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ABSTRACT. This paper is a nontechnical survey and aims to illustrate Dolgo-

pyat’s profound contributions to smooth ergodic theory. I will discuss some

of Dolgopyat’s work on partial hyperbolicity and nonuniform hyperbolicity

with emphasis on the interaction between the two—the class of dynamical

systems with mixed hyperbolicity. On one hand, this includes uniformly par-

tially hyperbolic diffeomorphisms with nonzero Lyapunov exponents in the

center direction. The study of their ergodic properties has provided an al-

ternative approach to the Pugh–Shub stable ergodicity theory for both con-

servative and dissipative systems. On the other hand, ideas of mixed hyper-

bolicity have been used in constructing volume-preserving diffeomorphisms

with nonzero Lyapunov exponents on any manifold.

1. INTRODUCTION

Dmitry Dolgopyat, the winner of the second Brin Prize in Dynamical Sys-

tems, has made many fundamental contributions to various branches of the

theory of dynamical systems. In this paper, I will describe some of Dolgopyat’s

results on partial hyperbolicity and nonuniform hyperbolicity, which range from

constructing systems with nonzero exponents on compact smooth manifolds

to studying accessibility of partially hyperbolic systems to constructing Sinai–

Ruelle–Bowen (SRB) measures and effecting stable ergodicity for partially hy-

perbolic attractors. The common theme of the paper is a new emerging area in

the theory of dynamical systems known as mixed hyperbolicity that is an inter-

play of uniform partial hyperbolicity and nonuniform complete hyperbolicity.

In this paper, I will briefly describe the concept of mixed hyperbolicity and dis-

cuss some relevant results of Dolgopyat and other researches.

2. STABLE ERGODICITY

The concept of stable ergodicity in the context of smooth dynamics was in-

troduced by Pugh and Shub (see for example, [10, 24]) and it is a great tool in

studying genericity of ergodicity for smooth dynamical systems. Let f : M → M

be a C r diffeomorphism, r ≥ 1, of a compact smooth connected Riemannian
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manifold M preserving a Borel probability measure µ. The map f is said to be

stably ergodic if there exists a neighborhood U in the space Diffk (M ,µ) of all

C k diffeomorphisms, k ≤ r , preserving the measure µ such that any C r diffeo-

morphism g ∈ U is ergodic.1 Similarly, one can define the notions of a system

being stably mixing, stably Kolmogorov, stably Bernoulli, etc.

2.1. Stable Ergodicity and Partial Hyperbolicity. Anosov diffeomorphisms of

compact smooth manifolds that preserve smooth measures (i.e., measures that

are equivalent to a volume) provide a simple example of stably ergodic (and in-

deed stably Bernoulli) maps. The next class of systems to consider is partially

hyperbolic diffeomorphisms.2 Recall that a diffeomorphism f is said to be par-

tially hyperbolic if there is a df -invariant decomposition of the tangent bundle

T M = E s
⊕E c

⊕E u

into stable E s , unstable E u , and central E c subbundles, and if df uniformly

expands and contracts along these subbundles with rates

λ1 < ν1 ≤ ν2 <λ2 and λ1 < 1 <λ2.

More precisely, for every x ∈ M and n ≥ 0, we have that

‖df (v)‖ ≤λ1‖v‖ for v ∈ E s(x), ‖df (v)‖ ≥λ2‖v‖ for v ∈ E u(x),

ν1‖v‖ ≤ ‖df (v)‖ ≤ ν2‖v‖ for v ∈ E c (x).

The notion of partial hyperbolicity was introduced in the early 1970s by Brin

and Pesin [7] who were motivated by the study of frame flows. It also arose

naturally from the work of Hirsch, Pugh and Shub [20] on normal hyperbolicity.

The distributions E s and E u are (Hölder) continuous in x and are uniquely

integrable to invariant transverse continuous foliations W s and W u with smo-

oth leaves.3 These foliations are called stable and unstable, respectively, and

they possess the absolute continuity property. The latter means that the con-

ditional measures generated by volume m on local stable and unstable leaves

are equivalent to the leaf volumes ms and mu (i.e., the Riemannian volumes on

leaves of the foliations generated by the Riemannian metric).

The central distribution E c may or may not be integrable, and even if it is

integrable, the central foliation W c may not be absolutely continuous.

