
INTRODUCTION TO DYNAMICAL SYSTEMS

A.Katok

PROBLEM SET # 1

Due to Friday, August 30

1. Consider all natural numbers consisting of exactly 1000 digits. What proportion
of these contain all digits ? Calculate the answer to the second decimal digit and
provide a rigorous justification of the answer.

2. What is the probability to have exactly 500 heads in a sequence of 1000 coin
tossings? Find an exact formula, calculate the answer to the second decimal digit
and provide a rigorous justification of the answer.

3. Consider the dynamical system (the model from population biology, xn repre-
sents the size of a population, a is the reproduction rate) xn+1 = axn(1 − xn),
where x0 ∈ (0, 1). Suppose that the population dies out, that is xn → 0. What
restriction it imposes on the value of a?

Now suppose the size of the population stabilizes, i.e. xn → A > 0. What
restriction it imposes on the value of a?

4. Assume that it is known that for every pair of points on the sphere that aren‘t
diametrically opposite, there is a unique shortest piecewise smooth curve which
connects the points. Prove that the curve is an arc of a big circle.

5∗. Prove the statement of the Exercise 4 without assuming existence or uniqueness
of the shortest curve.

6. Let fn be the n-th Fibonacci number. Prove using the Contraction Principle
that

lim
n→∞

fn+1

fn

exists and calculate it.

7. Suppose that f is a map of a closed interval I into itself satisfying the following
contition which is weaker than the assumption for the Contraction Princicle:

d(fx, fy) < d(x, y) for any x 6= y.

Prove that f has a unique fixed point x0 ∈ I and for any x ∈ I, limn→∞ fnx = x0.

8. Show that the assertion of the previous exercise is not valid for maps of the whole
line. More specifically, construct an example of a map f : R → R (i.e. a real-valued
function of one real variable) such that d(fx, fy) < d(x, y) for any x 6= y, f has no
fixed points. and for some x, y d(fnx, fny) does not converge to zero as n → ∞.
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INTRODUCTION TO DYNAMICAL SYSTEMS

A.Katok

PROBLEM SET # 2

Due to Monday, September 9

9. Show that for any n × n matrix A = (aij)i,j=1,...,n one has

‖A‖ ≤

√

√

√

√

n
∑

i,j=1

a2
ij .

10. Show that for any n × n matrix A = (aij)i,j=1,...,n one has

‖A‖ ≥ (| detA|) 1

n .

11. Show that for an invertible matrix A at least one of the two quanities ‖A‖ and
‖A‖−1 is greater or equal than one.

12. Prove that the norm of a matrix is a continuous function of its coefficients.

13. Let f : [0, 1] → [0, 1] be a non–increasing continuous map. What are possible
periods for periodic points for such a map?

14. Consider the quadratic familly fa :, fa(x) = ax(1 − x). Prove that for a ≥ 4
for any natural number n the map fa has 2n periodic points of period n on the
interval [0, 1], i.e. the iterate fn has 2n fixed points.
Hint: Use the Intermediate Value Theorem.

15.Prove that for a ≥ 4 for any natural number n the map fa has a periodic point
of minimal period n on the interval [0, 1],

Note: The last two problems provide a glimpse into a genuinely complicated

behavior in a dynamical system. Studying and understanding such behavior will be

one of our main tasks later in this course.
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INTRODUCTION TO DYNAMICAL SYSTEMS

A.Katok

PROBLEM SET # 3

Due on Friday, September 13

“CONTROL PROBLEM”

16. Consider the quadratic map fa : R → R. Let a > 4 and assume that x ∈
[0, 1], fa(x) /∈ [0, 1]. Prove that fn(x) → −∞ as n → ∞.

NOTE: Please do not consult with other students while solving problem N.16. If

you have any questions about it address those to the course teaching assistant.

17. Consider the following map f : R → R,

f(x, y) = (
5x + 3y

4
− (x + y)2,

3x + 5y

4
− (x + y)2).

a) Find all fixed points of the map.
b) Find which of these points are attracting.
c) Prove that the iterates fn(0.9,−0.1) converge and find the limit.
d) Prove that the iterates fn(0.1,−0.1) converge and find the limit.

18. Let I ⊂ R be an interval and f : I → I be a map. Assume that x0 is a fixed
point of f and |f ′(x0)| > 1. Prove that x0 is a repelling fixed point not assuming
that f ′ is continuous or even that it exists everywhere.

