
FALL 2000. MATH 527: TOPOLOGY/GEOMETRY

A.Katok

Problem set 1; August 24, 2000

Due on Tuesday, September 5

1. Find all different topologies (up to a homeomorphism) on the sets consisting of
2 and 3 elements.

2. We define Zariski Topology in R2 by declaring zero sets of polynomials in two
variables to be closed.

a) Prove that this defines a topology.
b) Show that it is (T1) but not (T2) (Hausdorff)

3. Consider the product topology on the product of countably many copies of the
real line. (this product space is sometimes denoted R∞).

a) Does it have a countable base?
b) Is it separable?

4. Consider the space L of all bounded maps Z → Z with the topology of pointwise
convergece.

a) Describe open sets for this topology.
b) Prove that L is a ountable union of disjoint closed subsets each homeomorphic

to a Cantor set.
Hint: Consider the fact that the countable product of two–point spaces with the

product topology is homeomorphic to a Cantor set.

5. Consider the profinite topology on Z where open sets are defined as unions (not
necessarily finite) of ariphmetic progressions.

a) Prove that this defines a topology.
b) Show that it is Hausdorff but not discrete.

6. Consider the one–parameter group of homeomorphisms of the real line generated
by the map x → 2x. Consider three separation properties: (T2), (T1), and

(T0) For any two points there exists an open set which contains one of them but
not the other (but the one is not given in advance).

Which of these properties does the factor–topology possess?

7. Prove that R (the real line) and R2 (the plane with the standard topology) are
not homeomorphic. Hint: Use the notion of a connected set.

8. Prove the interior of any convex polygon in R2 is homeomorphic to R2.
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ADDITIONAL PROBLEMS; submit solutions by September 19

A1. A topological space (X, T ) is called regular (or (T3)- space) if for any closed
set F ⊂ X and any point x ∈ X \ F there exist disjoint open sets U and V such
that F ⊂ U and x ∈ V . Give an example of a Hausdorff topological space which is
not regular.

A2. Proce that any open convex subset of R2 is homeomorphic to R2.

A3. A point x in a topological space is called isolated if the one-point set {x} is
open. Prove that any compact separable Hausdorff space without isolated points
contains a closed subset homeomorphic to the Cantor set.
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FALL 2000. MATH 527: TOPOLOGY/GEOMETRY

A.Katok

Problem set 2 ; Settember 6, 2000

Due on Tuesday September 19

9. Find all different topologies (up to a homeomorphism) on a set consisting of 4
elements which make it a connected topological space.

10. The profinite topology on the group Z of integers is the weakest topology
in which any arithmetic progression is an open set. Let T∞ be the product of
countably many copies of the circle with the product topology. Define the map
ϕ : Z → T∞ by

ϕ(n) = (exp(2πin/2), exp(2πin/3), exp(2πin/4), exp(2πin/5), . . . )

Show that the map ϕ is injective and that the topology induced on ϕ(Z) coincides
with profinite topology.

11. For a compact metric space X denote by F(X) the space of all closed subsets
of X with the Hausdorff metric dH :

dH(A, B) = max{max
x∈A

min
y∈B

d(x, y), max
x∈B

min
y∈A

d(x, y)}.

a) Prove that dH is a metric.
b) Prove that the topology in F(X) induced by the Hausdorff metric does not

depend on the metric in X defining the given topology.

12.A topological group is a group G endowed with a topology such that the group
multiplication and taking inverse are continuous operations, i.e. the maps G×G →
G : (g1, g2) → g1g2 and G → G : g → g−1 are continuous.

Consider the group SL(2, R) of all 2 × 2 matrices with determinant one with
the topolology induced from the coordinate embedding into R4. Prove that it is a
topological group.

13. Let X be a compact Hausdorff space. Prove that the space of continuous maps
form X to the unit interval with the uniform metric is compact if and only if X
contains finitely many elements.

14. Let A ⊂ R2 be the set of all vectors (x, y) such that x + y is a rational number
and x − y is an irrational number.

Show that R2 \ A is path connected.

15. A map f : X → Y between topological spaces is called a homeomorphic

embedding if it is a homeomorphism between X and f(X).
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Construct a homeomorpghic embedding of T∞ into the Hilbert cube.

16. For a metric space (X, d) and r > 0 let Bd(r) be the minimum number of
r-balls which cover X. Define the upper box dimension of X as

lim sup
ε→0

−
log Bd(ε)

log ε
.

Prove that spaces which are bi-Lipschtz equivalent have the same upper box
dimension.