1In general, the number r may be strictly bigger than k; a typical case is k = 1 < r = 2.
2Pujals and Sambarino [24] have shown that if a diffeomorphism is stably ergodic, it has to

be hyperbolic in some weak sense; more precisely, it must possess a dominated splitting.
3A partition W of the manifold M is said to be a continuous foliation with smooth leaves if

there exist δ> 0 and ℓ> 0 such that for each x ∈ M , the following holds: 1) the element W (x) of

W containing x is a smooth ℓ-dimensional injectively immersed submanifold called the global

leaf at x; the connected component V (x) of the intersection W (x)∩B(x,δ) that contains x is

called the local leaf at x; 2) there exists a continuous map φx : B(x,δ) →C 1(D, M) (where D ⊂R
ℓ

is the unit ball) such that for every y ∈ M ∩B(x,δ) the local leaf V (y) is the image of the map

φx (y) : D → M .
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We now turn to the study of ergodicity of partially hyperbolic systems with

respect to smooth invariant measures. A crucial role is played here by a prop-

erty called accessibility. Let f be a partially hyperbolic diffeomorphism. We say

that two points x and y are accessible if there is a path consisting of pieces of

stable and unstable manifolds that connects these points. Clearly, accessibility

is an equivalence relation; the equivalence classes are called the accessibility

classes. Further, we say that f is accessible if any two points are accessible (i.e.,

if there is only one accessibility class), and f is essentially accessible if the par-

tition by accessibility classes is trivial (i.e., any measurable set that consists of

partition elements has either zero or full measure).

To illustrate the role of accessibility we consider the simple example of a

volume-preserving partially hyperbolic map that is the direct product of an

Anosov diffeomorphism of the torus T n and the identity map of a compact

manifold N . Note that for each y ∈ N , the set T n × y is an ergodic compo-

nent and at the same time is an accessibility class. Therefore, one can conjec-

ture that essential accessibility implies ergodicity—the statement known as the

Pugh–Shub ergodicity conjecture—for partially hyperbolic maps.4 If this con-

jecture were true one could conclude that stable essential accessibility implies

stable ergodicity.

At present, the conjecture has been proven under an additional technical

assumption on the map known as center-bunching:

λ1 < ν1ν
−1
2 and λ2 > ν2ν

−1
1 .

Observe that center-bunching is an open property in the space of C 1 partially

hyperbolic diffeomorphisms.

THEOREM 2.1 ([11]). Let f be a C 2 partially hyperbolic diffeomorphism preserv-

ing a smooth measure µ. If f is essentially accessible and center-bunched, then it

is ergodic. If in addition, f is stably essentially accessible, then it is stably ergodic

in Diff1(M ,µ).

When the center direction is 1-dimensional, the center-bunching condition

can be dropped, leading to a complete solution of the Pugh–Shub conjecture

in this case.

THEOREM 2.2 ([11, 25]). Let f be a C 2 partially hyperbolic diffeomorphism pre-

serving a smooth measure µ. Assume that dimE c = 1 and that f is essentially

accessible. Then f is ergodic. If in addition, f is stably essentially accessible, then

it is stably ergodic in Diff1(M ,µ).

2.2. Accessibility. In view of the previous results, it is crucial to know if acces-

sibility (and stable accessibility) is generic in some sense. The first and most

general result in this direction was obtained by Dolgopyat and Wilkinson [18].

4The use of essential accessibility instead of accessibility is important as a partially hyper-

bolic ergodic automorphism of the torus is essentially accessible but is not accessible.
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THEOREM 2.3. Let f ∈ Diffq (M) (respectively, f ∈ Diffq (M ,µ)), q ≥ 1 be a par-

tially hyperbolic diffeomorphism. Then for every neighborhood U ⊂ Diff1(M)

(respectively, U ⊂ Diff1(M ,µ)) of f there is a C q diffeomorphism g ∈ U that is

stably accessible.

It follows that stable accessibility is dense in the C 1 topology.

The proof of this result uses and substantially refines the quadrilateral argu-

ment introduced in [5]. It goes as follows (for simplicity we assume that the

central bundle E c is integrable to a foliation W c ). Given a point p ∈ M , con-

sider a 4-legged path [z0, z1, z2, z3, z4] originating at z0 = p. Connecting zi−1

with zi by a geodesic γi lying in the corresponding stable or unstable manifold

(in the induced Riemannian metric of these manifolds), we obtain the curve

Γp =
⋃

1≤i≤4 γi and we parameterize it by t ∈ [0,1] with Γp (0) = p. If the dis-

tribution E s ⊕E u were integrable (and hence, the accessibility property would

fail), then the endpoint z4 = Γp (1) would lie on the leaf of the corresponding

foliation passing through p.

