect to multiplication
by i.

However, unitary maps are a generalisation of orthogonal maps in the
following sense: given an orthogonal linear map L : Rn → Rn, the complex-
ification LC : Cn → Cn is unitary.

Proposition 15.2. If A : Cn → Cn is unitary and λ is an eigenvalue of
A, then |λ| = 1.

Proof. Let z ∈ Cn be an eigenvector for λ, and observe that

〈z, z〉 = 〈Az, Az〉 = 〈λz,λz〉 = λλ 〈z, z〉 ,

and hence

λλ = |λ|2 = 1. !

Because C is algebraically closed, the general normal form for (complex)
unitary matrices is simpler than the result in the previous lectures for (real)
orthogonal matrices. The proof, however, is basically the same, and relies on
the fact that preservation of the (real or complex) scalar product guarantees
the existence of invariant transverse subspaces.

Lemma 15.3. Every linear map L : Ck → Ck has an eigenvector.

Proof. Because C is algebraically complete, the characteristic polyno-
mial p(λ) = det(L − λ Id) has a root λ0. Thus det(L − λ0 Id) = 0, and it
follows that there exists w ∈ Ck such that (L − λ0 Id)w = 0. This w is an
eigenvector of L. !

Recall that given a linear map L : V → V , a subspace W is invariant if
L(W ) ⊂ W . If W ⊂ Cn is an invariant subspace of L, then we may apply
Lemma 15.3 to Ck = W and obtain the existence of an eigenvector in W .

The relationship between eigenvectors and invariant subspaces may be
made even more explicit by the observation that an eigenvector is precisely
a vector which spans a one-dimensional invariant subspace.

Definition 15.4. Let V be a vector space and W ⊂ V a subspace. A
subspace W ′ ⊂ V is transversal to W if W ∩W = {0} and if V = W + W ′.
Equivalently, W and W ′ are transversal if for any v ∈ V , there exist unique
vectors w ∈ W and w′ ∈ W ′ such that v = w + w′.

If 〈·, ·〉 is a Hermitian product on Cn and W ⊂ Cn is a subspace, then
the orthogonal complement of W is

W⊥ = {z ∈ Cn | 〈z,w〉 = 0 for all w ∈ W}.

Proposition 15.5. Let A : Cn → Cn be unitary and W ⊂ Cn be invari-
ant. Then W⊥ is invariant as well.
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Proof. Observe that since A is unitary, A−1 is as well. Thus given
z ∈ W⊥ and w ∈ W , we have

(15.3) 〈Az,w〉 =
〈
A−1Az, A−1w

〉
=

〈
z, A−1w

〉
.

Furthermore, since A is invertible and W is finite-dimensional, we have
A−1(W ) = W , and hence the quantity in (15.3) vanishes. Since w ∈ W was
arbitrary, it follows that Az ∈ W⊥. !

Proposition 15.6. Given a linear map L : Cn → Cn, the following are
equivalent:

(1) L is unitary.
(2) If U = {u1, . . . ,un} is any orthonormal basis for Cn, then L(U) is again

an orthonormal basis.
(3) There exists an orthonormal basis U such that L(U) is again an or-

thonormal basis.

Proof. That (1) implies (2) is immediate from the definition of unitary,
and (2) is a priori stronger than (3). Finally, if (3) holds, then for any
w, z ∈ Cn we may decompose w =

∑
j wju

j and z =
∑

k zku
k, obtaining

〈Lw, Lz〉 =
∑

j,k

wjzk

〈
Luj , Luk

〉

=
∑

j,k

wjzkδjk =
∑

j,k

wjzk

〈
uj,uk

〉
= 〈w, z〉 . !

Now we can state the fundamental theorem on classification of unitary
matrices.

Theorem 15.7. For every A ∈ U(n) there exists C ∈ U(n) such that

(15.4) CAC−1 = diag(λ1, . . . ,λn),

where |λj| = 1 for 1 ≤ j ≤ n.