ADDITIONAL OPTIONAL PROBLEMS: Submit solutions by October 3

A4. Give an example of a compact metrizable path-connected topological space X
such that no point of X has a connected neighborhood.

A5. Show that the closure of ϕ(Z) as in problem 10 is homeomoprhic to the Cantor
set. Introduce a translation-invariant metric on Z which generates the profinite
topology and such that Cauchy sequences in that metric are exactly the sequences
whose images under ϕ converge in T∞.

A6. Consider the following subgroup S of T∞, S = {(z1, z2, z3, . . . ) : z2
n =

zn−1, n = 2, 3, . . .} with the topology induced from T∞. Prove that as topolog-
ical space S is connected but not path-connected.

A7. Consider the weakest topology in the set R or real numbers such that for any
t ∈ R the function x → exp(itx) is continuous. Prove that this topology is not
metrizable.
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FALL 2000. MATH 527: TOPOLOGY/GEOMETRY

A.Katok

Problem set 3; September 19

Due on Tuesday October 3

17. A metric space X is called precompact if for any ε > 0 it can be covered by
finitely many ε-balls.

Prove that the completion of a metric space X is compact if and only if X is
pre-compact.

18.Let an → 0 be a sequence of positive numbers. A real number α is called
{an}-Diophatnine is there exists a positive number C such that for any integers
p, q 6= 0

|α −
p

q
| > Caq.

Otherwise α is called {an}-Liouvillean.
Show that the set of all {an}-Diophantine numbers has first Baire category.

19.* Prove that the figure eight (i.e.the union of two circles with one common point)
is not contractible.

20.* Prove that the product of a finite or countable collection of contractible spaces
is contractible.

21. Construct a continuous map from the unit interval onto the Hilbert cube
(Infinite-dimensional Peano curve).

22. Prove that the 2–torus with one point removed is not homeomorphic to any
open set in the plane. Hint: Use Jordan curve theorem

23. Prove that no topological 3–manifold is homeomorphic to a topological 2–
manifold.

24. Show that the standard Peano curve is a 1/2 Hölder map but does not satisfy
α- Hölder condition with any α > 1/2.

————————
*)Refers to material to be discussed on September 26.
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ADDITIONAL OPTIONAL PROBLEMS; submit solutions by October 17

A8. A metric space X is called locally path connected if for any ε > 0 there exists
δ > 0 such that any two points at a distance less than δ can be connected by a
path contained in a ball of radius ε.

Prove that for any compact path connected and locally path connected subset X
of the plane R2 there exists a continuous map f : [0, 1] → R2 whose image coincides
with X (Generalized Peano curve).

A9. Consider the following subgroup S of T∞, the product of countably many
copies of the circle: S = {(z1, z2, z3, . . . ) : z2

n = zn−1, n = 2, 3, . . .} with the
topology induced from T∞. Prove that as a topological space S is connected but
not locally path-connected at any point.

A10. Prove that in the space C([0, 1]) of continuous functions on the unit interval
the set of functions which are monotone on some interval has first category.

A11. Prove that ϕ(Z) as in problem 10 is a subgroup of T∞ which is isomorphic
to the direct product of groups Zp of of p-adic integers for all prime numbers
p = 2, 3, 5 . . . .
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FALL 2000. MATH 527: TOPOLOGY/GEOMETRY

A.Katok

Problem set 4; October 10, 2000

Due on Tuesday, October 24

25. Any compact one–dimensional manifold is homeomorphic to the circle.

26. Write a complete argument for the statement: π1(S
1) = Z

27. For any finite cyclic group C there exists a compact connected three-dimensional
manifold whose fundamental group is isomorphic to C.

Hint: Use Hopf fibration.

28. Complex projective plane CP (2) (which is four–dimensional manifold) is simply
connected, i.e. its fundamental group is trivial.

29. Consider the following map f of the torus T2 into itself:

f(x, y) = (x + sin 2πy, 2y + x + 2 cos 2πx) ( mod 1).

Describe the induced homomorphism f∗ of the fundamental group.
Note: You may use the description of the fundamental group of the direct product

π1(X × Y ) = π1(X) × π1(Y ).

30. Let X = R2 \ Q2. Prove that π1(X) is uncountable.

31. A tree is a connected factor space of a finite or countable union of disjoint
intervals with some endpoints indetified and no cycles.

Prove that any tree is contractible.

32. The real projective space RP (n) is not simply connected.
Note: You cannot simply refer to the general theory of covering spaces, but can

use a covering argument with a lift to the sphere.