19. Consider the system of differential equations on the plane, i.e. for x = (x1, x2),
we have

dx

dt
= F (x) = (F1(x), F2(x)).

Assume that
d(x2

1
+x2

2
)

dt < 0 for x 6= 0. Prove that for any initial condition solutions
of this system converge to 0 as t → ∞.

OPTIONAL PROBLEM

20. Under the assumptions of the previous problem let St, t ∈ R be the flow defined
by the solutions of these equations.

a) Prove that is F is a linear vector function then S1 is a contracting map.
b) Is this conclusion always true without the linearity assumption?
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INTRODUCTION TO DYNAMICAL SYSTEMS

A.Katok

PROBLEM SET # 3A

Assignments 3 and 3A are due on Friday, September 20

“CONTROL PROBLEM”

22. Let f be a map of an interval with continuous derivative and with a fixed point
x0 such that f ′(x0) 6= 1. Prove that there exists a neighborhood U of the fixed point
x0 with the following property: there exists an ε > 0 such that any differentiable
map g with |f − g| < ε and |f ′ − g′| < ε has exactly one fixed point in U .

Please do not consult with other students while solving problem N.22. If you have

any questions about this problem address those to the course teaching assistant.

23. Consider a linear map of the plane R
2. We will ignore the origin which is always

a fixed point. Prove that one of the following possibilites hold:
(i) there are no other periodic points;
(ii) all points are periodic with the same minimal period;
(iii) all points are periodic with the minimal period either one or two;
(iv) some points have period one and the rest are not periodic;
(v) some points have period two and the rest are not periodic.

24. Prove that a linear map in the three–dimensional space R
3 cannot have simul-

taneously periodic orbits with minimal period three and four.

25. Consider the following family of maps for the values of parameter τ near zero
of the line which exhibits a bifurcation of the fixed point at zero from an isolated
repeller to an attracting point with two repelling points on its sides:

Fτ (x) = x − τx + x3.

Show that this family can be perturbed by adding an arbitrary small smooth term
into a family which has for all values of the parameter an isolated repelling fixed
point near zero and at a certain value of the parameter a simplest bifurcation takes
place near zero, a pair of fixed points, one attracting and out repelling, appears out
of nothing.
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OPTIONAL PROBLEMS; no deadline.

26*.(Period three implies chaos). Let f be a continuous map of a closed interval
into itself. Suppose f has a non–fixed periodic point of period three. Prove that
for any natural number n there is a periodic point for f whose minimal period is
equal to n.

27*. Suppose a continuous map f of a closed interval I into itself has only one
periodic orbit. Prove that the orbit is an attracting fixed point x0,i.e. for every
point x ∈ I, fnx → x0 as n → ∞.

28**. Prove that in the standard quadratic family fa periodic points with arbitrary
minimal periods exist for a ≥

√
8.
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INTRODUCTION TO DYNAMICAL SYSTEMS

A.Katok

PROBLEM SET # 4

Due to Friday, September 27

“CONTROL PROBLEMS”

29.Consider a norm in R
n with the following extra property (monotonicity)

If 0 ≤ xi ≤ yi, i = 1, . . . , n then ‖(x1, . . . , xn)‖ ≤ ‖(y1, . . . , yn)‖.
Given metric spaces X1, . . . , Xn, prove that the formula

(*) d((x1, . . . , xn), (y1, . . . , yn)) = ‖(dX1
(x1, y1). . . . , dXn

(xn, yn))‖

defines a metric in the product space X1 × · · ·×Xn and show that all such metrics
(defined by different norms) are Lipschitz equivalent.

30. We will say that a norm in R
n is of Euclidean type if it is equal to the square

root of quadratic form of coordinates:

‖(x1, . . . , xn)‖2 =
∑

i≤i≤j≤n

aijxixj .

Let L : R
n → R

n be a linear map eventually contracting with respect to some (and
hence any) norm. Prove that there exists a norm of Euclidean type for which L is
a contracting map.

Please do not consult with other students while solving probles NN.29,30. If you

have any questions about this problem address those to the course teaching assistant.