Proof. We apply Lemma 15.3 and Proposition 15.5 repeatedly. First
let u1 ∈ Cn be any unit eigenvector of A, and let W1 be the subspace
spanned by u1. Then W⊥

1 is invariant, and so there exists a unit eigenvector
u2 ∈ W⊥

1 . Let W2 be the subspace spanned by u1 and u2, and continue in
this manner.

Thus we obtain an orthonormal basis {u1, . . . ,un} such that Auj =
λju

j for 1 ≤ j ≤ n. By Proposition 15.2, we have |λj| = 1 for every j.
Furthermore, if we let C be the n × n complex matrix such that Cuj = ej,
then it follows from Proposition 15.6 that C is unitary, and furthermore,

CAC−1ej = CAuj = C(λju
j) = λje

j,

which is enough to establish (15.4). !
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For real matrices, we considered the special orthogonal group SO(n)
within the orthogonal group O(n). We can do the same here and consider
the special unitary group

SU(n) = {A ∈ U(n) | det A = 1}.

However, in the complex case, the relationship between SU(n) and U(n) is
much closer to the relationship between SL(n, R) and GL(n, R) than it is
to the relationship between SO(n) and O(n). In particular, observe that
SO(n) is a subgroup of index 2 in O(n), while SL(n, R) and SU(n) both
have infinite index in their respective groups.

The group SU(2) deserves particular attention. One immediately sees
that it consists of all matrices of the form ( z w

−w̄ z̄ ), where |z2| + |w2| = 1.
Thus z = x + iy and w = s + it satisfy x2 + y2 + s2 + t2 = 1 so that
topologically SU(2) is the three-dimensional sphere.

The quaternionic group Q embeds into SU(2) (and hence into SO(4)).
Let J =

(
0 1
−1 0

)
; notice that J2 = − Id. The embedding is defined by

±1 '→ ± Id, ±i '→ ±i Id, ±j '→ ±J, ±k '→ ±iJ.

b. Normal matrices. We are interested in the class of matrices which
can be diagonalised over C, because such matrices have a simpler geometric
meaning than matrices with no such diagonalisation. We have seen that
this class does not include all matrices, thanks to the existence of matrices
like ( 1 1

0 1 ). Conversely, we have seen that this class does include all unitary
matrices.

Of course, there are plenty of matrices which can be diagonalised but are
not unitary; in particular, we may consider diagonal matrices diag(λ1, . . . ,λn)
for which the eigenvalues λj do not lie on the unit circle—that is, |λ| "= 1.
Can we give a reasonable characterisation of the class of matrices which can
be diagonalised over C?

Remark. In the present setting, this question may seem somewhat aca-
demic, since any matrix can be put in Jordan normal form, which already
gives us a complete understanding of its action on Cn (or Rn). However,
it turns out to be vital to understanding what happens in the infinite-
dimensional situation, where Cn is replaced with the more general concept
of a Hilbert space, and eigenvalues and eigenvectors give way to spectral the-
ory. In this general setting there is no analogue of Jordan normal form, and
the class of maps we examine here turns out to be very important.

Recall that given a real n × n matrix A (which may or may not be
orthogonal), the transpose of A defined by (AT )ij = Aji has the property
that

〈x, Ay〉 =
〈
AT x,y

〉

for every x,y ∈ Rn. For complex vectors and the Hermitian product, the
analogous matrix is called the adjoint of A; it is denoted A∗ and has the
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property that

〈z, Aw〉 = 〈A∗z,w〉
for every z,w ∈ Cn.

Exercise 15.1. Show that the matrix of A∗ is the conjugate transpose
of the matrix of A—that is, that

(A∗)ij = Aji.

Recall that a matrix A is unitary if and only if 〈Az, Aw〉 = 〈z,w〉 for
all z,w ∈ Cn. This is equivalent to the condition that 〈A∗Az,w〉 = 〈z,w〉
for all z and w, which is in turn equivalent to the condition that A∗A = Id.
In particular, this implies that A∗ = A−1, and hence A and A∗ commute.