ADDITIONAL OPTIONAL PROBLEMS; submit solutions by November 7

A12. Prove that if a map f : [0, 1] → R2 is such that the image of f contains an
open ball, then f is not α Hölder for any α > 1/2.

A13. For any abelian finitely generated group A there exists a compact manifold
whose fundamental group is isomorphic to A.

A14. The fundamental group of any compact connected manifold is no more than
countable and is finitely generated.
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MATH 527: TOPOLOGY/GEOMETRY

A.Katok

MID-TERM EXAMINATION

Tuesday, October 10,2000

Do two problems from each section.

SECTION 1

1.1. Show that there exists a metric on the Cantor set such that there are only
countably many different open balls .

1.2. Consider the torus T2 = R2/Z2 and let S be the factorspace obtained by
identifying orbits of the map I : x 7→ −x. Prove that S is homeomorphic to the
sphere S2.

1.3. Prove that the set of all real numbers x such that any represerntation of x in
any base m contains infinitely many times each of the digits {0, 1, . . . , m−1} is the
set of second Baire category.

1.4. Consider the space of all polynomials in one real variable equipped with a
metric coming from a norm, i.e. d(f, g) = ‖f − g‖, where

‖f‖ ≥ 0 and ‖f‖ = 0 implies that f = 0,
‖λf‖ = |λ|‖f‖ for λ ∈ R,
‖f + g‖ ≤ ‖f‖ + ‖g‖.

Prove that this space is not complete.

SECTION 2

2.1. Let X be the factorspace of the disjoint union of S1 and S2 with a pair of
points x ∈ S1 and y ∈ S2 identified. Calculate π1(X).

2.2. The binary tree is the factor space of the countable disjoint union of closed
intervals some of whose endpoints are identified in such a way that:

(i) the space is connected,
(ii) every endpoint of each interval is identified with exactly two other endpoints,

and
(iii) there are no cycles, i.e one cannot follow a sequence of intervals
without repetitions via identifications and come back.

Prove that the binary tree is contractible.

2.3. Torus with three points removed is homotopically equivalent to the bouquet
of four circles.

2.4. Let f : S1 → R2 be a continuous map such that there are two points a, b ∈ S1

such that f(a) = f(b) and f is injective on S1 \ {a}. Prove that R2 \ f(S1) has
exactly three connected components.
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FALL 2000. MATH 527: TOPOLOGY/GEOMETRY

A.Katok

Problem set 5; October 31, 2000

Due on Tuesday, November 12

33. Calculate the fundamental group of the standard model for the orientable
surface Sg of genus g ≥ 1: the regular 4g-gon with pairs of sides identified like this
(a cyclic order is assumed): for k = 0, 1, 2 . . . , g−1 the side 4k+1 is identified with
4k + 3 and 4k + 2 with 4k + 4; in both cases the identification changes direction.

34. Prove that the fundamental groups from the previous problem for different
values of g are pairwise nonisomorphic.

35. Describe rigorously a differentiable structure on the surface from Problem 33
which coincides with the standard structure outside of the vertices.

36. Consider the regular 2m-gon with the pairs of opposite sides identified by
parallel translations. Prove that the resulting space is homeomorphic to S[m/2].

37. Prove that the fundamental group of any finite one–dimensional connected
simplicial complex is free.

38. Find the number of generators for the fundamental groups of one–dimensional
simplcial complexes formed by the vertices and edges of the

(i) tetrahedron;
(ii) octahedron.

39. Find the fundamental group of the ”necklace”: the disjoint union of m ≥ 2
spheres S(1), . . . , S(m) with pairs of point identified in a cyclic order: q1 ∈ S(1) is
idenified with p2 ∈ S(2), q2 ∈ S(2) with p3 ∈ S(3) etc, until qm ∈ S(m) is identified
with p1 ∈ S(1).

40. Consider the normal subgroup in the free group with two generators F2 gener-
ated by the commutators of the generators. Describe rigorously the corresponding
covering of the figure eight.

41. Show that the “flat” torus S1 × S1 is equivalent as a differentiable manifold to
the “bagel” torus embedded into R3.

42. Consider a compact surface S in R3 given by a single equation F (x1, x2, x3) = 0
where F is a differentiable function for which 0 is not a critical value. Assume that
for any two sufficiently close points in S there is a unique shortest smooth curve
connecting these points. Prove that S is a simplicial polyhedron, i.e. that is allows
a simplicial decomposition (representation as a simplicial complex).
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ADDITIONAL OPTIONAL PROBLEMS; submit solutions by November 28

A15. Find the number of generators for the fundamental groups of one–dimensional
simplcial complexes formed by the vertices and edges of the icosahedron.