31. Let L : R
n → R

n be a linear map which has two different pairs of complex
conjugate eigenvalues of absolute value one. Prove that there is a subset T ⊂ R

n in-
variant under L which in properly chosen coordinates looks as the two–dimensional
torus.

32. In the setup of Problem 29 drop the monotonicity condition for the norm. Give
an example when formula (*) does not define a metric.

33. For a given natural number n ≥ 2 let AN = {0, 1, . . . , N − 1} and let ΩN be
the space of all infinite sequences of elements from the “alphbet” AN . Define the
distance in ΩN as follows: for ω = (ω1, ω2, . . . ) and ω′ = (ω′

1, ω
′
2, . . . ):

dist(ω, ω′) =
∞
∑

n=1

|ωn − ω′
n|

2n
.

Prove that this makes ΩN into a metric space homeomorphic to the Cantor set.

34. Consider the set of real numbers from the interval [0,1] which have a decimal
representation in which any two adjacent digits are different. Prove that this set is
homeomorphic to the Cantor set.
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INTRODUCTION TO DYNAMICAL SYSTEMS

A.Katok

PROBLEM SET # 5

Due on Friday, October 4

“CONTROL PROBLEMS”

35.The standard (middle-third) Cantor set C is identified with the space Ω2 of
infinite sequences of zeroes ans ones in two ways:
(i) By replacing twos by ones in the representation in base three;
(ii) By coding the points of C according to the way their images under iterates of
the map f :

f(x) = 3x if x ≤ 1/2, 3 − 3x if x ≥ 1/2

visit intervals ∆0 = [1, 1/3] and ∆1 = [2/3, 1], Denote the corresponding maps
C → Ω2 by H1 and H2. Calculate the map H1 ◦ H−1

2 .

36.Consider an arc ∆ ⊂ S1. For a rotation Rα define the first return map

F : ∆ → ∆ as follows: F (x) = R
n(x)
α , where n(x) is the minimal positive number

n such that Rn
α ∈ ∆. Prove that F looks like that: there are two points a, b ∈ ∆

which divide ∆ into three arcs: ∆1, ∆2, ∆3 in that order. Then F moves each arc
without changing its length, so that the order is reversed.

REGULAR PROBLEMS

37.Consider two metrics in the space Ω2; the metric d2 from problem 33 and the
Hamming metric dH(ω, ω′) = 2−min{n: ωn 6=ω′

n
}. Prove that these metrics are Lip-

schitz equivalent.

38.Prove that for any ω, ω′ ∈ Ω2 there exists a map preserving the Hamming metric
which maps ω into ω′

Hint: Use group structures on Ω2.

39.Consider the space Ω2 with the structure of the group of dyadic intgers, i.e. the
addition of infinite to the left binary “fractions”, where addition is performed by
carrying over to the left. Prove that the map T1 : ω → ω + 1 preserves Hamming
metric and has a dense orbit.

40. Prove that for any irrational number α there exist infinitely many fractions
p/q, with p and q relatively prime such that

|α − p

q
| <

1

q2
.
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OPTIONAL PROBLEMS (no deadline)

41.Prove that for any point ω ∈ Ω2 there exists a map fω : Ω2 → Ω2, contracting
with respect to the Hamming metric and such that fωω = ω.

42.Prove that the map T1 from problem 39 is minimal, i.e all of its orbits are dense.

43*. Let 0 < a < b < 1 and let I1 = [0, a], I2 = [a, b], I3 = [b, 1]. Consider the
following map fa,b : [0, 1) → [0, 1):

fa,b(x) = x + 1 − a for x ∈ I1, x + 1 − a − b for x ∈ I2, x − 1 + b for x ∈ I3.

Find necessary and sufficient conditions for the map fa,b to have a dense orbit Hint:

Use Problem 36.
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INTRODUCTION TO DYNAMICAL SYSTEMS

A.Katok

PROBLEM SET # 6

Due on Friday, October 11

“CONTROL PROBLEMS”

44. Prove that any orbit of a rational rotation of the circle consists of all vertices
of a certain convex regular polygon inscribed into the circle.
Warning: The orbit may not follow the sides of the polygon.

45. In the sequence of first digits of powers of a certain natural number written in
base eight at least four different digits are present. Prove that then all seven digits
are present and each of them appears infinitely many times.