Definition 15.8. A ∈ M(n, C) is normal if A∗A = AA∗.

Every unitary matrix is normal, but there are normal matrices which are
not unitary. This follows immediately from the fact that normality places
no restrictions on the eigenvalues of A; in particular, every scalar multiple
of the identity matrix is normal, but λ Id is only unitary if |λ| = 1.

It turns out that normality is precisely the condition we need in order
to make the argument from the previous section go through (modulo the
statement about the absolute values of the eigenvalues). In particular, we
can prove an analogue of Proposition 15.5, after first making some general
observations.

First we observe that given A ∈ M(n, C) and λ ∈ C, we have

〈(A − λ Id)z,w〉 = 〈Az,w〉−λ 〈z,w〉 = 〈z, A∗w〉−
〈
z,λw

〉
=

〈
z, (A∗ − λ Id)w

〉

for every z,w ∈ Cn, and hence

(15.5) (A − λ Id)∗ = A∗ − λ Id .

Proposition 15.9. If B ∈ M(n, C) is normal, then ker B = ker B∗.

Proof. Suppose Bw = 0. Then we have

‖B∗w‖2 = 〈B∗w, B∗w〉 = 〈BB∗w,w〉 = 〈B∗Bw,w〉 = 0,

and it follows that kerB ⊂ ker B∗. Equality holds since B = (B∗)∗. !

Applying Proposition 15.9 to B = A−λ Id and using (15.5), we see that
if w is an eigenvector of A with eigenvalue λ, then it is an eigenvector of A∗

with eigenvalue λ. In particular, if W is the subspace spanned by u1, . . . ,uk,
where each uj is an eigenvector of A, then each uj is an eigenvector of A∗

as well, and hence A∗W ⊂ W .
Now we have the following analogue of Proposition 15.5.

Proposition 15.10. Let A ∈ M(n, C) be normal, and let W ⊂ Cn be an
invariant subspace spanned by eigenvectors of A. Then W⊥ is an invariant
subspace as well.



116 3. GROUPS OF MATRICES

Proof. Given z ∈ W⊥ and w ∈ W , observe that

〈Az,w〉 = 〈z, A∗w〉 = 0,

where the last equality follows since A∗w ∈ W (by the above discussion). !

This lets us prove the following generalisation of Theorem 15.7.

Theorem 15.11. An n × n complex matrix A is normal if and only if
there exists C ∈ U(n) and λj ∈ C such that

(15.6) CAC−1 = diag(λ1, . . . ,λn).

Proof. One direction is easy; if (15.6) holds for some C ∈ U(n) and
λj ∈ C, then we write D = diag(λ1, . . . ,λn), and observe that A = C−1DC =
C∗DC. Thus we have

A∗ = (C∗DC)∗ = C∗D∗(C∗)∗ = C−1D∗C,

and we see that

AA∗ = (C−1DC)(C−1D∗C) = C−1DD∗C = C−1D∗DC = A∗A,

where the third equality uses the fact that diagonal matrices commute.
The other direction is a word-for-word repetition of the proof of Theo-

rem 15.7, using Proposition 15.10 in place of Proposition 15.5, and omitting
the requirement that |λj| = 1. !

Remark. Normality characterises all matrices which can be diagonalised
over C with an orthonormal change of coordinates. There are matrices that
can be diagonalised with a change of coordinates which is not orthonormal;
such matrices are not normal with respect to the standard Hermitian prod-
uct. Recall that the definition of the adjoint A∗ depends on the Hermitian
product; if we choose a different Hermitian product on Cn, we obtain a
different adjoint, and hence a different class of normal matrices.

c. Symmetric matrices. We have settled the question of which ma-
trices can be diagonalised over C via an orthonormal change of coordinates.
What about the real numbers? There are plenty of matrices which can be
diagonalised over C but which cannot be diagonalised over R; any normal
matrix with a non-real eigenvalue falls into this class.