A16. Prove the assertion of Problem 42 without assuming existence of the unique
shortest curve.

A17. Find a “politically correct” projection of the sphere with two poles removed
to the cylinder C = S1 × (0, 1) mentioned in class, i.e. a differentiable map which
sends parallels into “horizontal” circles, meridians into the “vertical” intervals, and
preserves the area.
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FALL 2000. MATH 527: TOPOLOGY/GEOMETRY

A.Katok

THIS IS THE LAST PROBELM SET FOR FALL SEMESTER

Problem set 6 ; November 21

Due on Tuesday December 5

43. Prove that adding two more Mobius caps to the sphere with several handles
and m ≥ 1 Mobius caps is equivalent to adding a handle.

44. A surface M (two–dimensional differentiable manifold) is orientable if one
can choose the direction of rotation in each tangent space TxM which changes
continuously from point to point

Prove that a nonorientable surface has an orientable double cover.
Hint: Look how orientation changes along a path.

45. Prove that the sphere with m ≥ 1 Mobius caps is nonorientable.

46. Find the orientable double cover for the sphere with m Mobius caps.

47. Suppose that a simplicial polyhedron represents a compact surface. Prove
that its second Betti number is equal to one if the surface is orientable and zero
otherwise.

48. Prove that two–dimensional differentiable manifold is orientable if and only if
it has an atlas such that all coordinate changes in the intersections of charts have
positive Jacobian.

49. Prove that compact two–dimensional differentiable manifold is orientable if and
only if in has a positive volume element: an antisymmetric diffrerential two form
which does not vanish at any point.

50. Prove that the only surfaces which appear as factors of Euclidean plane with
respect to free totally discontinuous actions of group of isometries are the cylinder,
the Mobius strip, the torus and the Klein bottle.

Hint: Find the subgroup of translations and show that it has no more than two
generators.

51. Consider the regular octagon with the pairs of opposite sides idnetified by
translations. Desrcibe the structure of one dimesnsiomal complex manifold on it
which coincides with the standard structure inside.

52. Consider the ideal triangle T on the hyperbolic plane with all its vetrices p,
q and r on the real line. Consider the group of isometries generated by parabolic
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transformations Pp which take the line pq into pr and Pq which takes the lines qp
into qr.

Prove that this is a free group with two generators actig freeley and properly
discontinuosly on the hyperbolic plane.

Prove that the factor space is homeomorphic to the sphere with three points
removed.
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MATH 527: TOPOLOGY/GEOMETRY

A.Katok

FINAL EXAMINATION

Saturday, December 9 ,2000

Do two problems from each section.

SECTION 1: Fundamental group and homology.

1.1. Consider the bouquet of three circle and the subgroup of its fundamental group
generated by two of its three generators. Describe rigorously the corresponding
covering space and covering map.

1.2. Consider the subgroup of the free group with two generators a and b generated
by a2 and b3. describe the corresponding covering space of the figure eight.

1.3. Consider the following schematic representation of a small house:

H = {(x, y, z) ∈ R3 : 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ 2

and x ∈ {0, 1, 2, 3}, or y ∈ {0, 1, 2}, or z ∈ {0, 1, 2}}.

The set R is obtained from H by identifying coordinates mod 3.
Calculate the homology groups of R. (You may use any convenient triangula-

tion.)

1.4. Give an example of two connected finite simplicial complexes which have iso-
morphic homology groups in all dimensions but nonisomorphic fundamental groups.

SECTION 2: Surfaces and elements of differentiable manifolds.

2.1. Describe a smooth embedding of the Klein bottle into R4.

2.2. Construct a Morse function with one maximum, one minimum and one saddle
on the projective plane.

2.3. Attaching an inverted handle to an orientable surface is the following pro-
cedure: cut two small holes in the surface and identify the boundaries with two
boundary components of the cylinder using opposite orientations on the cylinder
for the two circles with the same orientation on the surface.

Identify the sphere with two inverted handles attached with one of the standard
models: the sphere with several handles, or the sphere with several handles and
one or two Mobius caps.