Therefore, one can hope to achieve accessibility by arranging a 4-legged path

in such a way that Γp (1) ∈W c (p) and Γp (1) 6= p. In this case, the path Γp can be

homotoped through 4-legged paths originating at p to the trivial path in such

a way that the endpoints stay in W c (p) during the homotopy and form a con-

tinuous curve. Such a situation is usually persistent under small perturbations

of f and hence leads to stable accessibility.

If the center bundle is 1-dimensional, Theorem 2.3 can be strengthened: one

can show that accessibility is an open dense property in the space of diffeomor-

phisms of class C r , r > 1, [25].5

2.3. Negative (positive) central exponents. A natural way to relax the center-

bunching condition is to consider its nonuniform version, that is, to carefully

analyze the action of the diffeomorphism along its central direction and in par-

ticular, examine its Lyapunov exponents in this direction, i.e., studying the case

of mixed hyperbolicity. By doing so, it may be rewarding to consider the cases

in which the Lyapunov exponents in the central direction are: (1) all negative or

all positive; (2) all nonzero, i.e., some negative and some positive; (3) all zero;

(4) not all nonzero, i.e., some zero. This approach was proposed by Burns, Dol-

gopyat and Pesin in [8] and to some extent was inspired by Dolgopyat’s work

[12, 16] where he obtained some quantitative information on the system in the

nonuniformly hyperbolic and zero exponent cases.

More precisely, we say that a partially hyperbolic diffeomorphism f preserv-

ing a smooth measure µ has negative (respectively, positive) central exponents if

there is a set A ⊂ M of positive µ-measure such that for every x ∈ A and every

v ∈ E c (x) the Lyapunov exponent χ(x, v) < 0 (respectively, χ(x, v) > 0).6

5It shown in [19] that in the case of a 1-dimensional center bundle, accessibility is an open

property in the C 2 topology.
6Clearly, we may assume without loss of generality that A is invariant.
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THEOREM 2.4 ([8]). Let f be a C 2 essentially accessible diffeomorphism preserv-

ing a smooth measure µ. Assume that f has negative (or positive) central expo-

nents. Then f is ergodic.

We outline the proof of this theorem. It is based on the simple yet crucial ob-

servation that since f has negative central exponents on the set A, it is nonuni-

formly hyperbolic on this set and methods of nonuniform hyperbolicity theory

apply. In particular, f has at most countably many ergodic components of posi-

tive volume on A. On the other hand, since f is uniformly partially hyperbolic,

the “size” of local leaves of the unstable foliation is uniformly bounded from

below. This guarantees that every ergodic component of positive volume con-

tains an open (mod 0) ball and hence is itself an open (mod 0) set. Hence, the

set A is open (mod 0). One can now use essential accessibility and the fact that

f preserves a smooth measure to conclude that almost every trajectory of f is

dense in A. In particular, A has full measure and f ↾A is topologically transitive.

This implies that f is ergodic.

Surprisingly, under the same assumptions as in Theorem 2.4 one can show

that f is stably ergodic.

THEOREM 2.5 ([8]). Let f be a partially hyperbolic C 2 diffeomorphism that is

essentially accessible and preserves a smooth measure µ. Assume that f has neg-

ative (or positive) central exponents. Then f is stably ergodic in Diff1(M ,µ).

We stress that, unlike Theorem 2.1, only essential accessibility is required to

guarantee stable ergodicity of f and whether, under the condition of the theo-

rem, f is actually stably essentially accessible is irrelevant (and not known).

The proof of this theorem goes as follows. Consider a diffeomorphism g that

preserves µ and is δ-close to f in the C 1 topology. Since f is ergodic, there is

α> 0 such that the Lyapunov exponent χ(x, v) ≤−α for almost every x ∈ M and

v ∈ E c (x). It follows that
∫

M
ln‖df ↾E c

f
(x)‖dµ(x) <−α.

Since the central bundle E c
g depends continuously on g in the C 1 topology, we

can choose δ so small such that
∫

M
ln‖d g↾E c

g (x)‖dµ(x) <−α/2

and then conclude that χg (x, v) ≤ −α/2 for v ∈ E c
g (x) and x in a set Ag of pos-

itive measure. In other words, g has negative central exponents. Although g

may not be essentially accessible, one can show that it is ε-essentially accessi-

ble (i.e., every accessibility class enters every ε-ball) where ε= ε(δ) → 0 as δ→ 0.