Thus we see immediately that any matrix which can be put into the
form (15.6) as a map on Rn must have only real eigenvalues. In particular,
given A ∈ M(n, R), let AC : Cn → Cn be the complexification of A, and
observe that (AT )C = (AC)∗. It follows from the remarks before Proposi-
tion 15.10 that if λ is an eigenvalue of A, then λ is an eigenvalue of AT , with
the same eigenvectors.

Definition 15.12. A real n × n matrix such that AT = A is called
symmetric; a complex n × n matrix such that A∗ = A is called Hermitian.
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If A ∈ M(n, R) is symmetric, then for every eigenvalue λ and eigenvector
w ∈ Cn we have

λw = Aw = AT w = λw,

and hence λ = λ. Thus symmetric matrices have only real eigenvalues. In
particular, since real symmetric matrices are normal, every real symmetric
matrix is orthogonally diagonalisable over the real numbers. Furthermore,
the converse also holds: if C is a real orthogonal matrix such that D =
CAC−1 is a diagonal matrix with real entries, then

AT = (CT DC)T = CTDT (CT )T = CTDC = A,

and hence A is symmetric.

d. Linear representations of isometries and other classes of
transformations. Our discussion of linear algebra began with a quest to
understand the isometries of Rn. We have seen various classes of matrices,
but have not yet completed that quest—now we are in a position to do so.

We recall the following definition from Lecture 2.

Definition 15.13. A homomorphism ϕ : G → GL(n, R) is called a linear
representation of G. If kerϕ is trivial, we say that the representation is
faithful.

Informally, a linear representation of a group G is a concrete realisation
of the abstract group G as a set of matrices, and it is faithful if no two
elements of G are represented by the same matrix. Linear representations
are powerful tools, because the group of invertible matrices is general enough
to allow us to embed many important abstract groups inside of it, and yet
is concrete enough to put all the tools of linear algebra at our disposal in
studying the group which is so embedded.

We were able to represent the group of all isometries of Rn with a fixed
point as O(n). In order to represent isometries with no fixed point, we must
go one dimension higher and consider matrices acting on Rn+1.

Proposition 15.14. Isom(Rn) has a linear representation in GL(n +
1, R). In particular, Isom+(Rn) has a linear representation in SL(n+1, R).

Proof. Given I ∈ Isom(Rn), let b = −I0; then T−b ◦ I0 = 0, and
hence A = T−b ◦ I ∈ O(n). Thus I = Tb ◦ A, and so for every x ∈ Rn we
have

(15.7) Ix = Tb ◦ Ax = Ax + b.

Embed Rn into Rn+1 as the plane

P = {x ∈ Rn+1 | xn+1 = 1}.
To the isometry I, associate the following block matrix:

(15.8) ϕ(I) =

(
A b
0 1

)
.
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Here A ∈ O(n), b is an n × 1 column vector, and 0 is a 1 × n row vector.
Observe that ϕ(I) ∈ GL(n + 1, R), and that ϕ(I) maps P to itself; if I ∈
Isom+(Rn), then ϕ(I) ∈ SL(n, R). Furthermore, the action of ϕ(I) on P is
exactly equal to the action of I on Rn, and ϕ is a homomorphism: given
I1, I2 ∈ Isom(Rn), we have

ϕ(I2)ϕ(I1) =

(
A2 b2

0 1

)(
A1 b1

0 1

)
=

(
A2A1 A2b1 + b2

0 1

)
,

which is equal to ϕ(I2 ◦ I1) since

I2 ◦ I1x = I2(A1x + b1) = A2(A1x + b1) + b2.

Finally, we observe that if I is an even isometry, then detϕ(I) = 1. !

The technique exhibited in the proof of Proposition 15.14 embeds Isom(Rn)
in GL(n + 1, Rn) as (

O(n) Rn

0 1

)
.