2.4. Suppose that a compact connected m-dimensional differentiable manifold M
has an antisymmetric differentiable m form which vanishes on a contractible set.
Prove that M is orientable.
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SPRING 2001. MATH 528: TOPOLOGY/GEOMETRY

A.Katok

Problem set 7; January 23, 2001

Due on Monday February 5

53. Cosider the Mobius strip as a one-dimensional vector bundle over the circle.
Prove that the Whitney sum of this bundle with itself is a trivial bundle (i.e.
equivalent to the direct product S1 × R2.

54. An n-dimensional differentiable manifold is orientable if and only if its tangent
bundle has a SL(n, R) reduction.

55. Suppose that a two–dimensional vector bundle is orientable and has one non-
vanishing section. Show that it is trivial.

56. Consider a vector bundle whose structure group is the group of upper–triangular
matrices with positive diagonal elements. Show that is has a trivial reduction.

57. Prove that the tangent bundle to S3 is trivial.
Hint: Consider linear vector fields on S3.

58. Show that the sphere S2n+1 is the total space of a principal S1 bundle over the
complex projective space P(n).

59. Show that the Hopf fibration of S3 over S2 with the fiber S1 (which is a
particular case of the construction of Problem 58 for n = 1) is not trivial, i.e. it is
not the direct product.

Hint: Use fundamental groups.

60. Prove that the fundamental group of the total space of a vector bundle is
isomorphic to a subgroup of the fundamental group of the base.



15

SPRING 2001. MATH 528: TOPOLOGY/GEOMETRY

A.Katok

Problem set 8; February 9, 2001

Due on FRIDAY February 16

61. Consider the one-parameter groups of rotations of the standard unit sphere
S2 in R3 around the three coordinate axes. Let vx, vy and vz be their generating
vector fields. Express the brackets of these vector fields as their linear combinations
(such an expression is not unique but you may try to look for an elegant one, e.g
for the coefficient to be constant).

62. Construct three linear linearly independent non-vanishing vector fields on the
standard unit sphere in R4 and calculate their Lie brackets.

Hint: You may try to find an analogy with the setting of the previous problem,
or, if you heard about quaternions, think about S3 as the set of quaternions of the
unit norm.

63. M be a two–dimensional differentiable manifold, u and v be two smooth vector
fields on M which are linearly independent at a point p ∈ M . Prove that there
exists a coordinate system (x1, x2) in a neighborhood of p and positive smooth
functions α and ρ so that locally near p,

u = α
∂

∂x1
, v = ρ

∂

∂x2
.

64. Given a simple closed parametrized curve γ on a smooth manifold M , i.e. an
embedding S1 → M , there exists a vector field on M for which γ is an orbit.

Hint: Use implicit function theorem and partition of unity.

65. Consider the group H of 3 × 3 upper-diagonal matrices with the units on the
diagonal (the Heisenberg group). This group has natural coordinates (x12, x13, x,23 )
and it acts on itself by left translations. Let v12, v13, v,23 be the left-invariant
vector-fields on H with the values at the identity (1, 0, 0), (0, 1, 0) and (0, 0, 1)
correspondingly. Calculate these vector fields and their brackets in coordinates
(x12, x13, x,23 ).

66. Calculate the dimension of the space Sm(Rn) of symmetric m-forms on Rn.

67. The kernel Ker(ω) of a skew-symmetric bilinear form ω ∈
∧2

(L) is defined by

Ker(ω) = {v ∈ L : ω(v, u) = 0∀u ∈ L}.



16

Call r(ω) = dim L − dim Ker(ω) the rank of ω. Prove that r(ω) is always an
even number and that for a form of rank 2k in n–dimensional space there exists a
coordinate system such that for (u = (u1, . . . , un), v = (v1, . . . , vn),

ω(u, v) =

k
∑

i=1

u2i−1v2i − v2i−1u2i.

Hint: Reduce the problem to the maximal rank case and use induction in di-
mension.



17

SPRING 2001. MATH 528: TOPOLOGY/GEOMETRY

A.Katok

Problem set 9; February 26, 2001

Due on March 11

68. Let ω be a differential 1-form. Calculate the value of the exterior two form
d(ω) on a pair of vector fields v1, v2. The result may include values on the vector
fields and their brackets and derivatives of those values.

69. Let ω be a differential 2-form. Caltulate the value of an exterior 3-form d(ω)
on a triple of vector fields. The result may include values on the vector fields and
their brackets and derivatives of those values.

70. Prove that the forms dx1, . . . , dxn form a basis in the first De Rham cohomology
on the torus Tn = Rn/Zn.
Hint. Use Poincaré lemma in Rn and integration over one-cycles.