This and the fact that g preserves a smooth measure implies that almost every

trajectory of g is ε/2-dense (i.e., it enters every ε/2-ball). Since the Lyapunov

exponent of g↾Ag
is uniformly away from zero, ideas from [1] about hyperbolic

times can be used to obtain that every ergodic component of g↾Ag
of positive

measure contains a ball whose radius is at least ε. Repeating the above argu-

ment, one can show that the set Ag has full measure and that g is ergodic.
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3. THE DISSIPATIVE CASE

In the previous section we discussed the conservative case, i.e., diffeomor-

phisms that preserve smooth measures. We now turn to the dissipative case

where one of the main problems is to construct “natural” invariant measures

with “good” ergodic properties.

Let M be a compact smooth Riemannian manifold, V ⊂ M an open set, and

f : V → M a C 2 diffeomorphism of V onto its image. A compact invariant set

Λ ⊂ V is said to be an attractor if there exists an open neighborhood U ⊂ V of

Λ such that f (U ) ⊂U and Λ =
⋂

n≥0 f n(U ). The set U is called the topological

basin of attraction.

An attractor Λ is called partially hyperbolic if f ↾Λ is partially hyperbolic, that

is, the tangent bundle TΛM admits an invariant splitting TΛM = E s ⊕E c ⊕E u

into stable, center, and unstable subbundles, respectively.

The unstable distribution E u is integrable to an unstable lamination W u so

the attractor Λ is the union of the global unstable manifolds of its points, i.e.,

W u(x) ⊂Λ for every x ∈Λ.

An f -invariant measure µ on Λ is called a u-measure if for almost every x ∈Λ

the conditional measure µu(x) generated by µ on the leaf W u(x) is equivalent

to the leaf volume mu(x) on W u(x). In what follows, we will address the fol-

lowing problems related to u-measures:

1. existence of u-measures;

2. relations between u-measures and Sinai–Ruelle–Bowen (SRB) measures;

in particular, between the basins of u-measures and the topological basin

of attraction;

3. (non)uniqueness of u-measures;

4. u-measures with negative central exponents.

3.1. Existence of u-measures. Starting with the Riemannian volume m in a

neighborhood U of Λ,7 consider its evolution under the dynamics, i.e., the se-

quence of measures

(3.1) µn =
1

n

n−1
∑

i=0

f i
∗m.

Any limit measure µ of this sequence of measures is concentrated on Λ.

THEOREM 3.1 ([23]). Any limit measure µ is a u-measure.

Fix x ∈ Λ and consider a local unstable leaf V u(x) through x. We can view

the leaf volume mu(x) on V u(x) as a measure on the whole of Λ. Consider its

evolution, i.e., the sequence of measures

(3.2) νn =
1

n

n−1
∑

i=0

f i
∗mu(x).

Any limit measure ν of this sequence of measures is concentrated on Λ.

7One can also start with any measure that is absolutely continuous with respect to volume.
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THEOREM 3.2 ([23]). Any limit measure of the sequence (3.2) is a u-measure.

For any ergodic u-measure ν and ν-almost every x ∈Λ the sequence of mea-

sures (3.2) converges to ν. Therefore, the class of all limit measures for se-

quences of type (3.2) coincides with the class of all u-measures, while the class

of limit measures for sequences of type (3.1) may be smaller.8

3.2. The basin of the measure. Given an invariant measure µ on Λ, define its

basin B(µ) as the set of points x ∈ M for which the Birkhoff averages

Sn(ϕ)(x) =
1

n

n−1
∑

k=0

ϕ
(

f k (x)
)

converge to
∫

M ϕdµ as n →∞ for all continuous functions ϕ.

If Λ is a hyperbolic attractor, then µ is an SRB measure if and only if its basin

has positive measure. If Λ is a hyperbolic attractor, then by a result in [3] any

measure with basin of positive volume is a u-measure.

While any partially hyperbolic attractor has a u-measure, measures with ba-

sins of positive volume need not exist: just consider the product of the identity

map and a diffeomorphism with a hyperbolic attractor. That is why the follow-

ing result by Dolgopyat [13] is of great importance.

THEOREM 3.3. If there is a unique u-measure for f in Λ, then its basin has full

volume in the topological basin of Λ.