REGULAR PROBLEMS

46. Prove that for any natural numbers n and m there exists a differentiable
monotone map of the circle which has exactly m distict periodic orbits of period n
and no more periodic orbits.
Hint: Use your understanding of rational rotations and monotone maps of the
interval.

47. Find the infimum of the numbers c satisfying the following property: there
exists infinitely many rational numbers p/q with p and q realtively prime such that

|
√

2 − p

q
| <

c

q2
.

Hint: Recall the proof of Liouville Theorem.

48. Show that the uniform distribution for irrational rotations does not in general
hold for countable unions of intervals. In other words, consturct an irrational num-
ber α and a set U , the union of countably many disjoint intervals, the sum of whose
lengths is equal to l, such that for some point x ∈ S1,the average frequencies of

visits to U ,FU (x,n)
n with respect to the rotation Rα do not converge to l as n → ∞.

49. Let Γ be an ellipse in the plane which bounds the domain of area A. Fix a
number a < A and consider the map fa : Γ → Γ defined by the following geometric
condition: the area bounded by the arc between x and fa(x) in the counterclockwise
(positive) direction and the chord connecting these points is equal to a. Prove that
for any given a either all orbits are periodic or the map is minimal (all orbits are
dense). Prove that each of the two possibilities takes place for infititely many values
of a.
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INTRODUCTION TO DYNAMICAL SYSTEMS

A.Katok

PROBLEM SET # 7

Due on Friday, October 18

“CONTROL PROBLEMS”

50. Prove that the maps f(x) = x/2 and g(x) = x/3 of the unit interval into itself
are topologically congugate.

51. Let α be an irrational number. Prove that the set of values of the function
sin t + sin αt, t ∈ R is the open interval (−2, 2).

REGULAR PROBLEMS

52.Prove that any dense sequence of points on the circle (of the unit interval) can
be re–ordered to become uniformly distributed.

53. Prove that for any monotone continuous from the left function d on the unit
interval such that d(0) = 0, d(1) = 1 there exists a sequence xn asymptotically
distributed according to this function.

54. Prove that an invertible linear mar of the plane is topologically congudate to
a contracting map if and only if it is eventually contracting, i.e. equivalently both
eigenvalues are different from zero and are strictly less than one in absolute value.

55. Consider the map described in Problem 49 with Γ the unit square,so that
A = 1. Prove that the map f1/8 has both periodic and non–periodic orbits.

56.Under the assumptions of Problem 53 assume that d is continuous and strictly
monotone and view the unit interval as the circle. Prove that there exist a continuos
invertible map ( a homeomorphism) of the circle onto itself whose orbits have
asymptotic distribution defined by the function d.
Hint: Use the concept of topological conjugacy.

OPTINAL PROBLEM (no deadline)

57. (Unifrom distribution on the line) Let α be an irrational number. Fix a natural
number N and an interval ∆ on the real line. Let F∆(N) be the number of the the
numbers of the form {m + αn, 0 ≤ m, n ≤ N − 1{ Prove that

lim
N→∞

F∆(N)

N
= length(∆).
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INTRODUCTION TO DYNAMICAL SYSTEMS

A.Katok

PROBLEM SET # 9

Due on Friday, November 8

62. Let α and β be two real numbers rationally independent with 1 . Prove that the
sequence an = {nα}+{nβ} where {x} is the fractional part of x has an asymptotic
distribution and find it.

63. Consider a round chamber which serves as a particle accelerator. The chamber
is filled with a weakly radioactive material which glows under an impact of a very
high concetration of particles. A very narrow parallel beam of particles issues from
a very small source in the wall of the camera and photographs of the camera are
taken form its top. What will the photographs show?
Note: You should interpret the non–rigorous terms such as “very high”, “very
narrow”, “very small” in a reasonable way so that you can obtain an idealization
producing a meaningful answer that could be rigorously justified.

64. Suppose a linear flow T t
ω on the torus T

m contains a transformation Tt0ω which
is periodic but not equal to the identity. Prove that the closures of the orbits of
the flow are circles.

65. Prove that for the middle–third Cantor set C, E3C = C and E−3C = C, where
Emx = mx( mod 1)

66. Consider points x ∈ S1 such that for all n = 0, 1, 2 . . . , En
2 x does not belong to

the open interval (1/4, 1/2). Prove that such points form a Cantor–like set (closed,
no isolated points, does not contain any interval)
Hint: Compare this with the previous problem.