71. Bredon p. 82 N5.

72. Bredon p. 82 N6.

73. Find a counterpart of the previous problem for the sphere embeddings: what
is the minimal value of m such that given a smooth embedding φ : S2 → Rm there
exists a hyperplane such that the composition of φ with the orthogonal projection
is still an embedding?

74. Prove the following stronger version of the Poincaré lemma. If ω is a closed
form in Rn which vanishes in a neigborhood of the origin than ω = dα where α
vanishes in a (possibly smaller) neighborhood of x.

75. Prove without referring to de Rham Theorem that every closed k-form on the
sphere Sn, where 0 < k < n is exact.
Hint. Use the previous problem.
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MATH 528: TOPOLOGY/GEOMETRY

A.Katok

FIRST MID-TERM EXAMINATION

Friday, March 2 2001

Do two problems from each section.

SECTION 1

1.1. Prove that the tangent bundle TM of any compact manifold is stably trivial

i.e. there exists another vector bundle F over M whose Whitney sum with TM is
a trivial bundle.

1.2. Prove that any R2 bundle over the circle is either trivial or isomorphic to the
Whitney sum of the Mobius strip bundle and the trivial bundle.

1.3. Prove that the fundamental group of a circle bundle over a sphere of dimension
≥ 2 is cyclic.

1.4. Prove that the tangent bundle to Sn × R is trivial.

SECTION 2

2.1. Construct three linearly independent non-vanishing vector fields on the sphere
S4n−1.

2.2. Let M be a three–dimensional differentiable manifold, u and v be two smooth
vector fields on M which are linearly independent at a point p ∈ M . Is it always
true that there exists a coordinate system (x1, x2, x3) in a neighborhood of p and
positive smooth functions α and ρ so that locally near p,

u = α
∂

∂x1
, v = ρ

∂

∂x2
?

2.3. A differentiable two-form ω on a 2k-dimensional manifold is called symplectic

if any point has a neighborhood with coordinates (x1, . . . , xk, y1, . . . , yk) such that

locally ω =
∑k

i=1 dxi ∧ dyi. Prove that a manifold which carries a symplectic form
is orientable.

2.4. Prove that the wedge product induces a ring structure in the direct sum of the
de Rham cohomology spaces, i.e. that if both ω1 and ω2 are closed then ω1 ∧ ω2 is
closed, and if ω1 is closed and ω2 is exact, then ω1 ∧ ω2 is exact.



19

SPRING 2001. MATH 528: TOPOLOGY/GEOMETRY

A.Katok

Problem set 10; March 16, 2001

Due on Wednesday March 28

76. Give a detailed proof of the calculation of de Rham cohomolory ring for the
torus Tn.

77. Calculate the de Rham cohomolory ring for the real projective space RP (n).

78. Give an explicit construction of a basis in the first de Pham cogomology group
(i.e. describe particular closed forms representing the cohomology classes) for the
sphere with two handles using either the representation as a smooth “pretzel” in
R3 or one of the polygonal representations.

79. Let M be a compact m-dimensional manifold and B be a subset of M dif-
feomorphic to the closed m-dimensional ball. Show that every closed differential
k-form on M is cohomologous to a form which vanishes on B.

80. Define the intersection index in the first de Rham cogomology group of a
compact orientable surface M by fixing an orientation on M and putting

int(ω1, ω2) =

∫

M

ω1 ∧ ω2

Prove that the intersection index is correcly defined and that it is a skew-symmetric
bilinear form on H1

dR(M).

81. Take M as the sphere with g handles, fix a basis in H1
dR(M) and calculate the

intersection index form in that basis.

82. Define an intersection index in H2
dR(M) for a compact four-dimensional ori-

entable manifold in a fashion similar to Problem 80 and calculate it for the natural
basis for M = T4.

83. Prove that de Rham cohomology of the complex projective space CP (n) is
nontrivial in even dimensions (i.e. dimension 2k, k = 0, . . . , n).
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SPRING 2001. MATH 528: TOPOLOGY/GEOMETRY

A.Katok

Problem set 11 ; April 2, 2001

84 . (Due on Wednesday April 4) Calculate the cellular homology of the unit
tangent bundle T1(S

2) using the cellular decomposition described in class of March
30.

Hint: The identification map between the boundaries of two solid tori is not
cellular in the natural cell decompostion of the torus. Rather than refining the
decomposition to make it cellular (which is possible but messy) see that the iden-
tification map is homotopic to a cellular map which is cufficient for the homology
calculation

THE REST OF THE SET IS DUE IN WEDNESDAY APRIL 11

85. Consider the standard cellular decomposition of the three-dimensional torus
T3. Let f be the linear map given by the matrix





2 1 1
1 1 0
0 1 2



 .