In the case of a hyperbolic attractor, topological transitivity of f ↾Λ guaran-

tees that there is a unique u-measure for f on Λ (which is the unique SRB

measure). In contrast, in the partially hyperbolic situation, even topological

mixing may not guarantee that there is a unique u-measure. Indeed, consider

F = f1× f2, where f1 is a topologically transitive Anosov diffeomorphism and f2

a diffeomorphism close to the identity. Then any measure µ = µ1 ×µ2, where

µ1 is the unique SRB measure for f1 and µ2 any f2-invariant measure, is a u-

measure for F . Thus, F has a unique u-measure if and only if f2 is uniquely

ergodic. On the other hand, F is topologically mixing if and only if f2 is topo-

logically mixing.

3.3. u-measures with negative central exponents. We describe a special class

of u-measures with “good” ergodic properties, which is an extension of the

class of SRB measures for hyperbolic attractors to partially hyperbolic attrac-

tors. Consider a u-measure µ for f . We say that f has negative central expo-

nents if there is a subset A ⊂Λ with µ(A) > 0 such that the Lyapunov exponents

χ(x, v) < 0 for any x ∈ A and v ∈ E c (x).9

The study of ergodic properties of u measures with negative central expo-

nents was conducted by Bonatti and Viana in [4] and independently (in a some-

what different way) by Burns, Dolgopyat, Pesin and Pollicott in [9]. It addresses

8We note that in the case of (completely) hyperbolic attractors, the classes of limit measures

for sequences of types (3.1) and (3.2) coincide.
9As before, without loss of generality we may assume that A is invariant.
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the problems of uniqueness, ergodic properties of u-measures with negative

central exponents and their relations to SRB measures. Let us point out that

the role of the accessibility condition in the dissipative case is played by the

requirement that every global unstable manifold is dense in the attractor.10

THEOREM 3.4 ([9]). Let f be a C 2 diffeomorphism with a partially hyperbolic

attractor Λ. Assume that

1. there exists a u-measure µ for f with negative central exponents;

2. for every x ∈Λ the global unstable manifold W u(x) is dense in Λ.

Then the following statements hold:

1. µ is the only u-measure for f and hence, the unique SRB measure;

2. f has negative central exponents at µ-almost every x ∈Λ and the map f is

ergodic and is indeed Bernoulli;

3. the basin of µ has full volume in the topological basin of Λ.

The proof of this theorem follows the line of arguments in the proof of The-

orem 2.4, but is appropriately adapted to the dissipative case.

3.4. Constructing measures with negative central exponents. There are par-

tially hyperbolic attractors for which any u-measure has zero central exponents

(e.g., the product of an Anosov map and the identity map of any manifold).

There are partially hyperbolic attractors that allow u-measures with negative

central exponents, but not every global manifold W u(x) is dense in the attrac-

tor (e.g., the product of an Anosov map and the map of the circle leaving north

and south poles fixed).

Shub and Wilkinson [28] considered small perturbations F of the direct prod-

uct map F0 = f × Id, where f is a linear Anosov diffeomorphism of the 2-torus

and the identity acts on the circle. They constructed F in such a way that it

preserves volume, has negative central exponents on the whole of M , and its

central foliation is not absolutely continuous.11 Barraveira and Bonatti [2] ob-

tained a multidimensional version of the above result by showing that if all the

Lyapunov exponents in the central directions are zero, then, by an arbitrarily

small perturbation, one can make their sum negative on a set of positive mea-

sure. Ruelle [26] extended the result of Shub and Wilkinson in another direction

by showing that for an open set of one-parameter families of (not necessarily

volume-preserving) maps Fǫ through F0, each map Fǫ possesses a u-measure

with negative central exponent.

Dolgopyat obtains a number of remarkable results on the existence of mea-

sures with negative central exponents in various situations. They are corollar-

ies of his principal work [14] on stability of stochastic behavior. In this paper

he considers a one-parameter family fǫ of C∞ partially hyperbolic diffeomor-

phisms, where f0 is an Anosov element in a standard abelian Anosov action

10In particular, density of every global unstable manifold implies that for any u-measure µ,

almost every trajectory is dense in suppµ.
11This is an interesting “pathological” phenomenon known as Fubini’s nightmare. One can

show that this phenomenon is persistent under small perturbations of the map F .
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with sufficiently strong mixing properties. If µ is a unique SRB measure for f0

and µǫ a u-measure for fǫ, Dolgopyat shows that for any C∞ function ϕ, the

map

ϕ 7→

∫

ϕdµǫ

is differentiable at ǫ = 0 and he obtained a formula for the derivative of this

map. This result is an extension to the case of partially hyperbolic systems of

a similar result by Ruelle [27] for Anosov maps.12 This result has many appli-

cations to studying some delicate stochastic properties of dynamical systems

such as group extensions over Anosov maps and small perturbations of the

time-1 map of Anosov flows. Other applications include:

1. One-parameter families fǫ of maps where f0 is the time-1 map of the geo-

desic flow on the unit tangent bundle of a negatively curved surface. Dol-

gopyat proved that in the conservative case (i.e., the maps fǫ are volume-

preserving), generically either fǫ or f −1
ǫ has negative central exponent for

small ǫ and there is an open set of nonconservative families where the

central exponent is negative for any u-measure.

2. Systems with zero central exponents subjected to rare kicks. Given dif-

feomorphisms f and g , let Fn = f n ◦ g . Dolgopyat proved that if f is ei-

ther a T 1-extension of an Anosov diffeomorphism or the time-1 map of an

Anosov flow and g is close to Id, then, for a typical g and any sufficiently

large n, either Fn or F−1
n has negative central exponent with respect to any

u-measure.

In addition, let us mention another result of Dolgopyat [15], where he showed

that in the class of skew products, negative central exponents appear for generic

perturbations and that there is an open set of one-parameter families of skew

products near F0 = f × Id ( f is an Anosov diffeomorphism and Id is the identity

map of any manifold) where the central exponents are negative with respect to

any u-measure.

4. STABLE ERGODICITY FOR DISSIPATIVE SYSTEMS

Let f be a C 2 diffeomorphism with a partially hyperbolic attractor Λ f . Any

C 1 diffeomorphism g that is sufficiently close to f in the C 1 topology, has a

hyperbolic attractor Λg that lies in a small neighborhood of Λ f . The stable

ergodicity problem for partially hyperbolic attractors utilizes the notion of u-

measures and can be stated as follows. We say that a C r partially hyperbolic

diffeomorphism f is stably ergodic if there is a neighborhood U of f in the C k

topology, 1 ≤ k ≤ r , such that any C r diffeomorphism g ∈U possesses a unique

12Dolgopyat’s approach is substantially different from [27] and can be used to study differen-

tiability for even more general classes of systems.
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u-measure µg that is supported on the attractor Λg and g is ergodic with re-

spect to µg .13 Similarly, one can define the notion of stably mixing, stably K

and stably Bernoulli.

The approach that utilizes measures with negative central exponents turns

out to be quite successful (and at present is the only available) in establishing

stable ergodicity for maps with partially hyperbolic attractors. It was developed

in the work of Burns, Dolgopyat, Pesin and Pollicott [9].

THEOREM 4.1. Let f be a C 2 diffeomorphism with a partially hyperbolic attrac-

tor Λ f . Assume that

1. there is a u-measure µ for f with negative central exponents on a subset

A ⊂Λ f of positive measure;

2. for every x ∈ Λ f the global strongly unstable manifold W u(x) is dense in

Λ f .

Then f is stably ergodic (indeed, stably Bernoulli). More precisely, for any C 2

diffeomorphism g that is sufficiently close to f in the C 1+α-topology for some

α> 0, the following statements hold:

1. g has negative central exponents on a set of positive measure with respect

to a u-measure µg ;

2. the measure µg is the unique u-measure (and hence the unique SRB mea-

sure) for g ;

3. the map g↾Λg
is ergodic with respect to µg (indeed is Bernoulli);

4. the basin B(µg ) has full volume in the topological basin of Λg .

We stress that (similar to the conservative case) the condition that every leaf

of the unstable foliation is dense in the attractor is required only for the unper-

turbed map f and that the stable ergodicity result holds regardless whether the

perturbation map g satisfies this condition or not.14

4.1. Attractors with positive central exponents. For partially hyperbolic sys-

tems preserving smooth measures, the case of u-measures with positive central

exponents can be trivially reduced to the case of u-measures with negative cen-

tral exponents by reversing the time. This is not true for dissipative partially hy-

perbolic systems and the study of u-measures with positive central exponents

is more challenging. The first ergodicity result in this direction was obtained

in [1] under the stronger assumption that there is a set of positive volume in a

neighborhood of the attractor with positive central exponents.

Stable ergodicity of partially hyperbolic attractors with positive central expo-

nents was studied in [29], where a result similar to Theorem 4.1 is proven.