Using a the same technique, we can represent the affine group Aff(Rn),
which is the class of all maps which take lines to lines. As will be shown later
(Theorem 17.1), every such map can again be written in the form (15.7),3

but here A may be any matrix, not necessarily orthogonal. Thus we embed
Aff(Rn) into GL(n + 1, Rn) as

(
GL(n, R) Rn

0 1

)
.

We may also do this with the group of similarity transformations—maps
of Rn which take lines to lines and preserve angles. Every such map may
be written as x '→ λRx + b, where λ ∈ R and R ∈ O(n). Thus the group
embeds into the general linear group as

(
R · O(n) Rn

0 1

)
.

The common thread in all these representations is that all the tools
of linear algebra are now at our disposal. For example, suppose we wish
to classify isometries of Rn, and have forgotten all the synthetic geometry
we ever knew. Then we observe that every isometry can be written as
Ix = Ax + b, and note that I has a fixed point if and only if

Ax + b = x

has a solution—that is, if and only if b lies in the range of A − Id. If 1 is
not an eigenvalue of A, then A− Id is invertible, and I has a fixed point. If
1 is an eigenvalue of A, then b may not lie in the range of A − Id, which is
the orthogonal complement to the eigenspace L1 of vectors with eigenvalue
1; in this case I has no fixed points. As before let us decompose b = b1 +b2

where b1 ∈ L1, i.e Ab1 = b1, and b2 orthogonal to L1, i.e. in the range of

3For the time being we take (15.7) as our definition of an affine map.
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A− Id. Then I is the composition of the isometry I ′ : x → Ax+b2 that has
a fixed point and translation Tb1

by b1. I ′ is conjugate via a translation to
the linear isometry A and I to the product of it with the translation Tb1

.
Notice that ATb1

x = A(x + b1) = Ax + Ab1 = Ax + b1 = Tb1
Ax.

Thus any isometry I without fixed points is the product of a commuting
pair comprising an isometry I0 with many fixed points and a translation
along the fixed set of that isometry. Depending on the dimension of the fixed
set for I0 we obtain different geometric types of fixed point free isometries.

Similar arguments provide for the classification of similarity transforma-
tions and affine transformations without fixed points.

Lecture 16

a. The projective line. In the previous lecture we saw that certain
linear groups correspond to various “geometries”. Although we have spent
most of our time studying the group of isometries of Rn, we also saw that the
group of affine transformations and the group of similarity transformations
appear as subgroups of GL(n + 1, R). Thus we may go beyond the usual
Euclidean structure of Rn and consider instead the affine structure of Rn, or
perhaps think about Euclidean geometry up to similarity. Each of the above
examples arose from considering subgroups of the affine transformations on
Rn; that is, subgroups of GL(n + 1, R) of the form

(16.1)

(
G Rn

0 1

)
,

where G is a subgroup of GL(n, R). Such subgroups act on the n-dimensional
affine subspace P = {x ∈ Rn+1 | xn+1 = 1}.

There are other matrix groups which are of interest to us, and it turns
out that they too correspond to certain geometries. The difference is that
those geometries do not necessary have Euclidean space as their phase space.

In this lecture we will broaden our horizons beyond the groups of the
form (16.1), examining instead the action of all of GL(n + 1, R). This will
lead us in the end to projective geometry. We will take our time getting
there, however, because the story is not quite as straightforward as it was
before; for example, observe that most linear transformations of Rn+1 do
not preserve the subspace P , and so it is not at all obvious in what sense
they are to “act” on P . We may pretend though that they do and see what
comes out of it.

The fundamental fact that we do know about elements of GL(n + 1, R)
is that they map lines to lines. Thus it makes sense to consider the action
of GL(n+1, R) on lines in Rn+1; we begin in the simplest case, n = 1. Here
we have GL(2, R) acting on R2, and in particular, on the following object.

Definition 16.1. The real projective line RP (1) is the set of all lines
through the origin in R2.