Describe explicitly a cellular approximation of the map f .

86. Prove that the three–dimensional sphere S3 is homeomorphic the the factor–
space of the union of two solid tori with the boundaries identified via the map
f(x, y) = (y, x) ( mod 1). Explain the difference between S3 and T1(S

2) using
the difference in identification on the boundaries.

87. Show that not every 4 × 4 matrix appears as the induced map on the first de
Rham cohomology group for a map of the sphere with two handles into itself

Hint: Use the intersection index from Problem 80.

88. Consider the self–map f of the two-dimensional projective space CP (2) give in
the homogeneous coordinates by

f(z1, z2, z3) = (z1z
2
2 + z3

1 , z2
2z3, z1z2z3).

Prove that it is a cellutar map with respect to the standard cellular decompoition
(the 0-cell z2 = z3 = 0, the 2-cell z3 = 0 and the four–cell) and calculate induced
map on the homology groups.

Hint: Use the definitoion of the index based on the Sard Theorem.

89. Consider the identification space of of the union of two solid tori with the
boundaries identified using the map f(x, y) = (−y, x) ( mod 1). Prove that this
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space has a natural structure of a three–dimensional manifold, describe a cell de-
composition and calculate the cellular homology.

90. Show that any connected CW complex allows a cell decomposition with one
vertex.

91. Show that every connected simplicial complex which is a pseudomanifold allows
a cell decomposition with a single cell of maximal dimension.

Hint: Start with a simplicial decomposition and modify it only in the maximal
dimension by successively ”squeezing ” the ball of “toothpaste” into the simplices
so that eventually it fills them all.
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MATH 528: TOPOLOGY/GEOMETRY

A.Katok

SECOND MID-TERM EXAMINATION

Friday, April 13 2001

Do two problems from each section.

SECTION 1

1.1. Consider an orientable compact surface M 2 with an area form (a nondegenerate
differentiable 2-form) Ω. Prove that a differential 1-form α is closed if and only if

α = vyΩ,

where v is an area–preserving vector field.

1.2. Consider the linear map FA of the torus Tn given by the integer matrix A with
n different real eigenvalues λ1, . . . , λn. Find the eigenvalues of the map induced by
FA in the group Hk

dR(Tn).

1.3. Prove that if the intersection index of two non-zero elements α, β ∈ H1
dR(T2)

is equal to 0, then α and β are proportional.

1.4. Prove that on any compact differentiable manifold, orientable or not, there
exists a positive density form, i.e a linear functional I on the space of continuous
functions, continuous in the uniform topology, and such that for a function f which
is equal to zero outside of a a coordinate neighborhood U ,

I(f) =

∫

f(x1, . . . , xn)ρ(x1, . . . , xn)dx1dx2 . . . dxn,

where the weight function ρ is positive and differentiable.

SECTION 2

2.1. Consider the torus T3 = R3/Z3 with the standard cell decomposition (one 0-
cell, three 1-cells, three 2-cells, and one 3-cell) which appears from the identification
of the opposite sides of the unit cube. Find a necessary and sufficient condition for
a linear map FA of T3, i.e a map induced by a 3 matrix A with integer elements,
to be homotopic to a cellular map which is a homeomorphism.

2.2. Prove that the fundamental group of a connected CW complex coincides with
the fundamental group of its two-skeleton (i.e. the union of zero-, one- and two-cells.

2.3. Give an example of a compact metrizable space which allows a cellular decom-
position, but not a triangulation.

2.4. Calculate the cellular homology of S2 × RP (2).
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Ph. D. QUALIFYING EXAMINATION IN GEOMETRY AND TOPOLOGY

Saturday, MAY 5,2001

Do two problems from each section.

SECTION 1

1.1. Prove that the real line can be represented as uncountable union of disjoint
subsets each of which is homeomorphic to the Cantor set.

1.2. Suppose X is a path–connected space whose fundamental group is S3, the
group of permutations of three symbols. How many nonhomeomorphic covering
spaces does X have?

1.3. Find the fundamental group of the surface of the cube with interiors of all
edges removed, i.e. the space which consists of the vertices and interiors of the
faces of the cube.