13Of course, this implies that the unperturbed map f is ergodic with respect to its unique

u-measure µ f .
14One can show that for every ε > 0 there is a neighborhood of f in the C 1 topology such

that every diffeomorphism g in this neighborhood has the property that every unstable global

leaf is ε-dense in the attractor. This property along with the fact that χ(x, v) < −α (for almost

every x ∈Λg , every v ∈ E c
g (x) and some α> 0) is sufficient to establish ergodicity of g .
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THEOREM 4.2. Let f be a C 2 diffeomorphism with a partially hyperbolic attrac-

tor Λ f . Assume that

1. there is a unique u-measure µ for f and µ has positive central exponents

on a subset A ⊂Λ f of full µ-measure;

2. for every x ∈ Λ f , the global strongly unstable manifold W u(x) is dense

in Λ f .

Then f is stably ergodic.

5. EXISTENCE OF NONUNIFORMLY HYPERBOLIC DYNAMICAL SYSTEMS

ON ANY MANIFOLD

It has been a long-standing problem in hyperbolic dynamics to show that any

compact smooth Riemannian manifold carries a volume-preserving Bernoulli

diffeomorphism with nonzero Lyapunov exponents. In the 2-dimensional case,

this problem was solved by Katok [22]. For any manifold of dimension greater

than 4, Brin [6] later constructed a volume-preserving Bernoulli diffeomorphism

whose Lyapunov exponents all but one are nonzero. The final solution—that is

to remove the remaining zero exponent in Brin’s example and to also solve the

problem in the 3- and 4-dimensional cases—was obtained by Dolgopyat and

Pesin [17] using some techniques in mixed hyperbolicity that we mentioned

above.15

THEOREM 5.1. Given a compact smooth Riemannian manifold M 6= S1, there

exists a C∞ diffeomorphism f of M such that

1. f preserves the Riemannian volume m;

2. f has nonzero Lyapunov exponents almost everywhere;

3. f is a Bernoulli diffeomorphism.

5.1. Katok’s Example. The main step in Katok’s proof of this theorem in the 2-

dimensional case is a construction of an area-preserving C∞ Bernoulli diffeo-

morphism g of the unit disk D2 in the plane that has the following properties:

K1: g has nonzero Lyapunov exponents almost everywhere.

K2: g has three fixed points p1, p2 and p3, and is uniformly hyperbolic out-

side a small neighborhood U of the singularity set S := ∂D2 ∪ {p1, p2, p3},

i.e., there exists λ< 1, such that for every x ∉U ,

‖d g↾E s
g (x)‖ ≤λ and ‖d g−1↾E u

g (x)‖ ≤λ.

K3: g has two invariant stable and unstable foliations, W s
g and W u

g , of D2 àS

with smooth leaves. These foliations are continuous and indeed are ab-

solutely continuous. Furthermore, they are transverse everywhere except

for points in the singularity set.

K4: g↾∂D2 = Id and the partial derivatives of g (x) approach zero sufficiently

fast as x approaches the boundary ∂D2.

15The solution of a similar problem about existence of nonuniformly hyperbolic continuous-

time dynamical systems on every compact smooth Riemannian manifold of dimension ≥ 3 is

obtained in [21].
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5.2. Brin’s Example. Consider a compact smooth Riemannian manifold of di-

mension n ≥ 5. Brin’s construction consists of three steps.

Step 1. Starting from a volume-preserving hyperbolic automorphism A of

the torus T
n−3 consider the suspension flow T̃ t over A with a constant roof

function. This flow is Anosov but does not have the accessibility property. How-

ever, one can perturb the roof function in such a way that the new flow T t

(which is still Anosov) does have the accessibility property. The phase space

Y n−2 of T t is diffeomorphic to the product Tn−3×[0,1], where the tori Tn−3×{0}

and T
n−3 × {1} are identified by the action of A.

Step 2. Consider the skew product map R on K = D2 ×Y n−2 given by

R(x, y) =
(

g (x),T α(x)(y)
)

,

where α is a nonnegative function on D2 that is equal to zero in a neighbor-

hood U of the singularity set S and is strictly positive otherwise. Denote by

Γ= S ×Y n−2 the singularity set for R, and set Ω= (D2 àU )×Y n−2. The map R

has the following properties:

B1: R is nonuniformly partially hyperbolic on K àΓ, i.e.,

Tz K = E s
R (z)⊕E c

R (z)⊕E u
R (z), z ∈ K àΓ.