67. Prove that the linear expanding maps Em, |m| ≥ 2 are pairwise not topologi-
cally congugate.

OPTIONAL PROBLEMS (no deadline)

68. Prove that the quadratic map f4 is topologically conjugate to the “tent map”:
t(x) = 1 − |2x − 1|.

69. For any transformation Tt0ω from the linear flow T t
ω on the torus T

m the closures
of its orbits either coincide with the closures of the orbits of the flow (which are
tori of a certain dimension k, 1 ≤ k ≤ m) or are finite unions of tori of dimension
k − 1.
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A.Katok

TOPICS FOR THE FINAL EXAMINATION:

Definitions and concepts:

Derivative (differential ) of a map in a Euclidean space.
Norm of a matrix.
Metric space.
Complete metric space
Compact metric space.
Open and closed sets.
Homeomorphism between metric spaces.
Lipshitz equivalence of metric spaces.
Isometry between metric spaces.
Eventually contracting map.
Torus
Cantor set
Topological transitivity.
Topological mixing.
Topological conjugacy of dynamical systems.
Semi–conjugacy of dynamical systems.
Degree of a continuous map of the circle.
Rotation number of a circle homeomorphism.
Continuous–time dynamical systems (one–parameter groups of homeomorphisms).
Examples of linear differential eqations in the plane as continuous–time dynam-

ical systems: node, saddle and focus
One- and two-sided sequence spaces.
Shifts in the sequence spaces.

RESULTS.

1. Contraction mapping principle for maps of a complete metric space.

2. Theorem: If a continuously differntiable map has a fixed point with the norm of
the derivative less than one, than the map is contracting in a certain ball around
the point.

3. Theorem: positive and negative iterates of any point under a monotone con-
tinuous maps of an interval converge to a limit and such limits are fixed points.
points.

4. Structure of the quadratic maps for parameter values 0 ≤ a ≤ 3. Three cases
:0 ≤ a ≤ 1,1 ≤ a ≤ 2,2 ≤ a ≤ 3.( A ticket may ask for a proof in one of the cases
and the statements for the others.)

5. Linear maps in dimension two as dynamical systems. Describe various types of
behavior corresponding to various possibilituies for the eigenvalues. (A ticket may
ask for a proof for a specific configuration of eigenvalues and statements in some
other cases.)
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6. Structure of the quadratic maps for large parameter values (greater than 2(1 +√
2) ). Invariant Cantor set. Every point not in the set converges to infinity.

7. Theorem. If k 6= 10l where l is a natural number then there exists a power of k
whose decimal representation begins with any given finite combination of digits.

8. Asymptotic distribution of the first digits of kn, k 6= 10l. Deduce from the
uniform distribution for irrational rotations.

9. Invariant circles for a linear map in R
n, which has a pair of non–real complex–

conjugate eigenvalues.

10. Existence of rotation number for an orientation–preserving homeomorphism of
the circle.

11. Reduction of the motion of two particles of equal mass on an interval to a billiard
motion in a triangle and of the latter to a linear flow on the torus. Admissible angles;
partial and complete unfolding.

12.Necessary and sufficient condition of uniform distribution for a translation T(α,beta)

on the two–torus: 1, α and β are rationally independent).You have to be able to
give a complete account of one of the two proofs given in class. The choice is yours.
(A ticket may ask for a detailed proof of some steps and the statement of others)

13. Linear expanding maps Em of the circle. Calculation of the number of periodic
orbits. Existence of a periodic orbit with any given minimal period. Density of
periodic orbits. Invariance of the standard Cantor set for E3.

14. Criterion of topological transitivity for a continuous map f of a complete
separable metric space (look at the latest version of notes). Corollary: Existence
of a dense orbit for Em, |m| ≥ 2

15. Shifts in the sequence spaces (one–sided and two–sided). Calculation of the
number of periodic points. Existence of a periodic orbit with any given minimal
period. Density of periodic orbits. Existence of a dense orbit.

16. Tolological conjugacy between any two expanding maps of a given degree.

17. Hyperbolic automorphisms of the two–torus. Calculation of the number of
periodic points. Density of periodic orbits. Topological mixing.

18. Construction of the “horseshoe” map. Topological conjugacy with the shift in
the space of two–sided sequences.