1.4. Topological spaces X and Y are homotopically equivalent and X is Hausdorff.
Is Y Hausdorff?

SECTION 2

2.1. Let γ : S1 → RP (2) be an injective null-homotopic continuous map. Prove that
RP (2)\γ(S1) consists of two connected components one of which is homeomorphic
to the disc and other is not.

2.2. The third Betti number of a simplicial complex is equal to three. What is the
minimal number of vertices in the complex?

2.3. Construct a finite connected CW complex with the first homology group
Z×Z/5Z, the second homology group Z/6Z, the third homology group Z2, and the
fourth homology group equal to zero.

2.4. Let X be a three–dimensional vector bundle over a compact base whose struc-
ture group is the group O(2, 1) of matrices preserving the quadratic form x2

1+x2
2−x2

3.
Prove that this bundle has a nontrivial one-dimensional subbundle.
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SECTION 3

3.1. Does there exist a differentiable map f : T2 → S2 such that for an open set A
of points in S2 the preimage f−1(x) for each x ∈ A contains exactly three points?

3.2. Consider the vector field

v = sin(2πx2)
∂

∂x1

on the standard two-dimensional torus. Prove that any vector field u which com-
mutes with v, i.e. [u, v] = 0, is collinear with v.

3.3. Suppose M is a compact symplectic 2m-dimensional manifold, i.e there exists
a closed 2-form ω on M such that ωm does not vanish. Prove that the de Rham
cohomology of M in every even dimension from 2 to 2m is not zero.

3.4. Prove that the group SO(4) of orthogonal 4×4 matrices with determinant one
is homeomorphic to S3 × RP (3).
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Ph. D. QUALIFYING EXAMINATION IN GEOMETRY AND TOPOLOGY

Monday, August 13,2001

Do two problems from each section.

SECTION 1

1.1. Prove that for any two points x and y in the Cantor set C there exists a
homeomorphism f : C → C such that f(x) = y.

1.2. Consider the following subsets of the plane:

A = {x ≥ 0, y = | sinx|} and B = {0, 0} ∪ {x > 0, y = |x sin
1

x
|}.

Each set is path-connected and contains countably many loops joint to each other.
Are the fundamental groups of A and B isomorphic?

1.3. Let G be the subgroup of F3, the free group with three generators which
consists of all elements for which the shortest representation as a word composed of
generators and their inverses has even length. Describe the corresponding covering
space.

1.4. Prove that the factor space of the complex projective plane CP (2) by the
complex conjugation is homeomorphic to the sphere S4.

SECTION 2

2.1. Prove that any simplicial decomposition of the two-dimensional torus contains
at least ten two-dimensional simplices.

2.2. Denote the vectors of the standard basis in R4 by e1, e2, e3, e4 and let e5 =
(1/4, 1/4, 1/4, 1/4). Let

X = {x ∈ R4 : x = α1ei1 + α2ei2 + α3ei3 , α1 + α2 + α3 = 1, αi ≥ 0, i = 1, 2, 3}.

where {i1, i2, i3} is any subset of {1, 2, 3, 4, 5}. In other words, X is the soap bubble
on the wire consisting of the edges of a regular tetrahedron and the spikes connecting
the center with the vertices.

The set X comes with a natural simplicial decomposition. Calculate the homol-
ogy groups of X.

2.3. Construct a finite CW complex such that its homology groups in dimension
1, . . .m are given finite abelian groups G1, . . . , Gm and higher homology groups are
trivial.
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2.4. Consider a locally trivial bundle B with compact base whose fibers are Rn and
the structure group is the group of affine transformations. Prove that there is a
reduction of the structure group to the group of Euclidean isometries of Rn.

SECTION 3

3.1. Does there exist a differentiable map f : T4 → T4 of the four-dimensional torus
T4 = R4/Z4 into itself such that f∗[dx1 ∧ dx2] = [dx2 ∧ dx3] and f∗[dx1 ∧ dx3] =
[dx1 ∧ dx4]? Here [·] denotes the de Rham cogomology class and f ∗ is the map
induced by f on the de Rham cohomology groups.

3.2. Show that there exists a Morse function on the real projective space RP (n)
with exactly one critical point of Morse index k for k = 0, 1 . . . , n.

3.3. Prove that the tangent bundle to the projective space RP (3) is trivial.

3.4. For a vectorfield v on the standard flat torus T2 let Jv be the vectorfield
obtained by the rotation by π/2 in the positive direction. Assume that v is smooth
and that both vectorfields v and Jv preserve the area form dx1 ∧ dx2. Prove that
v has constant coefficients:

v = α
∂

∂x1
+ β

∂

∂x2
.