B2: R is uniformly partially hyperbolic on Ω, i.e., for some µ < 1 and every

z ∈Ω,

‖dR↾E s
R (z)‖ ≤µ, ‖dR−1↾E u

R (z)‖ ≤µ.

B3: The distributions E s
R

(z) and E u
R

(z) generate two continuous foliations W s
R

and W u
R

on K à Γ with smooth leaves. These foliations are absolutely

continuous. Furthermore, they are transverse everywhere except for the

points in the singularity set.

B4: R has the essential accessibility property with respect to the foliations W s
R

and W u
R

.

Step 3. There is a smooth embedding

χ1 : K = D2
×Y n−2

→ B n ,

that is a diffeomorphism except for the boundary ∂K (B n is the unit ball in R
n).

There is a smooth embedding χ2 : B n → M that is a diffeomorphism except for

the boundary ∂B n . Since the map R is the identity map on the boundary ∂K ,

the map

h = (χ1 ◦χ2)◦R ◦ (χ1 ◦χ2)−1 : M → M

has the following properties:

1. h preserves the Riemannian volume;

2. h is a Bernoulli diffeomorphism;

3. h has only one zero Lyapunov exponent in the central direction for R.

We now outline the approach developed by Dolgopyat and Pesin [17] that

allows one to remove the zero exponent in Brin’s example by making a suffi-

ciently small perturbation of the map R, creating negative Lyapunov exponent
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in this direction. To this end, one can show that given r > 0 and ε> 0, there is

a C r diffeomorphism P : K → K that preserves volume m and is such that

DP1: dC r (P,R) ≤ ε and P is gentle, i.e., P is concentrated outside the singularity

set Γ meaning that P (x) = R(x) for x outside a small neighborhood of Γ;

DP2: almost every orbit of P is dense in K ;

DP3: for almost every z ∈ K there exists a decomposition

Tz K = E s
P (z)⊕E c

P (z)⊕E u
P (z)

such that dimE c
P

(z) = 1 and
∫

K
χc

P (z) dm < 0,

where

χc
P (z) = lim

n→∞

1

n
log‖df n↾E c

P (z)‖

is the Lyapunov exponent at z ∈ K in the central direction.

The desired map P can be constructed in the form P =ϕ◦R where the perturba-

tion ϕ is given as follows. Fix a point z0 ∈ K àΓ and choose a coordinate system

{x,ξ} in a small ball B(z0,r ) around z0 of radius r > 016 such that z0 = (x0,ξ0),

dm = ρ(x,ξ)d x dξ and

E c
R (y0) =

∂

∂ξ1
, E s

R (y0) =

〈

∂

∂ξ2
, . . . ,

∂

∂ξk

〉

, E u
R (y0) =

〈

∂

∂ξk+1
, . . . ,

∂

∂ξn−2

〉

for some k with 2 ≤ k < n −2. Let ψ(t ) be a C∞ function with compact support

and let τ= 1
r 2 (‖x‖2 +‖ξ‖2). Define

ϕ(x,ξ) :=
(

x, ξ1 cos(εψ(τ))+ξ2 sin(εψ(τ)),−ξ1 sin(εψ(τ))+ξ2 cos(εψ(τ)), ξ3, . . . , ξn−2

)

.

Now the map

h = (χ1 ◦χ2)◦P ◦ (χ1 ◦χ2)−1 : M → M

has all the desired properties (see Step 3 in Brin’s construction described above).

In the three- and four-dimensional cases we consider the manifold D2 ×T ℓ,

where ℓ = 1 in the three-dimensional case and ℓ = 2 in the four-dimensional

case. Further, we define the skew product map R by

R(z) = R(x, y) =
(

g (x), Rα(x)(y)
)

, z = (x, y),

where Rα(x) is the translation by α(x), and α is a nonnegative C∞ function that

is equal to zero in a small neighborhood of the singularity set S and is strictly

positive otherwise. The map R is nonuniformly partially hyperbolic; its central

direction is one-dimensional in the case n = 3 and it is two-dimensional in the

case n = 4. One can now use a modification of the above argument to construct

a C∞ volume-preserving Bernoulli perturbation P of R such that: (1) if n = 3,

the central exponent for P is negative and thus P is the desired map; (2) if n = 4,

the sum of the two central exponents for P is negative. This of course does not

16The radius r should be chosen small so that the ball does not intersect the singularity set Γ.
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exclude the case that one of the central Lyapunov exponents is positive and

thus requires further perturbation to ensure that each of the two exponents is

negative; this is quite a challenging problem that requires some sophisticated

techniques.
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